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In this dissertation, spatiotemporal interpolation of geographic data is considered.

Two methods are discussed which are the reduction and the extension methods. The

reduction method treats time as an independent dimension, whereas the extension

method treats time equivalent to a spatial dimension. Both 2-D and 3-D shape

functions are adopted, usually used in finite element methods, for the spatiotemporal

interpolation of 2-D spatial & 1-D temporal and 3-D spatial & 1-D temporal data

sets. Domains are divided into a finite number of sub-domains (such as triangles and

tetrahedra) in which local shape functions are assumed. New 4-D shape functions

that can be applied for each 4-D Delaunay Tessellation element are developed using

the extension method for 3-D spatial & 1-D temporal problems. The visualization of

shape function interpolation results is also explained and illustrated.

Using an actual real estate data set with house prices, we compare these methods

with other spatiotemporal interpolation methods based on inverse distance weighting

and kriging. We compare these methods with respect to interpolation accuracy, error-

proneness to time aggregation, invariance to scaling on the coordinate axes, and

the type of constraints used in the representation of the interpolated data. Our

experimental results show that the extension method based on shape functions is the

most accurate and the overall best spatiotemporal interpolation method.

Constraint databases provide a general approach to express and solve constraint

problems. We show that spatiotemporal interpolation data can be represented in

constraint databases efficiently and accurately. The advantage of constraint databases



is that many queries that could not be done in traditional GIS systems can now be

easily expressed and evaluated in constraint database systems.

Finally, the constraint database system MLPQ (Management of Linear Program-

ming Queries) is used to animate and query some spatiotemporal data examples. A

translation algorithm between ArcGIS shape files and MLPQ input data files is also

discussed.
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Chapter 1

Introduction

1.1 Motivation

Geographic Information System (GIS) (Demers 2000, Longley, Goodchild, Maguire &

Rhind 2001, Worboys 1995) applications increasingly require the use of spatiotemporal

data, that is, data that combine both space and time (Langran 1992). For example,

land-use change through time is a typical spatiotemporal data. Future GIS systems

need to efficiently manage spatiotemporal databases (STDBs) containing such data.

The study of the representation and the algorithmic methods to query and visualize

spatiotemporal data is still a growing research area.

GIS applications often require spatiotemporal interpolation of an input data set.

Spatiotemporal interpolation requires the estimation of the unknown values at un-

sampled location-time pairs with a satisfying level of accuracy. For example, suppose

that we know the recording of temperatures at different weather stations at different

instances of time. Then spatiotemporal interpolation would estimate the temperature

at unsampled locations and times.

Spatial interpolation is already frequently used in GIS. There are many spatial

interpolation algorithms for spatial (2-D or 3-D) data sets. Shepard (1968) discusses
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in detail inverse distance weighting, Deutsch & Journel (1998) kriging, Goodman

& O’Rourke (1997) splines, Zurflueh (1967) trend surfaces, and Harbaugh & Pre-

ston (1968) Fourier series. Lam (1983) gives a review and comparison of spatial

interpolation methods.

There are surprisingly few papers that consider the topic of spatiotemporal inter-

polation in GIS. In fact, we could only find papers in spatiotemporal interpolation

that estimate the motion of moving objects, which is a major concern in human vi-

sion but unrelated to GIS. One exception is Miller (1997), which utilizes kriging for

spatiotemporal interpolation.

Most GIS researchers assume that spatiotemporal interpolation is reducible to a

sequence of spatial interpolations. This reduction is convenient only if we sample

the same locations at the same times. For example, this may be true for the above

temperature data set if each weather station records temperature at same times. Then

we can do a separate spatial interpolation for each time instance for which we have

the temperatures at the weather stations.

However, irregular data sets are also quite common. For example, consider a data

set that records the price of houses sold in a city. For each day of sale, this data set

can give us only the exact price of a set of houses (those that are sold that day). This

subset varies day by day. This is unlike the set of weather stations which are fixed.

For such irregular data sets the above reduction method is unnatural to apply.

A spatiotemporal interpolation method for both regular and irregular GIS data

is designed in this dissertation. After the comparison with other common methods,

such as inverse distance weighting and kriging, the designed method, which utilizes

shape functions, is shown to be the best in the selected examples.

Existing GIS software packages usually do not have the ability to visualize spa-

tiotemporal data (Li & Revesz 2001). In this dissertation, the designed spatiotempo-

ral interpolation result is visualized by using an experimental test data-set. Also, the
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constraint database system MLPQ (Management of Linear Programming Queries) is

used to animate and query some interesting spatiotemporal data.

1.2 Related Work

It is already becoming clear that we can distinguish three major types of GIS-oriented

spatiotemporal databases. Spatiotemporal data can be represented by three basic

primitives: points, regions, and constraints (Li & Revesz 2003 to appear). It should

be emphasized that these three types of spatiotemporal databases are only alternative

representations of the same data. Any one type of spatiotemporal database can be

translated into another type as shown in Figure 1.1. In the figure, each edge rep-

resents a translation algorithm. For example, edge A represents the algorithm that

converts a point-based spatiotemporal database into a constraint-based spatiotempo-

ral database.

Point-based

Region-based

High-Order Voronoi Regions

Thiessen Polygons

Constraint-based

Constraint-based Polygons

A

B

D

C

Figure 1.1: The relationship among the spatiotemporal databases.
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1.2.1 Point-Based Spatiotemporal Databases

A point-based STDB consists of a set of point-based spatiotemporal relations. For

2-D space and 1-D time problems, a point-based spatiotemporal relation should have

the schema of (x, y, t, w1, w2, . . ., wm). The attributes (x, y) specify point locations

and t specifies a time instance. In GIS applications, (x, y) may be given as UTM

(Universal Transverse Mercator) coordinates for easting and northing. The last m

attributes wi (1 ≤ i ≤ m) record the other features at location (x, y) and time t.

Example 1.2.1 The point-based spatiotemporal relation Drought Point(x, y, year,

SPI) stores the average yearly SPI (Standardized Precipitation Index) values sampled

by 48 major weather stations in Nebraska from year 1992 to 2002. SPI is one of the

common and simple measures of drought which is based solely on the probability

of precipitation for a given time period. Values of SPI range from 2.00 and above

(extremely wet) to -2.00 and less (extremely dry) with near normal conditions ranging

from 0.99 to -0.99. A drought event is defined when the SPI is continuously negative

and reaches a value of -1.0 or less, and continues until the SPI becomes positive. We

obtained the Drought Point relation as shown in Table 1.1 from the Unified Climate

Access Network (UCAN).

Drought Point

x (easting) y (northing) year SPI

-315515.56 2178768.67 1992 0.27
-315515.56 2178768.67 1993 -0.17

...
...

...
...

-315515.56 2178768.67 2002 0.19
-163932.36 2075263.16 1992 -0.19

...
...

...
...

-133759.02 1985122.32 2002 -0.22

Table 1.1: A point-based spatiotemporal relation.
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However, from this example, we can see that the disadvantage of point-based

STDBs is that the measured information, such as SPI, only exists at certain sampled

locations and times. Therefore, we are not able to query the values at unsampled

locations and times.

1.2.2 Region-Based Spatiotemporal Databases

A region-based STDB database has both spatial and temporal parts. The spatial

part has schema (region-id, boundary). The region-id is a unique identifier of each

polygonal shaped region, and the boundary is the sequence of its corner vertices. The

spatial part can be stored in an ArcGIS database (Johnston, Hoef, Krivoruchko &

Lucas 2001). The temporal part has schema (region-id, t, w1, w2, . . ., wm), where t

is the time attribute and each wi represents some other characteristics of the region.

Nebraska Corn Space Region

county boundary

{ (-656160.3, 600676.8), (-652484.0, 643920.3), (-607691.1, 639747.6),
(-608934.8, 615649.0), (-607875.6, 615485.8), (-610542.0, 576509.1),

1 (-607662.7, 576138.5), (-611226.9, 537468.5), (-607807.7, 536762.1),
(-608521.1, 527084.0), (-660885.4, 531441.2), (-661759.8,532153.1) }

...
...

Nebraska Corn Time Region

county year practice acres yield production

1 1947 irrigated 2700 49 132300
1 1947 non-irrigated 81670 18 1470060
1 1947 total 84370 19 1602360
...

...
...

...
...

...
1 2000 irrigated 141300 161 22749300
1 2000 non-irrigated 27900 73 2036700
1 2000 total 169200 146.5 24786000
...

...
...

...
...

...

Table 1.2: A region-based spatiotemporal database with separate spatial and tempo-
ral relations.
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Example 1.2.2 A NASS (National Agricultural Statistics Service) region-based spa-

tiotemporal data-base shows the yearly corn yield and production in each county of

the state of Nebraska. The spatial part of the database is shown in the upper half

of Table 1.2 which uses the vector representation of counties in Nebraska, while the

temporal part is shown in the lower half of Table 1.2. Note that in the relation Ne-

braska Corn Time Region, {county, year, practice} is the primary key, because it is

the minimal set of attributes that functionally determine the other three attributes.

The attributes used in these two tables are the following:

• county, the common attribute between the spatial and temporal relations, is

the Federal Information Processing Standards (FIPS) id that is unique for each

county in a state.

• boundary is a sequence of corner vertices on the boundary of a county. For

example, the county with id 1 is a polygon that is represented by its 12 corner

vertices.

• year is the time.

• practice is one of the following types: irrigated, non-irrigated, and total.

• acres is the number of acres that are harvested with total = irrigated + non-

irrigated.

• yield = bushels/acres.

• production = acres× yield = total bushels (total = irrigated + non-irrigated).

Although region-based STDBs cover the continuous area and do not have the

problem of missing information as in point-based STDBs, the information accuracy

in region-based STDBs is reduced by assigning one uniform value to each region.
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1.2.3 Voronoi Region-Based Spatiotemporal Databases

Sometimes, region-based STDBs can be derived from point-based STDBs. Voronoi di-

agrams are a special type of region-based STDBs generated from point-based STDBs.

There are two types of Voronoi diagrams: (i) ordinary Voronoi diagrams, (ii) higher-

order Voronoi diagrams. The ordinary Voronoi diagram of a finite set S of points in

the plane is a partition of the plane so that each region of the partition is the locus of

points which are closer to one member of S than to any other member. Higher-order

Voronoi diagrams generalize ordinary Voronoi diagrams by dealing with k closest

points. The higher-order Voronoi diagram of a finite set S of points in the plane is

a partition of the plane into regions such that points in each region have the same

closest members of S. As in an ordinary Voronoi diagram, each Voronoi region is still a

convex polygon in a higher-order Voronoi diagram (Preparata & Shamos 1985). From

the definition of higher-order Voronoi diagrams, it can be seen that the problem of

finding the k closest neighbors for a given point in the whole domain, which is closely

related to the IDW interpolation method with N = k, is equivalent to constructing

k-th order Voronoi diagrams. Note that ordinary Voronoi diagrams can be viewed as

special higher-order Voronoi diagrams when k = 1. Revesz & Li (2002a) discusses the

details about how to transfer point-based STDBs to higher-order Voronoi diagrams

and use them for IDW interpolation in constraint databases.

If the Voronoi diagram consists of ordinary Voronoi polygons (each Voronoi poly-

gon is associated with one nearest neighbor), it is also called Thiessen polygons. In

this case, each Voronoi region is assigned the value of the nearest neighbor inside the

region. If the Voronoi diagram consists of kth-order (k > 1, each Voronoi polygon is

associated with k nearest neighbors) Voronoi regions, then the average of the k nearest

neighbors will be taken to assign each region. Thus, either ordinary or higher-order

Voronoi regions are assigned a uniform value for all the points inside.
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Example 1.2.3 Assume that in the point-based STDB Drought Point in Exam-

ple 1.2.1, the 48 weather stations have not changed their locations through the last

10 years and had SPI values measured every year. The spatial and temporal parts of

the ordinary Voronoi region-based relation of Drought Point are shown in Table 1.3;

while the spatial and temporal parts of 2nd-order Voronoi region-based relation of

Drought Point are shown in Table 1.4.

Drought Vo1 Space

{(x, y)} boundary

{ (33051.50, 2031044.16), (-42164.24, 2073164.97),{ (-133759.02, 1985122.32) } (-32238.03, 2124781.27), (33051.50, 2184847.63) }
...

...
{ (-355511.65, 2122185.61), (-416623.67, 2173220.63),

(-405804.69, 2227674.50), (-286944.03, 2227674.50),{ (-133759.02, 1985122.32) } (-265126.60, 2179386.65), (-273957.47, 2110648.67),
(-275412.74, 2109314.41), (-286304.46, 2104106.55) }

Drought Vo1 Time

{(x, y)} year SPI

{ (-315515.56, 2178768.67) } 1992 0.27
{ (-315515.56, 2178768.67) } 1993 -0.17

...
...

...
{ (-133759.02, 1985122.32) } 2001 -0.19
{ (-133759.02, 1985122.32) } 2002 -0.22

Table 1.3: An ordinary Voronoi region-based database.

1.2.4 Constraint-Based Spatiotemporal Databases

Constraint databases (Kanellakis, Kuper & Revesz 1995, Revesz 2002) provide a natu-

ral representation for spatiotemporal objects when their trajectory can be described as

simple mathematical functions. Constraint-based STDBs can represent both point-

based and region-based spatiotemporal objects, where each attribute is associated
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Drought Vo2 Space

{(x1, y1), (x2, y2)} boundary

{ ( -9820.18, 1929867.40) , { (-17122.48, 2203344.58), (3014.51, 2227674.50)
(-42164.88, 1915035.54) } (33051.50, 2227674.50), (33051.5, 2140801.51) }

...
...

{ (-274044.43, 2109969.45), (-273957.42, 2110648.46),{ (-507929.66, 2216998.17), (-245744.29, 2136492.60), (-205869.74, 2142110.52),
(-247864.81, 1946777.44) } (-198942.71, 2115609.44), (-227141.62, 2099273.50) }

Drought Vo2 Time
{(x1, y1), (x2, y2)} year avgSPI

{ (-9820.18, 1929867.4), (-42164.88, 1915035.54) } 1992 -0.47
{ (-9820.18, 1929867.4), (-42164.88, 1915035.54) } 1993 0.71

...
...

...
{ (-507929.66, 2216998.17), (-247864.81, 1946777.44) } 2001 0.65
{ (-507929.66, 2216998.17), (-247864.81, 1946777.44) } 2002 -0.03

Table 1.4: A 2nd-order Voronoi region-based database.

with an attribute variable. For example, the spatial attributes can be associated

with x and y variables for representing point-based spatiotemporal objects or with

a region id variable for region-based spatiotemporal objects, while the temporal at-

tributes can be associated with year or other time variables. A constraint-based

relation is a finite set of constraint tuples. The value of the attributes in a relation is

specified implicitly using (arithmetic) constraints such that each constraint tuple is a

conjunction of constraints using the same set of attribute variables.

Example 1.2.4 The region-based NASS corn data in Example 1.2.2 can be repre-

sented by spatial and temporal parts in the constraint-based STDB shown in Ta-

ble 1.5. In the spatial part of Table 1.5, each county polygon can be either convex or

concave, we break each county polygon into a set of adjacent triangles for the con-

venience of implementation, where each triangle can be represented by a conjunction

of three linear arithmetic constraints. For example, the county with FIPS code 1

consists of three triangles.
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Nebraska Corn Space Constraint

county easting northing

81.15x− y ≤ −15827909.86, −0.02x− y ≥ −356911.63,
1 x y −1.11x− y ≤ −108714.89

7.69x− y ≥ −2116031.10, 33.21x− y ≥ −7938392.36,
1 x y 29.71x− y <= −7135823.80

−0.03x− y ≤ −315048.67, −1.11x− y ≥ −108714.89,
1 x y 29.71x− y >= −7135823.80
...

...
...

...

Nebraska Corn Time Constraint

county year practice acres yield production

1947 ≤ t, t ≤ 2000,
a = 3453t− 6729678,

1 t irrigated a y’ p y′ = 2t− 3890,
p = 540016t− 1054525400
1947 ≤ t, t ≤ 2000,
a = −1000t + 1995747,

1 t non-irrigated a y’ p y′ = 2t− 3200,
p = 6839t− 12608086
1947 ≤ t, t ≤ 2000,
a = 2453t− 4733931,

1 t total a y’ p y′ = 3t− 5069,
p = 546854t− 1067133500

...
...

...
...

...
...

...

Table 1.5: A constraint-based spatiotemporal database with separate spatial and
temporal relations.

The temporal part of Table 1.5 compresses the region-based Nebraska Corn Time

Region relation in Example 1.2.2 by storing the linear regression functions of acres,

yield and production according to year. The linear regression functions show the

trend of these attributes during the past years. So they are useful to predict the

future events. For example, what will the the yield of irrigated corn in county 1

approximately be in 2010? The entire Nebraska Corn Time Constraint relation con-

sists of only 279 constraint tuples, while Nebraska Corn Time Region contains 14, 788
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original tuples. Although the accuracy in this example is not very high because of the

approximation by only one linear regression functions, we can improve it by inserting

more segments of lines. Revesz, Chen & Ouyang (2001) discusses the detail of how to

use piece-wise linear functions to compress data in constraint databases. We also could

use non-linear approximation functions to increase the accuracy. Note that because of

the tradeoff between the accuracy and storage, the above improvements will increase

the number of tuples in the temporal relation (i.e. Nebraska Corn Time Constraint)

of Table 1.5.

In summary, users can query the measured information at any location and time in

constraint-based STDBs. This is similar to region-based STDBs: there is no missing

information. Moreover, constraint-based STDBs are more sophisticated than region-

based STDBs. In region-based STDBs, all the points in a region can only be given

one uniform value. However, in constraint-based STDBs, the points in a region can

be assigned with different values. If we could find appropriate functions (constraints)

of x, y and t to interpolate the values inside each region and store them in the

constraint-based STDBs, we can get a good result.

1.2.5 The Relationship among Spatiotemporal Databases

Now we are ready to explain the edges in the Figure 1.1 as follows:

(A) Point-based STDBs can be converted to constraint-based STDBs by certain

interpolation methods, such as shape functions (Zienkiewics & Taylor 2000),

spline functions (Goodman & O’Rourke 1997), IDW (Shepard 1968), and Krig-

ing (Deutsch & Journel 1998). The details about using shape functions to con-

vert point-based STDBs to constraint-based STDBs can be found in (Revesz &

Li 2002b, Li & Revesz 2003 in press); and the translation details using IDW can

be found in (Revesz & Li 2002a, Revesz & Li 2003 to appear). The comparison
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of using shape functions and IDW to represent point-based data in constraint-

based STDBs is analyzed in (Li & Revesz 2002) based on a specific set of data.

(B) Point-based STDBs can be used to generate region-based STDBs, including

Voronoi region-based STDBs, by treating a region as a unit and assigning a

uniform value for each region. A special case of region-based STDBs is the

Worboys relations (Worboys 1995) where each region is divided into a set of

triangles.

(C) Region-based STDBs can be converted to constraint-based STDBs by using

linear arithmetic constraints to represent region boundaries and compressing

the temporal part by some types of functions in time, such as linear regression

functions in Example 1.2.4.

(D) Constraint-based STDBs (Revesz 2002) can be converted to region-based STDBs

by simply assigning a uniform value to each region, such as the average of all

the nearest neighbors.

1.3 Overview of Contributions of This Disserta-

tion

The main contributions of this dissertation are the following.

• We design shape function-based 2-D space & 1-D time and 3-D space & 1-D

time spatiotemporal interpolation methods for GIS data.

• We compare the shape function-based spatiotemporal interpolation methods

with other spatiotemporal interpolation methods based on inverse distance

weighting and kriging. Based on an actual real estate data set with house prices,
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the experimental results show that one method based on shape functions is the

most accurate and the overall best spatiotemporal interpolation method.

• We represent the spatiotemporal interpolation results in constraint databases,

which have the advantage of accurate representation, efficient storage, and pow-

erful queries.

• We use the constraint database system MLPQ (Management of Linear Pro-

gramming Queries) to animate and query some spatiotemporal data examples.

The detailed contributions of this dissertation according to each chapter can be

described as follows.

1. Chapter 2, based on (Li & Revesz 2002, Li & Revesz 2003 in press), starts by de-

scribing two general methods for spatiotemporal interpolations. The reduction

method treats time independently from the spatial dimensions. The extension

method treats time as equivalent to a spatial dimension.

(a) In Section 2.1, we design several shape function-based spatiotemporal in-

terpolation methods that are suitable for both regular and irregular GIS

data.

i. For 2-D space and 1-D time spatiotemporal interpolation problems, the

reduction approach using the combination of 2-D shape functions for

space and 1-D shape functions for time is illustrated in Section 2.1.1.1,

and the extension approach using 3-D shape functions where the first

two dimensions are for space and the third dimension is for time is

described in Section 2.1.1.2.

ii. For 3-D space and 1-D time spatiotemporal interpolation problems,

the reduction method using the combination of 3-D shape functions for

space and 1-D shape functions for time is illustrated in Section 2.1.2.1.
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For the extension method, based on dividing the 4-D domain by a

4-D Delaunay Tesselation, new 4-D shape functions, which can be

used for each 4-D Delaunay Tesselation element, are developed (see

Section 2.1.2.2).

(b) In Section 2.2, we discuss spatiotemporal interpolation methods based on

inverse distance weighting.

(c) In Section 2.3, we discuss spatiotemporal interpolation methods based on

kriging.

2. Chapter 3 is based on (Revesz & Li 2002b, Revesz & Li 2002a, Revesz & Li

2003 to appear). We discuss constraint databases according to the efficient and

accurate representation of both input data and interpolation result, as well as

the powerful querying.

(a) In Section 3.1.1, we design an example to show how to represent input

data in constraint databases.

(b) We illustrate the representation of 2-D shape function interpolation of the

same example in constraint databases in Section 3.1.2.

(c) We illustrate the representation of inverse distance weighting interpolation

of the same example in constraint databases in Section 3.1.3.

(d) We give some Datalog query examples in Section 3.2.

3. Chapter 4 is based on (Li & Revesz 2002, Li & Revesz 2003 in press). Based on a

set of actual real estate data, we present a comparison between shape function-

based spatiotemporal interpolation methods with inverse distance weighting and

kriging. We show that the extension method with shape functions is the most

accurate spatiotemporal interpolation method as measured by mean absolute
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error (MAE) and root mean square error (RMSE). It is also the only method

which can be represented using linear constraints.

The extension method, which treats time as another dimension, has a potential

problem, namely that there is no easy way to compare one temporal unit with

one spatial unit. Depending on the unit measure, we may get a different value for

the estimated results. Are there spatiotemporal interpolations that are invariant

with respect to the choice of units in the spatial and temporal axes? We show

that only shape functions-based spatiotemporal interpolation is invariant.

Also, in the real estate data instead of recording the precise date of sale of

houses we may have only records of monthly, bimonthly or even yearly sales,

that is, all the houses sold in that time interval are listed together. We show

experimentally that this time aggregation has a serious negative effect on the

accuracy of the reduction method.

Finally, in Section 4.6, we illustrate visualization of the shape function inter-

polation result. In Section 4.7, with the height of each house also recorded, we

give an example of using 4-D shape functions by considering an extension of the

real estate data.

4. In Chapter 5, which is based on (Li & Revesz 2003 to appear, Li 2001, Li &

Revesz 2001), we use the constraint database system MLPQ (Management of

Linear Programming Queries) to animate (see Section 5.3) and query (see Sec-

tion 5.4) some spatiotemporal data examples. A translation algorithm between

ArcGIS shape files and MLPQ input data files is briefly discussed in Section 5.2.
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Chapter 2

Spatiotemporal Interpolation

Methods

There are two general methods for spatiotemporal interpolations: reduction and ex-

tension (Li & Revesz 2002). The reduction method treats time independently from

the spatial dimensions. The extension method treats time as equivalent to a spatial

dimension. These methods can be described briefly as follows:

Reduction This method reduces the spatiotemporal interpolation problem to a reg-

ular spatial interpolation case. First, at each sample point, we interpolate

(using any 1-D interpolation in time) separately all the measured value over

time. Then using the time functions for the sample point values in the spatial

interpolation functions, we can get spatiotemporal interpolation results.

Extension This method deals time as another regular dimension in space and there-

fore extends the spatiotemporal interpolation problem into a higher-dimensional

spatial interpolation problem.

In this chapter, we consider 2-D space & 1-D time and 3-D space & 1-D time

spatiotemporal interpolation problems. The main contribution of this chapter is to
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apply shape functions to spatiotemporal interpolation, which will be described in

Section 2.1 as follows:

• We address the 2-D space & 1-D time problems using shape functions in Sec-

tion 2.1.1. We illustrate the reduction approach using a combination of 2-D

shape functions for space and 1-D shape functions for time, and the extension

approach using 3-D shape functions where the first two dimensions are for space

and the third dimension is for time.

• We consider the 3-D space & 1-D time problems using shape functions in Sec-

tion 2.1.2. For the reduction method we use the combination of 3-D shape

functions for space and 1-D shape functions for time. For the extension method

we first divide the 4-D domain by a 4-D Delaunay Tesselation. Then we develop

new 4-D shape functions that can be applied for each 4-D Delaunay Tesselation

element.

Besides shape functions, other spatial interpolation methods may also have reduc-

tion and extension approaches for spatiotemporal problems. Inverse Distance Weight-

ing (IDW) and Kriging are common spatial interpolation methods. Spatiotemporal

interpolation methods based on IDW and Kriging will be discussed in Section 2.2 and

2.3, respectively. The comparison of shape function with IDW and Kriging based spa-

tiotemporal interpolation methods will be analyzed later in this dissertation based on

several sets of data.

2.1 Shape Functions

Shape functions, which can be viewed as a spatial interpolation method, are popular

in engineering applications, for example, in finite element algorithms (Zienkiewics

& Taylor 2000, Buchanan 1995). There are various types of 2-D and 3-D shape
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functions. We are interested in 2-D shape functions for triangles and 3-D shape

functions for tetrahedra, both of which are linear approximation methods. In this

section, we discuss new approaches to spatiotemporal interpolation by shape function

based reduction and extension methods for 2-D space & 1-D time and 3-D space &

1-D time problems.

2.1.1 2-D Space and 1-D Time Problems

2.1.1.1 Reduction Approach: ST Product Method

Since this approach is obtained by multiplying two interpolation functions in space

and time, we call this method ST (space time) product method. This approach for 2-D

space and 1-D time problems can be described by two steps: 2-D spatial interpolation

by shape functions for triangles and approximation in space and time. Although there

exists similar shape function based ST product methods such as the temperature

distribution function in time-dependent heat conduction problems (Huebner 1975),

we discuss in this section an ST product method which combines 2-D shape function

in space and 1-D shape function in time.

2-D Shape Functions for Triangles First of all, when dealing with complex 2-D

geometric domains, it is convenient to divide the total domain into a finite number of

simple sub-domains which can have triangular or quadrilateral shapes. Mesh genera-

tion using triangular or quadrilateral domains is important in finite element discretiza-

tion of engineering problems. For the generation of triangular meshes, quite successful

algorithms have been developed. A popular method for the generation of triangular

meshes is the “Delaunay Triangulation” (Goodman & O’Rourke 1997, Preparata &

Shamos 1985, Shewchuk 1996). Delaunay triangulation is related to the construc-

tion of the so called “Voronoi diagram”, which is related to “Convex Hull” problems.

We embedded in our system the Delaunay triangulation algorithm available from the
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public website www.geom.umn.edu/software/∼qhull.
A linear approximation function for a triangular area can be written in terms of

three shape functions N1, N2, N3, and the corner values w1, w2, w3. In Figure 2.1,

two triangular finite elements, I and II, are combined to cover the whole domain

considered.

I

II

w2

w1

w4

w3

Figure 2.1: Linear interpolation in 2-D space for triangular elements.

In this example, the function in the whole domain is interpolated using four dis-

crete values w1, w2, w3, and w4 at four locations. A particular feature of the chosen

approximation method is that the function values inside the sub-domain I can be

obtained by using only the three corner values w1, w2 and w3, whereas all function

values for the sub-domain II can be constructed using the corner values w2, w3, and

w4. The linear interpolation function for the sub-domain of element I can be written

as

w(x, y) = N1(x, y)w1 + N2(x, y)w2 + N3(x, y)w3 = [N1 N2 N3]




w1

w2

w3


 (2.1)
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where N1, N2 and N3 are the following shape functions:

N1(x, y) =
[(x2y3 − x3y2) + x(y2 − y3) + y(x3 − x2)]

2A

N2(x, y) =
[(x3y1 − x1y3) + x(y3 − y1) + y(x1 − x3)]

2A (2.2)

N3(x, y) =
[(x1y2 − x2y1) + x(y1 − y2) + y(x2 − x1)]

2A .

The area A used for the shape functions in equation (2.2) can be computed using the

corner coordinates (xi, yi) (i = 1, 2, 3) in the determinant of a 3× 3 matrix according

to

A =
1

2
det




1 x1 y1

1 x2 y2

1 x3 y3


 . (2.3)

For the sub-domain II, the local approximation takes a similar form as the ex-

pression (2.1): we just have to replace the corner values w1, w2 and w3 with the new

values w2, w3 and w4.

It should be noted that for every sub-domain, a local approximation function

similar to expression (2.1) is used. Each local approximation function is constrained

to the local triangular sub-domain. For example, the function w of equation (2.1) is

valid only for sub-domain I.

Alternatively, considering only sub-domain I, the 2-D shape function (2.2) can

also be expressed as follows (Revesz & Li 2002b):

N1(x, y) =
A1

A , N2(x, y) =
A2

A , N3(x, y) =
A3

A . (2.4)
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A1, A2 and A3 are the three sub-triangle areas of sub-domain I as shown in Figure 2.2,

and A is the area of the outside triangle w1w2w3 which can be computed by equation

(2.3). All the Ai’s (1 ≤ i ≤ 3) can also be computed in the similar way as equation

(2.3) by using the appropriate coordinate values.

w1 w2

w3

w A1
A2

A3

(x1,y1) (x2,y2)

(x3,y3)

(x,y)

Figure 2.2: Computing 2-D shape functions by area divisions.

Example 2.1.1 Let w1 = 1, w2 = 2, and w3 = 3 be the values measured at locations

(x1, y1) = (0, 0), (x2, y2) = (10, 0), and (x3, y3) = (10, 5), respectively. Using Equa-

tions (2.1) and (2.4) we can interpolate the unknown value w at location (x, y) = (8, 2)

as follows:

w =
A1

A w1 +
A2

A w2 +
A3

A w3

=
1

5
× 1 +

2

5
× 2 +

2

5
× 3

= 2.2

Approximation in Space and Time Since in the reduction approach, we model

time independently, approximation in space and time can be implemented by com-

bining a time shape function with the space approximation function (2.1).
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Assume the value at the node i at time t1 is wi1, and at time t2 the value is wi2.

The value at the node i at any time between t1 and t2 can be approximated using a

1-D time shape function in the following way:

wi(t) =
t2 − t

t2 − t1
wi1 +

t− t1
t2 − t1

wi2 . (2.5)

Using the example shown in Figure 2.1 and utilizing formulas (2.1) and (2.5),

the approximation function for any point constraint to the sub-domain I at any time

between t1 and t2 can be expressed as follows (Li & Revesz 2002):

w(x, y, t) = N1(x, y)

[
t2 − t

t2 − t1
w11 +

t− t1
t2 − t1

w12

]

+ N2(x, y)

[
t2 − t

t2 − t1
w21 +

t− t1
t2 − t1

w22

]

+ N3(x, y)

[
t2 − t

t2 − t1
w31 +

t− t1
t2 − t1

w32

]
(2.6)

=
t2 − t

t2 − t1
[N1(x, y)w11 + N2(x, y)w21 + N3(x, y)w31]

+
t− t1
t2 − t1

[N1(x, y)w12 + N2(x, y)w22 + N3(x, y)w32] .

Since the space shape functions (N1, N2 and N3) and the time shape functions

(2.5) are linear, the spatiotemporal approximation function (2.6) is not linear, but

quadratic.

2.1.1.2 Extension Approach: 3-D Method

This method treats time as a regular third dimension. Since it extends 2-D problems

to 3-D problems, we call this method 3-D method. This method is very similar to

the linear approximation in space of the reduction approach for 3-D problem (Sec-

tion 2.1.2.1), which is based on tetrahedral meshes. The only modification is to

substitute the z variable by the time variable t ( see equations (2.7)–(2.10)).
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2.1.2 3-D Space and 1-D Time Problems

2.1.2.1 Reduction Approach: ST Product Method

This shape function based reduction spatiotemporal interpolation in 3-D space and

1-D time will be described in the following two steps: 3-D spatial interpolation by

shape functions for tetrahedra and approximation in space and time.

3-D Shape Functions for Tetrahedra Three-dimensional domains can be di-

vided into finite number of simple sub-domains. For example, we can use tetrahedral

or hexahedral sub-domains. Tetrahedral meshing is of particular interest. With a

large number of tetrahedral elements, we can also approximate complicated 3-D ob-

jects. Figure 2.3 shows a tetrahedral mesh of a 3-D object. This object has a cutout

(one quarter of a cylinder) behind the boundary defined by the points ABCD.

A

C

DDDD

A

C

A
B

Figure 2.3: A tetrahedral mesh.

It is a difficult topic to automatically generate tetrahedral meshes. Fortunately,

there exist several methods to generate automatic tetrahedral meshes, such as the

ordinary 3-D Delaunay tetrahedrilization and some tetrahedral mesh improvement

methods to avoid poorly-shaped tetrahedra. For example, the tetrahedral mesh gen-
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eration by Delaunay refinement (Shewchuk 1998) and tetrahedral mesh improvement

using swapping and smoothing (Freitag & Gooch 1997).

Similarly to the linear approximation function for the 2-D problem solved in Sec-

tion 2.1.1, a linear approximation function for a 3-D tetrahedral element can be

written in terms of four shape functions N1, N2, N3, N4 and the corner values w1,

w2, w3, w4. In Figure 2.4, two tetrahedral elements, I and II, cover the whole domain

considered.

w2

w1

w4

w3

I II

w5

Figure 2.4: Linear interpolation in 3-D space for tetrahedral elements.

In this example, the function in the whole domain is interpolated using five discrete

values w1, w2, w3, w4, and w5 at five locations in space. To obtain the function values

inside the tetrahedral sub-domain I, we can use the four corner values w1, w2, w3 and

w4. Similarly, all function values for the sub-domain II can be constructed using the

corner values w1, w3, w4 and w5. The linear interpolation function for the sub-domain
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of element I can be written as

w(x, y, z) = N1(x, y, z)w1 + N2(x, y, z)w2 + N3(x, y, z)w3 + N4(x, y, z)w4

= [N1 N2 N3 N4]




w1

w2

w3

w4




(2.7)

where N1, N2 N3 and N4 are the following shape functions:

N1(x, y, z) =
a1 + b1x + c1y + d1z

6V , N2(x, y, z) =
a2 + b2x + c2y + d2z

6V ,

(2.8)

N3(x, y, z) =
a3 + b3x + c3y + d3z

6V , N4(x, y, z) =
a4 + b4x + c4y + d4z

6V .

The volume V of the tetrahedron used for the shape functions in (2.8) can be computed

using the corner coordinates (xi, yi, zi) (i = 1, 2, 3, 4) in the determinant of a 4 × 4

matrix according to

V =
1

6
det




1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4




. (2.9)

By expanding the other relevant determinants into their cofactors, we have
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a1 = det




x2 y2 z2

x3 y3 z3

x4 y4 z4


 b1 = −det




1 y2 z2

1 y3 z3

1 y4 z4




c1 = −det




x2 1 z2

x3 1 z3

x4 1 z4


 d1 = −det




x2 y2 1

x3 y3 1

x4 y4 1




with the other constants defined by cyclic interchange of the subscripts in the order

4, 1, 2, 3 (Zienkiewics & Taylor 1989).

Alternatively, considering only the tetrahedral sub-domain I, the 3-D shape func-

tion (2.8) can also be expressed as follows:

N1(x, y, z) =
V1

V , N2(x, y, z) =
V2

V , N3(x, y, z) =
V3

V , N4(x, y, z) =
V4

V (2.10)

V1, V2, V3 and V4 are the volumes of the four sub-tetrahedra ww2w3w4, w1ww3w4,

w1w2ww4, and w1w2w3w, respectively, as shown in Figure 2.5; and V is the volume

of the outside tetrahedron w1w2w3w4 which can be computed by equation (2.9). All

the Vi’s (1 ≤ i ≤ 4) can also be computed in the similar way as equation (2.9) by

using the appropriate coordinate values.

Example 2.1.2 Suppose (x1, y1, z1) = (8, 5, 10), (x2, y2, z2) = (0, 6, 0), (x3, y3, z3) =

(20, 10, 0), and (x4, y4, z4) = (10, 0, 0) are the four sampled corner vertices of a tetra-

hedron which encloses the point (x, y, z) = (10, 4, 4), as shown in Figure 2.5. Let

w1 = 1, w2 = 2, w3 = 3, and w4 = 4 be the measured values at the corner vertices.

Using Equations (2.7) and (2.10), we can interpolate the unknown value w at location
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w2(x2,y2,z2)

w1(x1,y1,z1)

w3(x3,y3,z3)

w4(x4,y4,z4)

w(x,y,z)

Figure 2.5: Computing 3-D shape functions by volume divisions.

(x, y, t) by the tetrahedral method as:

w =
V1

V w1 +
V2

V w2 +
V3

V w3 +
V4

V w4

=
640

1600
× 1 +

120

1600
× 2 +

248

1600
× 3 +

592

1600
× 4

= 2.495

Approximation in Space and Time Similarly to the reduction approach to 2-D

space & 1-D time problems, 3-D space & 1-D time interpolation can be implemented

by combining the time shape function (2.5) with the space approximation function

(2.7). Using the example shown in Figure 2.4, the linear approximation function

for any point constraint to the sub-domain I at any time between t1 and t2 can be
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expressed as follows:

w(x, y, z, t) = N1(x, y, z)

[
t2 − t

t2 − t1
w11 +

t− t1
t2 − t1

w12

]

+ N2(x, y, z)

[
t2 − t

t2 − t1
w21 +

t− t1
t2 − t1

w22

]

+ N3(x, y, z)

[
t2 − t

t2 − t1
w31 +

t− t1
t2 − t1

w32

]

+ N4(x, y, z)

[
t2 − t

t2 − t1
w41 +

t− t1
t2 − t1

w42

]
(2.11)

=
t2 − t

t2 − t1
[N1(x, y, z)w11 + N2(x, y, z)w21 +

N3(x, y, z)w31 + N4(x, y, z)w41]

+
t− t1
t2 − t1

[N1(x, y, z)w12 + N2(x, y, z)w22 +

N3(x, y, z)w32 + N4(x, y, z)w42] .

Since the space shape functions (N1, N2, N3 and N4) and the time shape functions

(2.5) are linear, the spatiotemporal approximation function (2.11) is quadratic.

2.1.2.2 Extension Approach: 4-D Method

This method treats time as a regular fourth dimension. We develop new linear 4-D

shape functions to solve this problem. In the engineering area, the highest number

of dimensions of shape functions is three because there are no higher dimensional

real objects. By developing 4-D shape functions, we will be able to interpolate an

unsampled value at location (x,y,z) and time t. For example, the location can be house

locations, including the elevation z. In a flat city the elevation is not important. In

a hilly city the elevation may be important (for example, nice ocean view may be

preferred).

Our linear 4-D shape functions are based on 4-D Delaunay tesselation. The De-



29

launay tesselation in 4-D space is a special case for n-D space Delaunay tesselation

when n = 4. The n-D Delaunay tesselation is defined as a space-filling aggregate

of n-simplices (Watson 1981). Each Delaunay n-simplex can be represented by an

(n+1)-tuple of indices to the data points. We can use Matlab to computate the n-D

Delaunay tesselation by function Delaunayn. T = delaunayn(X) computes a set of

n-simplices such that no data points of X are contained in any n-D hyperspheres of

the n-simplices. The set of n-simplices forms the n-D Delaunay tessellation. X is an

m× n array representing m points in n-D space. T is an s× (n + 1) array where s is

the number of n-simplices after the n-D Delaunay tesselation. Each row of T contains

the indices into X of the vertices of the corresponding n-simplex. In order to solve

4-D Delaunay tesselation in Matlab, we just need to give the Delaunayn function

proper X array with size m× 4. An example of 4-D Delaunay tesselation by Matlab

is give below.

Example 2.1.3 Assume X is an array that contains seven 4-D points (m = 7, n = 4)

as follows:

X =




115 1525 500 16

890 1880 750 36

1120 1650 300 22

730 1660 600 13

725 1320 780 42

880 1140 678 69

1610 2570 890 95



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Then T = delaunayn(X) will return the following set of nine 5-simplices (s = 9):

T =




2 3 6 7 1

2 4 3 7 1

2 4 3 6 1

5 4 3 6 1

5 2 6 7 1

5 2 4 6 1

5 2 3 6 7

5 2 4 3 7

5 2 4 3 6




We develop new 4-D shape functions using two different approaches. Although

they yield mathematically equivalent results, the first approach yields very long sym-

bolic expressions whereas the second approach gives simple expressions.

Approach I Since we want to develop linear 4-D shape functions to do the 4-D

approximation, we can assume that within each element we have some constants a,

b, c, d and e such that:

w(x, y, z, t) = a + bx + cy + dz + et .

Let Φ(x, y, z, t) = [1, x, y, z, t] and fT = [a, b, c, d, e], we have

w(x, y, z, t) = Φ(x, y, z, t) f . (2.12)
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We use the five known nodal values (wi’s, 1 ≤ i ≤ 5) to calculate f as follows:

Φ(x1, y1, z1, t1) f = w1

Φ(x2, y2, z2, t2) f = w2

Φ(x3, y3, z3, t3) f = w3

Φ(x4, y4, z4, t4) f = w4

Φ(x5, y5, z5, t5) f = w5

This can be written as Af = w, where A =




Φ(x1, y1, z1, t1)

Φ(x2, y2, z2, t2)

Φ(x3, y3, z3, t3)

Φ(x4, y4, z4, t4)

Φ(x5, y5, z5, t5)




,

and wT = [w1, w2, w3, w4, w5]. We obtain the solution for f as:

f = A−1w . (2.13)

Let

N(x, y, z, t) = Φ(x, y, z, t)A−1 . (2.14)
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After substituting (2.13) into (2.12), we have

w(x, y, z, t) = Φ(x, y, z, t)A−1w

= N(x, y, z, t)w

= [N1 N2 N3 N4 N5]




w1

w2

w3

w4

w5




(2.15)

Now it is clear that (2.14) is the shape function matrix that we need to find. We

calculated the result of (2.14) by Matlab. Since A is a 5× 5 matrix in symbolic form,

its inverse is very complicated and messy. The expression result of N based on the

xi’s, yi’s, zi’s, ti’s and wi’s (1 ≤ i ≤ 5) is very redundant and unreadable. Each shape

function expression Ni (1 ≤ i ≤ 5) covers about four pages. Next, we introduce a

second approach which is based on the linear 3-D shape functions (2.8) or (2.10) and

yields a neat symbolic expression.

Approach II The idea in the second approach is to reduce the 4-D case to a 3-D

case. This can be done if the deletion of a dimension does not collapse two nodes

into one. For example, if we have (x, y, z, t) data points and we delete z coordinates,

then we should not get two points with the same (x, y, t) values. Let us denote the

3-D shape functions by N̂i(x, y, z) (1 ≤ i ≤ 4). Then the 4-D linear approximation

in terms of these can be expressed as follows:

w(x, y, z, t) = âN̂1(x, y, z) + b̂N̂2(x, y, z) + ĉN̂3(x, y, z) + d̂N̂4(x, y, z) + êt .

Let Φ̂(x, y, z, t) =
[
N̂1(x, y, z), N̂2(x, y, z), N̂3(x, y, z), N̂4(x, y, z), t

]
and
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f̂T =
[
â, b̂, ĉ, d̂, ê

]
, we have:

w(x, y, z, t) = Φ̂(x, y, z, t) f̂ . (2.16)

We use the five known nodal values (wi’s, 1 ≤ i ≤ 5) to calculate f̂ as follows:

Φ̂(x1, y1, z1, t1) f̂ = w1

Φ̂(x2, y2, z2, t2) f̂ = w2

Φ̂(x3, y3, z3, t3) f̂ = w3

Φ̂(x4, y4, z4, t4) f̂ = w4

Φ̂(x5, y5, z5, t5) f̂ = w5

Assuming mi = N̂i(x5, y5, z5) (1 ≤ i ≤ 4), this can be written as Bf̂ = w, where

B =




Φ̂(x1, y1, z1, t1)

Φ̂(x2, y2, z2, t2)

Φ̂(x3, y3, z3, t3)

Φ̂(x4, y4, z4, t4)

Φ̂(x5, y5, z5, t5)




=




1 0 0 0 t1

0 1 0 0 t2

0 0 1 0 t3

0 0 0 1 t4

m1 m2 m3 m4 t5




and wT = [w1, w2, w3, w4, w5].

We obtain the solution for f̂ as:

f̂ = B−1w . (2.17)

Let

N(x, y, z, t) = Φ̂(x, y, z, t)B−1 . (2.18)
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After substituting (2.17) into (2.16), we have

w(x, y, z, t) = Φ̂(x, y, z, t)B−1w

= N(x, y, z, t)w

= [N1 N2 N3 N4 N5]




w1

w2

w3

w4

w5




(2.19)

The shape function result of (2.18) can be calculated as follows:

Ni = N̂i +
mih

detB
(1 ≤ i ≤ 4) and N5 =

h

detB
, (2.20)

where detB = −m1t1 − m2t2 − m3t3 − m4t4 + t5 is the determinant of B and h =

N̂1t1 + N̂2t2 + N̂3t3 + N̂4t4 − t. This method can be generalized to derive shape

functions of n dimension from shape functions of n− 1 dimensions.

2.2 Inverse Distance Weighting

Inverse Distance Weighting (IDW) interpolation (Shepard 1968) is based on the as-

sumption that things that are close to one another are more alike than those that

are farther apart. Revesz & Li (2002a) uses IDW to visualize spatial interpolation

data. In IDW, the measured values (known values) closer to a prediction location

will have more influence on the predicted value (unknown value) than those farther

away. More specifically, IDW assumes that each measured point has a local influence

that diminishes with distance. Thus, points in the near neighborhood are given high

weights, whereas points at a far distance are given small weights.
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According to Johnston et al. (2001), the general formula of IDW interpolation is

the following:

w(x, y) =
N∑

i=1

λiwi , λi =
( 1

di
)p

∑N
k=1(

1
dk

)p
, (2.21)

where w(x, y) is the predicted value at location (x, y), N is the number of nearest

known points surrounding (x, y), λi are the weights assigned to each known point

value wi at location (xi, yi), di are the Euclidean distances between each (xi, yi) and

(x, y), and p is the exponent, which influences the weighting of wi on w.

Like shape functions, IDW is originally a spatial interpolation method and we can

extend it by reduction and extension approaches to solve spatiotemporal interpolation

problems.

2.2.1 2-D Space and 1-D Time Problems

2.2.1.1 Reduction Approach: ST Product Method

Assume we are interested in the value of the unsampled point at location (x, y) and

time t. This approach first finds the nearest neighbors of for each unsampled point

and calculates the corresponding weights λi. Then, it calculates for each neighbor

the value at time t by some time interpolation method. If we use 1-D shape function

interpolation in time, the time interpolation will be similar to (2.5). The formula of

the this approach can be expressed as:

w(x, y, t) =
N∑

i=1

λiwi(t) , λi =
( 1

di
)p

∑N
k=1(

1
dk

)p
(2.22)
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where di =
√

(xi − x)2 + (yi − y)2 and

wi(t) =
ti2 − t

ti2 − ti1
wi1 +

t− ti1
ti2 − ti1

wi2 . (2.23)

Each neighbor may have different beginning and ending times ti1 and ti2 in (2.23) if

each point is sampled at different times.

2.2.1.2 Extension Approach: 3-D Method

Since this method treats time as a third dimension, the IDW based spatiotemporal

formula is of the form of (2.21) with di =
√

(xi − x)2 + (yi − y)2 + (ti − t)2.

2.2.2 3-D Space and 1-D Time Problems

2.2.2.1 Reduction Approach: ST Product Method

For 3-D space and 1-D time problems, we are interested in the value of the unsampled

point at location (x, y, z) and time t. This approach is very similar to the IDW

reduction approach for 2-D space & 1-D time problems in Section 2.2.1.1. Its formula

is:

w(x, y, z, t) =
N∑

i=1

λiwi(t) , λi =
( 1

di
)p

∑N
k=1(

1
dk

)p
(2.24)

where di =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 and wi(t) takes the same form as in

(2.23).

2.2.2.2 Extension Approach: 4-D Method

Since this method treats time as a fourth dimension, the IDW based spatiotemporal

formula is of the form of (2.21) with di =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 + (ti − t)2.
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2.3 Kriging

Kriging is an important interpolation method by using geostatistical analysis which

provides a minimum error-variance estimate of any unsampled value. It was initially

introduced by D. G. Krige as an optimal interpolation method in the mining indus-

try (Krige 1951). It was later developed by G. Matheron as the theory of regionalized

variables (Matheron 1971). Using Kriging as an interpolation method in GIS was

discussed by Oliver & Webster (1990).

Kriging is similar to IDW in the sense that it uses a weighting mechanism that

assigns more influence to the nearer data points to interpolate values at unknown

locations. However, instead of using inverse distance weighting approach, Kriging uses

variograms. As a measure of spatial variability, a variogram replaces the Euclidean

distance by a structural distance that is specific to the attribute and the field under

study (Deutsch & Journel 1998). Assume u is a location vector where the data value

is unsampled. The variogram distance measures the average degree of dissimilarity

between w(u) and a nearby known data value. For example, given two sampled data

values w1 and w2 at two different locations u + h1 and u + h2, the more “dissimilar”

sample value should receive less weight in the estimation of w(u).

2.3.1 2-D Space and 1-D Time Problems

2.3.1.1 Reduction Approach: ST Product Method

This is not a feasible approach for Kriging. According to (Lam 1983), a variogram

(2r) can be defined as

2r =
1

N

N∑
i=1

[w(ui + h)− w(ui)]
2 (2.25)
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where h is the distance between two samples can N is the number of pairs of samples

having the same distance.

From equation (2.25), we can see that not only do variograms depend on the

location distribution (h) of samples, but also depend on the sample values (w). Since

weights are determined by variograms, weights are also both location and information

dependent. That is, weights can not be calculated without knowing the values of

sample points. So, if we want to use reduction approach, we have to know in advance

which sampled points will be used in Kriging for each unsampled points and then use

some temporal interpolation method to estimate the sample values at the time the

unsampled point is interested in. However, different unknown points may share some

same sample points. This leads to the ambiguity about the values at what time shall

be used for those sample points. Therefore, the reduction approach of spatiotemporal

interpolation is not feasible for Kriging.

2.3.1.2 Extension Approach: 3-D Method

Since Kriging can be generalized into high dimension, the extension approach of

Kriging is a natural approach for spatiotemporal interpolation. There are multiple

types of Kriging, such as simple Kriging, ordinary Kriging, universal Kriging, and

factorial Kriging. Ordinary Kriging is the most commonly used variant of simple

Kriging and it has been the anchor algorithm of geostatistics (Deutsch & Journel

1998). If we choose 3-D ordinary Kriging, the estimation for unknown location u is

calculated as:

w(u) =
N∑

i=1

λiwi ,

N∑
i=1

λi = 1 , (2.26)

where weights λi are determined by variograms to minimize the error variance.
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2.3.2 3-D Space and 1-D Time Problems

2.3.2.1 Reduction Approach: ST Product Method

Like the Kriging reduction approach for 2-D space & 1-D time problems in Sec-

tion 2.3.1.1, this is also not a feasible approach for 3-D space and 1-D time problems.

2.3.2.2 Extension Approach: 4-D Method

Since Kriging can be generalized into 4-D, like in Section 2.3.1.2, the extension ap-

proach of Kriging is also a natural approach for 3-D space and 1-D time spatiotempo-

ral interpolation. Since formulas of different types of Kriging are different and they

are not the emphasis in this dissertation, further discussion is omitted.
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Chapter 3

Constraint Databases

3.1 Constraint Databases

Early work on constraint databases in logic programming has been done by Jaffar

& Lassez (1987). The concepts of constraint data model and query language have

been explored by Kanellakis, Kuper & Revesz (1990) and Kanellakis et al. (1995).

Constraint databases is a growing area. The recently books on constraint databases

are Kuper, Libkin & Paredaens (2000) and Revesz (2002).

Constraint databases generalize relational databases by finitely representable in-

finite relations. In the constraint data model, each attribute is associated with an

attribute variable and the value of the attributes in a relation is specified implicitly

using constraints.

A constraint database is a finite set of constraint relations. A constraint relation is

a finite set of constraint tuples, where each constraint tuple is a conjunction of atomic

constraints using the same set of attribute variables. Atomic constraints includes

arithmetic atomic constraints and boolean atomic constraints.

The most basic types of arithmetic atomic constraints are the following: Equal-

ity, Inequality, Lower Bound, Upper Bound, Order, Gap–Order, Difference, Half–
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Addition, Linear, and Polynomial. If a constraint database does not include polyno-

mial arithmetic constraints, it can be called a linear constraint database.

The basic types of boolean atomic constraints are the following: Equality, Inequal-

ity, Monotone Equality, Monotone Inequality, Precedence, and Exclusive–Or.

3.1.1 Ultraviolet Radiation Input Database Example

Suppose that we have the following two sets of sensory data in our database:

1. Incoming(y, t, u) records the amount of incoming ultraviolet radiation u for

each pair of latitude degree y and time t, where time is measured in days.

2. Filter(x, y, r) records the ratio r of ultraviolet radiation that is usually filtered

out by the atmosphere above location (x, y) before reaching the earth.

Suppose that Figure 3.1 shows the locations of the (y, t) and (x, y) pairs where

the measurements for u and r, respectively, are recorded. Then Tables 3.1 and 3.2

could be instances of these two relations in a relational database.

1

2

3

4
0 8 16 24

8

16

32

24

y

t

1

2 3

4
0 8 16 24

8

16

x

y

Figure 3.1: The spatial sample points for Incoming (left) and Filter (right).

The above relational database can be translated into a constraint database with

the two constraint relations shown in Tables 3.3 and 3.4.

Although any relational relation can be translated into a constraint relation as

above, not all the constraint relations can be converted back to relational databases. A
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Table 3.1: Relational Incoming (y, t, u).

ID Y T U

1 0 1 60
2 13 22 20
3 33 18 70
4 29 0 40

Table 3.2: Relational Filter (x, y, r).

ID X Y R

1 2 1 0.9
2 2 14 0.5
3 25 14 0.3
4 25 1 0.8

constraint relation can store infinite number of solutions. For example, we can repre-

sent the interpolation of u and r for all the points in the domains for Incoming(y, t, u)

and Filter(x, y, r) in a constraint database.

As described in Chapter 2, there are many types of interpolations. 2-D shape func-

tion and IDW interpolation methods will be used next for the ultraviolet radiation

example to illustrate how constraint databases can represent infinitive interpolation

results. Let INCOMING(y, t, u) be the constraint relation that represents the inter-

polation of the Incoming relation. Similarly, let FILTER(x, y, r) be the constraint

relation that represents the interpolation of the Filter relation.

3.1.2 Representation of 2-D Shape Function Interpolation in

Constraint Databases

According to Section 2.1, triangulation of the set of sampled points is the first step

to use 2-D shape functions. Figures 3.2 and 3.3 shows the Delaunay triangulations

for the sample points in Incoming(y, t, u) and Filter(x, y, r) (Revesz & Li 2002b).
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Table 3.3: Constrain Incoming (y, t, u).

ID Y T U

id y t u id = 1, y = 0, t = 1, u = 60
id y t u id = 2, y = 13, t = 22, u = 20
id y t u id = 3, y = 33, t = 18, u = 70
id y t u id = 4, y = 29, t = 0, u = 40

Table 3.4: Constraint Filter (x, y, r).

ID X Y R

id x y r id = 1, x = 2, y = 1, r = 0.9
id x y r id = 2, x = 2, y = 14, r = 0.5
id x y r id = 3, x = 25, y = 14, r = 0.3
id x y r id = 4, x = 25, y = 1, r = 0.8

The area of a Delaunay triangle can be represented by a conjunction C of three

linear inequalities corresponding to the three sides of the triangle. Then, by the shape

function (2.2) in Section 2.1.1, the value w of any point x, y inside the triangle can

be represented by the linear constraint tuple:

R(x, y, w) : − C, w = [((y2 − y3)w1 + (y3 − y1)w2 + (y1 − y2)w3)/(2A)]x+

[((x3 − x2)w1 + (x1 − x3)w2 + (x2 − x1)w3)/(2A)]y+

[((x2y3 − x3y2)w1 + (x3y1 − x1y3)w2 + (x1y2 − x2y1)w3)/(2A)].

where A is the constant value of the triangle area. By representing the interpolation

in each triangle by a separate constraint tuple, we can find in linear time a constraint

relation to represent the whole interpolation.

Tables 3.5 and 3.6 illustrate the constraint representation for the interpolation

result INCOMING and FILTER using 2-D shape functions.
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Figure 3.2: Delaunay triangulations for Incoming.

1

2 3

4

Figure 3.3: Delaunay triangulations for Filter.

3.1.3 Representation of IDW Interpolation in Constraint Databases

3.1.3.1 Higher-order Voronoi Diagrams

To represent the IDW interpolation, we need first to find the nearest neighbors for

a given point. Therefore, we borrow the idea of higher-order Voronoi diagrams (or

k-th order Voronoi diagrams) from computational geometry. Higher-order Voronoi

diagrams generalize ordinary Voronoi diagrams by dealing with k closest points. The

ordinary Voronoi diagram of a finite set S of points in the plane is a partition of

the plane so that each region of the partition is the locus of points which are closer

to one member of S than to any other member (Preparata & Shamos 1985). The

higher-order Voronoi diagram of a finite set S of points in the plane is a partition of

the plane into regions such that points in each region have the same closest members

of S. As in an ordinary Voronoi diagram, each Voronoi region is still convex in a
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Table 3.5: INCOMING (y, t, u) using 2-D shape functions.

Y T U

21x− 13y + 13 ≥ 0, x + 29y − 29 ≤ 0,y t u
11x + 8y − 319 ≥ 0, u = 0.69x− 1.45y + 62.33
11x + 8y − 319 ≤ 0, x + 5y − 97 ≤ 0,y t u
9x− 2y − 261 ≤ 0, u = 2.71x− 1.06y + 79.95

Table 3.6: FILTER (x, y, r) using 2-D shape functions.

X Y R

13x− 23y + 296 ≥ 0, x ≥ 2, y ≥ 1,x y r
r = 0.0004x− 0.0031y + 0.1168
13x− 23y + 296 ≤ 0, x ≤ 25, y ≤ 14,x y r
r = 0.0013x− 0.0038y + 0.1056

higher-order Voronoi diagram.

From the definition of higher-order Voronoi diagrams, it is obvious to see that

the problem of finding the k closest neighbors for a given point in the whole domain,

which is closely related to the IDW interpolation method with N = k, is equivalent

to constructing k-th order Voronoi diagrams.

Although higher-order Voronoi diagrams are very difficult to create by imperative

languages, such as C, C++, and Java, they can be easily constructed by declarative

languages, such as Datalog. For example, we can express a second-order Voronoi

region for points (x1, y1), (x2, y2) in Datalog as follows.

At first, let P (x, y) be a relation that stores all the points in the whole domain.

Also let Dist(x, y, x1, y1, d1) be a Euclidean distance relation where d1 is the distance

between (x, y) and (x1, y1). It can be expressed in Datalog as:

Dist(x, y, x1, y1, d1) : − d1 =
√

(x− x1)2 + (y − y1)2 .
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Note that any point (x, y) in the plane does not belong to the 2nd order Voronoi

region of the sample points (x1, y1) and (x2, y2) if there exists another sample point

(x3, y3) such that (x, y) is closer to (x3, y3) than to either (x1, y1) or (x2, y2). Using

this idea, the complement can be expressed as follows:

Not 2V or(x, y, x1, y1, x2, y2) : − P (x3, y3),

Dist(x, y, x1, y1, d1),

Dist(x, y, x3, y3, d3),

d1 > d3.

Not 2V or(x, y, x1, y1, x2, y2) : − P (x3, y3),

Dist(x, y, x2, y2, d2),

Dist(x, y, x3, y3, d3),

d2 > d3.

Finally, we take the negation of the above to get the 2nd order Voronoi region as

follows:

2V or(x, y, x1, y1, x2, y2) : −notNot 2V or(x, y, x1, y1, x2, y2).

The second-order Voronoi diagram will be the union of all the nonempty second-

order Voronoi regions. Similarly, to the 2nd order, we can also construct any kth-order

Voronoi diagram.

3.1.3.2 IDW in Constraint Databases

After finding the closest neighbors for each point by constructing higher-order Voronoi

diagrams, we can represent IDW interpolation in constraint databases. In this section,

we describe how to represent the IDW interpolation with N = 2 and p = 2. The
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representation of other IDW interpolations in constraint databases is straightforward

to get. The representation is obtained by constructing the appropriate Nth-order

Voronoi diagram (where N ≥ 2) and using Equation 2.21 with the proper p.

Based on the previous section, assume that the second-order Voronoi region for

points (x1, y1), (x2, y2) is stored by the relation Vor 2nd(x, y, x1, y1, x2, y2), which is

a conjunction C of some linear inequalities corresponding to the edges of the Voronoi

region. Then, the value w of any point (x, y) inside the Voronoi region can be ex-

pressed by the cubic constraint tuple as follows:

R(x, y, w) : − ((x− x2)
2 + (y − y2)

2 +

(x− x1)
2 + (y − y1)

2) w

= (3.1)

((x− x2)
2 + (y − y2)

2)w1 +

((x− x1)
2 + (y − y1)

2)w2 ,

V or 2nd(x, y, x1, y1, x2, y2).

or equivalently as,

R(x, y, w) : − ((x− x2)
2 + (y − y2)

2 +

(x− x1)
2 + (y − y1)

2) w

= (3.2)

((x− x2)
2 + (y − y2)

2)w1 +

((x− x1)
2 + (y − y1)

2)w2 ,

C.

In the above polynomial constraint relation, there are three variables x, y, and
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w. The highest order terms in the relation are 2x2w and 2y2w, which are both cubic.

Therefore, this is a cubic constraint tuple.

3.1.3.3 Application

Let us return now to the ultraviolet radiation example in Section 3.1.1. Figures 3.4

and 3.5 show the second-order Voronoi diagrams for the sample points in Incom-

ing(y,t,u) and Filter(x,y,r), respectively. Please note that some second-order Voronoi

regions are empty. For example, there is no (1, 3) region in Figure 3.4, and there are

no (1, 3) and (2, 4) regions in Figure 3.5 (Revesz & Li 2002a).

1

2

3

4

(1, 2)

(2, 3)

(3, 4)

(1, 4)

(2, 4)

Figure 3.4: The 2nd order Voronoi diagram for Incoming.

Based on Equation 3.2, INCOMING(y,t,u) and FILTER(x,y,r), which are the

IDW interpolation for Incoming(y,t,u) and Filter(x,y,r), can be represented in con-

straint databases as shown in Tables 3.7 and 3.8. Note that the five tuples in Table 3.7

represent the five second-order Voronoi regions in Figure 3.4. These five regions are

(1, 2), (1, 4), (3, 4), (2, 3) and (2, 4). Similarly, the four tuples in Table 3.8 represent
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Table 3.7: INCOMING (y, t, u) using IDW.

Y T U

13y + 7t− 286 ≤ 0,
2y − 3t− 12 ≤ 0,

y ≤ 15,
y t u ((y − 13)2 + (t− 22)2)60 + (y2 + (t− 1)2)20

= ((y − 13)2 + (t− 22)2 + y2 + (t− 1)2)u
2y − 3t− 12 ≥ 0,
2y + 5t− 60 ≤ 0,
2y + t− 44 ≤ 0,

y t u ((y − 29)2 + t2)60 + (y2 + (t− 1)2)40
= ((y − 29)2 + t2 + y2 + (t− 1)2)u

2y + t− 44 ≥ 0,
7y − t− 136 ≥ 0,
8y − 11t− 47 ≥ 0,

y t u ((y − 29)2 + t2)70 + ((y − 33)2 + (t− 18)2)40
= ((y − 29)2 + t2 + (y − 33)2 + (t− 18)2)u

8y − 11t− 47 ≤ 0,
y + 3t− 54 ≥ 0,

13y + 7t− 286 ≥ 0,
y t u ((y − 33)2 + (t− 18)2)20 + ((y − 13)2 + (t− 22)2)70

= ((y − 33)2 + (t− 18)2 + (y − 13)2 + (t− 22)2)u
y ≥ 15,

y + 3t− 54 ≤ 0,
7y − t− 136 ≤ 0,
2y + 5t− 60 ≥ 0,

y t u ((y − 29)2 + t2)20 + ((y − 13)2 + (t− 22)2)40
= ((y − 29)2 + t2 + (y − 13)2 + (t− 22)2)u
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1

2 3

4

(1, 2)

(2, 3)

(3, 4)

(1, 4)

Figure 3.5: The 2nd order Voronoi diagram for Filter.

the four second-order Voronoi regions in Figure 3.5. These four regions are (1, 2),

(1, 4), (3, 4) and (2, 3).

3.2 Datalog Query Languages

There are several ways to query constraint databases, such as the relational alge-

bra, SQL, and Datalog. Among them, Datalog is the most powerful query lan-

guage. Therefore, in this section, Datalog is chosen to show how to query constraint

databases.

Datalog is a nonprocedural query language that is based on the logic-programming

language Prolog. Recursion is allowed in Datalog. Datalog with recursion has more

expressive power than Datalog without recursion. Nonrecursive Datalog expressions

without arithmetic operations are equivalent in expressive power to expressions using

the basic operations in relational algebra. Therefore Datalog has more expressive

power than the relational algebra.
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Table 3.8: FILTER (x, y, r) using IDW.

X Y R

2x− y − 20 ≤ 0, 12x + 7y − 216 ≤ 0,
x y r ((x− 2)2 + (y − 14)2)0.9+

((x− 2)2 + (y − 1)2)0.5 =
(2(x− 2)2 + (y − 14)2 + (y − 1)2)r

2x− y − 20 ≥ 0, 12x + 7y − 216 ≤ 0,
x y r ((x− 25)2 + (y − 1)2)0.9+

((x− 2)2 + (y − 1)2)0.8 =
(2(y − 1)2 + (x− 25)2 + (x− 2)2)r

2x− y − 20 ≥ 0, 12x + 7y − 216 ≥ 0,
x y r ((x− 25)2 + (y − 14)2)0.8+

((x− 25)2 + (y − 1)2)0.3 =
(2(x− 25)2 + (y − 14)2 + (y − 1)2)r
2x− y − 20 ≤ 0, 12x + 7y − 216 ≥ 0,

x y r ((x− 25)2 + (y − 14)2)0.5+
((x− 2)2 + (y − 14)2)0.3 =

(2(y − 14)2 + (x− 25)2 + (x− 2)2)r

3.2.1 Ultraviolet Radiation Query Example

Query 3.2.1 For the ultraviolet radiation example in Section 3.1.1, find the amount

of ultraviolet radiation for each ground location (x, y) at time t.

Since the input relations in Tables 3.1 and 3.2 only record the incoming ultraviolet

radiation u and filter ratio r on a few sample points, these cannot be used directly to

answer the query. Therefore, to answer this query, we need the interpolation result

INCOMING(y, t, u) and FILTER(x, y, r). To write queries, we do not need to

know precisely what kind of interpolation method is used and what are the constraints

used in the representation interpolation. The above query can be expressed in Datalog

as follows:
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GROUND(x, y, t, i) : − INCOMING(y, t, u),

F ILTER(x, y, r),

i = u(1− r).

The above query could be also expressed in SQL style or relational algebra. What-

ever language is used, it is clear that the evaluation of the above query requires a

join of the INCOMING and FILTER relations. Unfortunately, join operations are

difficult to express in most GIS systems, including the ArcGIS system. However, join

processing is very natural in constraint database systems.

If we use IDW interpolation, the final result of the Datalog query, GROUND(x, y,

t, i), can be represent by Table 3.9. Since there are five tuples in INCOMING(y,t,u)

in Table 3.7 and four tuples in FILTER(x,y,r) in Table 3.8, there should be twenty

tuples in GROUND(x, y, t, i) in Table 3.9. Note that the constraint relations can be

easily joined by taking the conjunction of the constraints from each pair tuples of the

two input relations. Finally, in a constraint database system the constraint in each

tuple are automatically simplified by eliminating the unnecessary variables u and r.

We do not show the result of the simplification step.

3.2.2 Fire Management Plan Query Example

Suppose that we have the following relations in the input constraint database:

1. V egcover(x, y, v): recording the vegetation cover type v at each location (x, y).

2. Elevation(x, y, e): recording the elevation e at each location (x, y).

3. Slope(x, y, s): recording the slope s at each location (x, y).

4. Aspect(x, y, a): recording the aspect a at each location (x, y).

Based on the historical data that summarize the fire reports by four spatial vari-

ables: (i) vegetation type, (ii) elevation, (iii) slope, and (iv) aspect, we have the

following assumption:
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Table 3.9: GROUND (x, y, t, i) using IDW.

X Y T I

2x− y − 20 ≤ 0,
12x + 7y − 216 ≤ 0,
13y + 7t− 286 ≤ 0,
2y − 3t− 12 ≤ 0,

y ≤ 15,
x y t i ((x− 2)2 + (y − 14)2)0.9+

((x− 2)2 + (y − 1)2)0.5 =
(2(x− 2)2 + (y − 14)2 + (y − 1)2)r,

((y − 13)2 + (t− 22)2)60 + (y2 + (t− 1)2)20
= ((y − 13)2 + (t− 22)2 + y2 + (t− 1)2)u,

i = u(1− r)
2x− y − 20 ≥ 0,

12x + 7y − 216 ≤ 0,
13y + 7t− 286 ≤ 0,
2y − 3t− 12 ≤ 0,

y ≤ 15,
x y t i ((x− 25)2 + (y − 1)2)0.9+

((x− 2)2 + (y − 1)2)0.8 =
(2(y − 1)2 + (x− 25)2 + (x− 2)2)r,

((y − 13)2 + (t− 22)2)60 + (y2 + (t− 1)2)20
= ((y − 13)2 + (t− 22)2 + y2 + (t− 1)2)u,

i = u(1− r)

x y t i
...
...

2x− y − 20 ≤ 0,
12x + 7y − 216 ≥ 0,

y ≥ 15,
y + 3t− 54 ≤ 0,
7y − t− 136 ≤ 0,
2y + 5t− 60 ≥ 0,

x y t i ((x− 25)2 + (y − 14)2)0.5+
((x− 2)2 + (y − 14)2)0.3 =

(2(y − 14)2 + (x− 25)2 + (x− 2)2)r,
((y − 29)2 + t2)20 + ((y − 13)2 + (t− 22)2)40
= ((y − 29)2 + t2 + (y − 13)2 + (t− 22)2)u,

i = u(1− r)
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1. For the Vegcover relation, “coniferous forests”, “grass lands”, “mixed forests”,

“deciduous forests”, and “disturbed (a mixed class including urban lands, sur-

face mines, exposed rock and soil)” are considered to have the fire risk rating

of 4, 3, 2, 1, and 0, respectively.

2. For the Elevation relation, the areas with elevation values in 4000− 5999ft are

considered to have the fire risk rating of 4, the areas with elevation values in

2000− 2999ft or 6000− 6999ft are considered to have the fire risk rating of 3,

the areas with elevation values in 3000− 3999ft are considered to have the fire

risk rating of 2, and the areas with elevation values in 0− 1999ft or ≥ 7000ft

are considered to have the fire risk rating of 1.

3. For the Slope relation, the areas with slope in 0◦−20◦, 21◦−40◦, 41◦−60◦, and

≥ 60◦ are considered to have the fire risk rating of 4, 3, 2, and 1, respectively.

4. For the Aspect relation, the areas with aspect in S (south) are considered to

have the fire risk rating of 4, the areas with aspect in SW (southwest) are

considered to have the fire risk rating of 3, the areas with aspect in E (east),

or SE (southeast), or W (west) are considered to have the fire risk rating of 2,

and the areas with aspect in N (north), or NE (northeast), or NW (northwest)

are considered to have the fire risk rating of 1.

Please note that the fire risk rating is on a scale of 0 ∼ 4, where 4 indicates the

highest possibility to catch fire and 0 indicates the lowest possibility to catch fire.

Query 3.2.2 This query is to get the composite Fire Risk(x, y, r) relation to analyze

the composite fire risk r which combines the individual fire risks based on vegetation

type, elevation, slope, and aspect. First of all, we need to reclassify the relations

V egcover(x, y, v), Elevation(x, y, e), Slope(x, y, s), and Aspect(x, y, a) according to

their own fire risk ratings as follows:
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Fire Risk V eg(x, y, r v) : − V egcover(x, y, v), v = “conifer”, r v = 4 .

F ire Risk V eg(x, y, r v) : − V egcover(x, y, v), v = “grass”, r v = 3 .

F ire Risk V eg(x, y, r v) : − V egcover(x, y, v), v = “mixed”, r v = 2 .

F ire Risk V eg(x, y, r v) : − V egcover(x, y, v), v = “deciduous”, r v = 1 .

F ire Risk V eg(x, y, r v) : − V egcover(x, y, v), v = “disturbed”, r v = 0 .

F ire Risk Ele(x, y, r e) : − Elevation(x, y, e), e ≥ 4000, e ≤ 5999, r e = 4 .

F ire Risk Ele(x, y, r e) : − Elevation(x, y, e), e ≥ 2000, e ≤ 2999, r e = 3 .

F ire Risk Ele(x, y, r e) : − Elevation(x, y, e), e ≥ 6000, e ≤ 6999, r e = 3 .

F ire Risk Ele(x, y, r e) : − Elevation(x, y, e), e ≥ 3000, e ≤ 3999, r e = 2 .

F ire Risk Ele(x, y, r e) : − Elevation(x, y, e), e ≥ 0, e ≤ 1999, r e = 1 .

F ire Risk Ele(x, y, r e) : − Elevation(x, y, e), e ≥ 7000, r e = 1 .

F ire Risk Slo(x, y, r s) : − Slope(x, y, s), e ≥ 0◦, e ≤ 20◦, r s = 4 .

F ire Risk Slo(x, y, r s) : − Slope(x, y, s), e ≥ 21◦, e ≤ 40◦, r s = 3 .

F ire Risk Slo(x, y, r s) : − Slope(x, y, s), e ≥ 41◦, e ≤ 60◦, r s = 2 .

F ire Risk Slo(x, y, r s) : − Slope(x, y, s), e ≥ 61◦, r s = 1 .

F ire Risk Asp(x, y, r a) : − Aspect(x, y, a), a = “S”, r a = 4 .

F ire Risk Asp(x, y, r a) : − Aspect(x, y, a), a = “SW”, r a = 3 .

F ire Risk Asp(x, y, r a) : − Aspect(x, y, a), a = “E”, r a = 2 .

F ire Risk Asp(x, y, r a) : − Aspect(x, y, a), a = “SE”, r a = 2 .

F ire Risk Asp(x, y, r a) : − Aspect(x, y, a), a = “W”, r a = 2 .

F ire Risk Asp(x, y, r a) : − Aspect(x, y, a), a = “N”, r a = 1 .

F ire Risk Asp(x, y, r a) : − Aspect(x, y, a), a = “NE”, r a = 1 .

F ire Risk Asp(x, y, r a) : − Aspect(x, y, a), a = “NW”, r a = 1 .
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Next, we can produce a temporary composite Temp Fire Risk(x, y, r̂) relation

as follows based on the assumption that the four factors (vegetation type, elevation,

slope, and aspect) contribute with the same weight to the composite fire risk:

Temp Fire Risk(x, y, r̂) : − Fire Risk V eg(x, y, r v), F ire Risk Ele(x, y, r e),

F ire Risk Slo(x, y, r s), F ire Risk Asp(x, y, r a),

r̂ = r v + r e + r s + r a .

The fire risk attribute r̂ in Temp Fire Risk(x, y, r̂) should have values ranging

from 3 to 16, with the higher number indicating higher fire risk. This is because

the highest fire risk ratings for Fire Risk V eg, Fire Risk Ele, Fire Risk Slo, and

Fire Risk Asp are all 4, while the lowest ratings for Fire Risk V eg are 0 and 1 for

Fire Risk Ele, Fire Risk Slo, and Fire Risk Asp.

Finally, we can produce the Fire Risk(x, y, r) relation by reclassifying r̂ in Temp

Fire Risk (x,y,r̂) into four new classes according to the following rule: new class 1 =

old classes 3-5 (low risk), new class 2 = old classes 6-9 (moderate low risk), new class

3 = old classes 10-12 (moderate high risk), and new class 4 = old classes 13-16 (high

risk). This can be expressed as:

Fire Risk(x, y, r) : − Temp Fire Risk(x, y, r̂), r̂ ≥ 3 , r̂ ≤ 5, r = 1 .

F ire Risk(x, y, r) : − Temp Fire Risk(x, y, r̂), r̂ ≥ 6 , r̂ ≤ 9, r = 2 .

F ire Risk(x, y, r) : − Temp Fire Risk(x, y, r̂), r̂ ≥ 10 , r̂ ≤ 12, r = 3 .

F ire Risk(x, y, r) : − Temp Fire Risk(x, y, r̂), r̂ ≥ 13 , r̂ ≤ 16, r = 4 .

Suppose that there is another relation in the input constraint database, Road(x, y, r),

which records the road information r. It is assumed that once fire occurs, fire crews

rush to the scene from the roads. Therefore, the accessibility to the road network
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should be considered as a factor for the fire hazard analysis. Based on the distance to

the road network, we assume that: the areas 0-500 meters from a road are considered

to have the fire risk rating of 1, the areas 501-1000 meters from a road are considered

to have the fire risk rating of 2, the areas 1001-1500 meters from a road are considered

to have the fire risk rating of 3, and the areas greater than 1500 meters from a road

are considered to have the fire risk rating of 4. Again, the fire risk rating is on a scale

of 0 ∼ 4, with higher number indicating higher fire hazard.

Query 3.2.3 This query is to analyze the fire hazard by considering both fire risk

based on the historical data and road accessibility. First of all, we need to produce

the relation Access(x, y, h a) to record the fire hazard according to road accessibility

as follows:

Access(x, y, h a) : − road(x′, y′, r),
√

(x− x′)2 + (y − y′)2 ≤ 500, h a = 1 .

Access(x, y, h a) : − road(x′, y′, r),
√

(x− x′)2 + (y − y′)2 ≥ 501,

√
(x− x′)2 + (y − y′)2 ≤ 1000, h a = 2 .

Access(x, y, h a) : − road(x′, y′, r),
√

(x− x′)2 + (y − y′)2 ≥ 1001,

√
(x− x′)2 + (y − y′)2 ≤ 1500, h a = 3 .

Access(x, y, h a) : − road(x′, y′, r),
√

(x− x′)2 + (y − y′)2 ≥ 1501, h a = 4 .

Next, we can produce a temporary composite Temp Fire Hazard(x, y, ĥ) relation

as follows based on the assumption that fire risk and road accessibility contribute with

the same weight to the fire hazard:

Temp Fire Hazard(x, y, ĥ) : − Fire Risk(x, y, r), Access(x, y, h a), ĥ = r + h a .

The fire hazard attribute ĥ in Temp Fire Hazard(x, y, ĥ) should have values

ranging from 2 to 8, with the higher number indicating higher fire hazard. This is
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because the highest fire hazard ratings for Fire Risk and Access are both 4, while

the lowest ratings for them are both 1.

Finally, we can produce the Fire Hazard(x, y, h) relation by reclassifying ĥ in

Temp Fire Hazard (x,y,ĥ) into four new classes according to the following rule: new

class 1 = old classes 2-3 (low hazard), new class 2 = old classes 4-5 (moderate low

hazard), new class 3 = old classes 6-7 (moderate high hazard), and new class 4 = old

classes 8 (high hazard). This can be expressed as:

Fire Hazard(x, y, h) : − Temp Fire Hazard(x, y, ĥ), ĥ ≥ 2 , r̂ ≤ 3, h = 1 .

F ire Hazard(x, y, h) : − Temp Fire Hazard(x, y, ĥ), ĥ ≥ 4 , r̂ ≤ 5, h = 2 .

F ire Hazard(x, y, h) : − Temp Fire Hazard(x, y, ĥ), ĥ ≥ 6 , r̂ ≤ 7, h = 3 .

F ire Hazard(x, y, h) : − Temp Fire Hazard(x, y, ĥ), ĥ = 8, h = 4 .

3.2.3 Greenness Data Temporal Query Example

Let Fire(x, y, t) record the location (x, y) that have wild fire activity at time t and

Greenness(x, y, g, t) record the greenness index g at location (x, y) at time t. Green-

ness data record the seasonal characteristics of vegetation. Usually in greenness maps,

the reddish-brown to green colors represent the gradation from sparse to dense live

vegetation and from weak to vigorous growth. The Normalized Difference Vegetation

Index (NDVI) is the most widely used vegetation greenness index in satellite data

analysis, which can be calculated by the following formula:

NDV I =
NIR−RED

NIR−RED

where NIR is the brightness in the near infra-red wavebands wavebands and RED is

the brightness in the red wavebands. It can be seen that the NDVI greenness index

is normalized and nonlinear. Its range varies between -1 and +1.
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The study of greenness data is an important and interesting topic, for example,

it can be used in fire assessment systems. Yang, Yang & Merchant (1997) is another

example on the research of greenness data. Next two querying examples on greenness

data are given.

Query 3.2.4 To find the locations that had fire in 1999 with greenness index value

∈ [−1.0, 0), and calculate the total area, we can do the following datalog query:

Find neg green 1999(x, y) : − Fire(x, y, t), Greenness(x, y, g, t), t in 1999,

g < 0, g ≥ −1.0 .

F ire Area2(area < x, y >) : − Find neg green 1999(x, y) .

Query 3.2.5 To find the locations that had fire in 1999 with greenness index value

∈ [0, 1.0], and calculate the total area, we can do the following datalog query:

Find pos green 1999(x, y) : − Fire(x, y, t), Greenness(x, y, g, t), t in 1999,

g ≥ 0, g ≤ 1.0 .

F ire Area3(area < x, y >) : − Find pos green 1999(x, y) .
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Chapter 4

Spatiotemporal Interpolation

Methods for House Price Data in

Constraint Databases

In this chapter, based on a set of 2-D space and 1-D time actual real estate data, the

shape function based methods with IDW (Inverse Distance Weighting) and Kriging

interpolation methods in both reduction and extension approaches will be compared.

4.1 Experimental Data

The experimental test data consisting of a set of real estate data obtained from the

Lancaster county assessor’s office in Lincoln, Nebraska. House sale histories since

1990 are recorded in the real estate data set and include sale prices and times.

We randomly select 126 residential houses from a quarter of a section of a town-

ship, which covers an area of 160 acres. Furthermore, from these 126 houses, we

randomly select 76 houses as sample data, and the remaining 50 houses are used as

test data. Figure 4.1 shows the 76 houses with circles and the 50 remaining houses
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with pentagons.

Tables 4.1 and 4.2 show instances of these two data-sets. Based on the fact that

the earliest sale of the houses in this neighborhood is in 1990, we encode the time

in such a way that 1 represents January 1990, 2 represents February 1990, . . ., 148

represents April 2002. Note that some houses are sold more than once in the past, so

they have more than one tuples. For example, the house at the location (2215, 110)

was sold three times in the past at time 27, 77, and 114 (which represent 3/1992,

5/1996, and 6/1999).

0 500 1000 1500 2000 2500 3000
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1000
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2000

2500

3000

Figure 4.1: 76 sample houses (◦) and 50 test houses (?).
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Table 4.1: Sample (x, y, t, p).

X Y T P (price/square foot)

888 115 4 56.14
888 115 76 76.02

1630 115 118 86.02
1630 115 123 83.87

...
...

...
...

2240 2380 51 91.87
2650 1190 43 63.27

Table 4.2: Test (x, y, t).

X Y T

115 1525 16
115 1525 58
115 1525 81
115 1610 63
...

...
...

120 1110 30
615 780 59

4.2 Experimental Result of Shape Function Based

Methods

4.2.1 Accuracy

We compare the estimated values of price per square foot with the true values for

each sale instance of the 50 test houses according to Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE). The definition of MAE and RMSE is as follows:

MAE =

∑N
i=1 | Ii −Oi |

N
RMSE =

√∑N
i=1(Ii −Oi)2

N
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Table 4.3: Comparison results.

Slope
Method MAE RMSE

MAE RMSE
Constraint Invariance

Reduction Shape Func 8.98 11.34 9.69 13.08 polynomial yes
(ST Product) IDW(n=3, p=1) 10.05 11.96 9.49 13.62 polynomial no

Shape Func 7.92 10.11 0.34 0.69 linear yes
Extension

IDW(n=3, p=1) 11.14 13.63 0.06 0.07 polynomial no
(3-D)

Kriging 10.25 12.59 0.07 0.08 polynomial no

where N is the number of test houses, Ii is the interpolated house price, and Oi is

the original house price.

In Table 4.3, the MAE and RMSE columns summarize the accuracy analysis

of the methods. We can see that the ST product method yields a slightly better

accuracy (less MAE and RMSE values) than the 3-D method for shape function

based interpolation.

4.2.2 Error-Proneness to Time Aggregation

The unit of time is a special issue for spatiotemporal data. For example, the following

questions are of interest:

1. For a specific spatiotemporal data-set, how fine should the granularity of time

be to obtain the best result of interpolation?

2. For some data-sets that only have a coarse granularity of time, what kind of

spatiotemporal interpolation methods should be used?

To answer these questions, the error criteria of MAE and RMSE have been mea-

sured according to twelve different ways of time aggregation of the house price data.

The twelve approaches of time aggregation include monthly, bimonthly, quarterly, . . .,
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yearly. That is, each month is treated as a different time instance in monthly aggrega-

tion, every two months are treated a different time instance in bimonthly aggregation,

. . ., each year is treated as a different time instance in yearly aggregation.
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Figure 4.2: Shape function susceptibility to time aggregation according to MAE
(Mean Absolute Error). The solid lines are the actual result, while the dashed lines
are the linear regression functions that best approximate the tendency of MAE.

Figures 4.2 and 4.3 show the experimental results of MAE and RMSE for error

proneness to time aggregation of the shape function based methods. The Matlab

function polyfit has been used to calculate the linear regression functions. In Table 4.3,

the column Slope summarizes their slopes. Steeper slope indicates less error-proneness

to time aggregation. It is shown that the 3-D method is much less error-prone than

the ST product method.
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Figure 4.3: Shape function susceptibility to time aggregation according to RMSE
(Root Mean Square Error). The solid lines are the actual result, while the dashed
lines are the linear regression functions that best approximate the tendency of RMSE.

4.2.3 Constraint Types

For the ST product method, assume we have the following input relations after De-

launay triangulation and time approximation (which can be piecewise linear approx-

imation) for each nodal points:

1. Triangle(x1, y1, x2, y2, x3, y3, x, y) indicates that the point (x, y) is inside the

triangle with three corner vertices (x1, y1), (x2, y2) and (x3, y3).

2. Point Approx(x1, y1, t, w1) stores the interpolated value w1 for corner vertex

(x1, y1) at time t.
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The value w of any point (x, y) inside each triangle can be represented by the

following polynomial constraint tuple (Li & Revesz 2002):

Triangle Approx(x, y, t, w) : − Triangle(x1, y1, x2, y2, x3, y3, x, y) ,

Point Approx(x1, y1, t, w1) ,

Point Approx(x2, y2, t, w2) ,

Point Approx(x3, y3, t, w3) ,

Area(x1, y1, x2, y2, x3, y3, a) , (4.1)

Area(x, y, x2, y2, x3, y3, a1) ,

Area(x1, y1, x, y, x3, y3, a2) ,

Area(x1, y1, x2, y2, x, y, a3) ,

wa = w1a1 + w2a2 + w3a3 .

where the Area(x1, y1, x2, y2, x3, y3, a) relation calculates the area of the triangle with

vertices (x1, y1), (x2, y2) and (x3, y3) and can be defined as follows:

Area(x1, y1, x2, y2, x3, y3, a) : −a =
| (x1 − x3)(y2 − y3)− (y1 − y3)(x2 − x3) |

2
.

In equation (4.1), since wi’s (1 ≤ i ≤ 3) are linear functions of t and ai’s (1 ≤
i ≤ 3) are linear functions of x and y, Triangle Approx is not linear, but quadratic.

If we use a polynomial function of t to approximate the wi’s, we will get even higher

polynomial functions for wi’s. Therefore, the constraint type of this ST product

method is polynomial.

Example 4.2.1 For the house price data, represent the interpolation by the ST prod-

uct method in constraint databases.
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Table 4.4 shows the representation result. Since there are 137 triangles generated

after the Delaunay triangulation, there should be 137 tuples in Table 4.4. Note that

the first constraint tuple corresponds to the first 7 sample points in the Sample(x,y,t,p)

relation in Table 4.1. In this first constraint tuple, the first three linear inequality con-

straints define a triangle, the next three linear constraints are derived from piecewise

linear interpolation, the area values are calculated from the above Area Equation,

and the last constraint is polynomial which calculates the interpolation value of the

house price.

Table 4.4: House(x,y,t,p) interpolation by ST product method. The first constraint
tuple corresponds to the first 7 sample points in the Sample(x,y,t,p) relation.

X Y T P

5x + 1327y − 157045 ≥ 0,
x + 117y − 15085 ≤ 0,
y ≤ 115,
p1 = 0.28(t− 4)− 56,
p2 = −0.43(t− 118) + 86,

x y t p p3 = 0.17(t− 27) + 60,
a = 1855 ,
a1 = 0.5 | 5x + 585y − 75425 |,
a2 = 0.5 | −5x− 1327y + 157045 |,
a3 = 0.5 | 742y − 85330 |,
pa = p1a1 + p2a2 + p3a3 .

...x y t p

...

For the 3-D method, assume we have the following input relations after tetrahedral

tesselation:

1. Tetra(x1, y1, t1, x2, y2, t2, x3, y3, t3, x4, y4, t4, x, y, t) indicates that the point (x, y, t)

is inside the tetrahedron with four corner vertices (x1, y1, t1), (x2, y2, t2), (x3, y3, t3)

and (x4, y4, t4).
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2. Point V alue(x1, y1, t1, w1) stores the nodal value w1 for corner vertex (x1, y1, t1).

The value w of any point (x, y, t) inside each tetrahedron can be represented by

the following linear constraint tuple (Li & Revesz 2002):

Tetra Approx(x, y, t, w) : − Tetra(x1, y1, t1, x2, y2, t2, x3, y3, t3, x4, y4, t4, x, y, t) ,

Point V alue(x1, y1, t1, w1) ,

Point V alue(x2, y2, t2, w2) ,

Point V alue(x3, y3, t3, w3) , (4.2)

Point V alue(x4, y4, t4, w4) ,

V olume(x1, y1, t1, x2, y2, t2, x3, y3, t3, x4, y4, t4, v) ,

V olume(x, y, t, x2, y2, t2, x3, y3, t3, x4, y4, t4, v1) ,

V olume(x1, y1, t1, x, y, t, x3, y3, t3, x4, y4, t4, v2) ,

V olume(x1, y1, t1, x2, y2, t2, x, y, t, x4, y4, t4, v3) ,

V olume(x1, y1, t1, x2, y2, t2, x3, y3, t3, x, y, t, v4) ,

wv = w1v1 + w2v2 + w3v3 + w4v4 .

where the V olume(x1, y1, t1, x2, y2, t2, x3, y3, t3, x4, y4, t4, v) relation calculates the vol-

ume v of the tetrahedron with vertices (x1, y1, t1), (x2, y2, t2) , (x3, y3, t3) and (x4, y4, t4).

It can be defined as follows:

V olume(x1, y1, t1, x2, y2, t2, x3, y3, t3, x4, y4, t4, v) : − v =

1

6
| (x1 − x2)(y1 − y3)(t1 − t4) + (x1 − x4)(y1 − y2)(t1 − t3) +

(x1 − x3)(y1 − y4)(t1 − t2)− (x1 − x4)(y1 − y3)(t1 − t2) −

(x1 − x3)(y1 − y2)(t1 − t4)− (x1 − x2)(y1 − y4)(t1 − t3) | .



69

Since in equation (4.2), all the wi’s (1 ≤ i ≤ 4) are constants and all the vi’s

(1 ≤ i ≤ 4) are linear in terms of x, y, t, the relation Tetra Approx is linear. By rep-

resenting the tetrahedral method in each tetrahedron with a separate constraint tuple,

we can find in linear time a constraint relation to represent the whole interpolation.

Example 4.2.2 For the house price data, represent the interpolation by the tetrahe-

dral method in constraint databases.

Table 4.5 shows the representation result. Since there are 733 tetrahedra generated

after the tetrahedral tesselation, there should be 733 tuples in Table 4.5. Note that the

first constraint tuple corresponds to the last 4 sample points in the Sample(x,y,t,p)

relation in Table 4.1. In this first constraint tuple, the first four linear inequality

constraints define a tetrahedron, and the volume values are calculated from the above

Volume Equation.

Table 4.5: House(x,y,t,p) interpolation by the tetrahedral method. The first con-
straint tuple corresponds to the last 4 sample points in the Sample(x,y,t,p) relation.

X Y T P

38160(x− 2650)− 450(y − 1190)− 599300(t− 78) ≥ 0,
16460(x− 2650) + 9700(y − 1190)− 599300(t− 43) ≥ 0,

−19950(x− 2650)− 24500(y − 1190) ≤ 0,
−41650(x− 2650)− 14350(y − 1190) ≤ 0,

x y t p v = 4160916.67 ,
v1 = 1/6 | −16460x− 7700y + 599300t + 29392100 |,
v2 = 1/6 | −41650x− 7350y + 127449000 |,
v3 = 1/6 | 19950x + 24500y − 82022500 |,
v4 = 1/6 | 38160x− 9450y − 599300t− 53843100 |,
pv = 65.44v1 + 70.34v2 + 91.87v3 + 63.27v4 .

...x y t p

...

In Table 4.3, the Constraint Type column summarizes the type of constraints of

these methods. For shape function based approaches, since the 3-D method yields
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only linear constraints and the ST product yields polynomial constraints, the 3-D

method has an advantage over the ST product method: query evaluation is more

efficient.

4.2.4 Invariance to Coordinate Scale

Shape functions for triangles and tetrahedra are invariant to coordinate scale, which

means their results will remain the same even if the scale of a dimension (or dimen-

sions) changes. Being invariance to coordinate scale is a very charming characteristic

of a spatiotemporal interpolation method especially when we want to use the exten-

sion approach. This is because we don’t have to worry about what time unit should

be used when mixing the space and time dimension. In Table 4.3, the column In-

variance summarizes whether the method is invariant to coordinate scale. We prove

that 2-D triangular shape functions are invariant to scale in below. The proof for the

invariance of 3-D tetrahedral shape functions can be similarly obtained.

Proof 4.2.1 2-D triangular shape functions are invariance to coordinate scale.

Consider N1(x, y) in the triangular shape function (2.2). After substituting the

determinant result of A, we have

N1(x, y) =
[(x2y3 − x3y2) + x(y2 − y3) + y(x3 − x2)]

x2y3 − y2x3 − x1y3 + y1x3 + x1y2 − y1x2

.

Assume that the scale in x dimension enlarges to n times of the original scale. Then

N1 will be as follows after scaling

N ′
1(x, y) =

[(nx2y3 − nx3y2) + nx(y2 − y3) + y(nx3 − nx2)]

nx2y3 − ny2x3 − nx1y3 + ny1x3 + nx1y2 − ny1x2

,

which is obviously the same result as before scaling. Invariance to y scale is straight-

forward too. Similarly, we can prove that N2 and N3 are also invariant to coordinate
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scale.

4.3 Experimental Result of IDW Based Methods

4.3.1 Accuracy

From the MAE and RMSE columns in Table 4.3, we can see that as different from the

shape function based methods, the 3-D method yields a slightly better accuracy (less

MAE and RMSE values) than the ST product method for IDW based interpolation.

4.3.2 Error-Proneness to Time Aggregation

Similarly to the analysis of shape function based methods, we test the same twelve

ways of time aggregation for the IDW based methods.

Figures 4.4 and 4.5 show the experimental results of MAE and RMSE for error

proneness to time aggregation of the IDW based methods when the number of near

neighbors is 3. Again, the Matlab function polyfit has been used to calculate the

linear regression functions. From the the column Slope in Table 4.3, we can see

that similarly to the shape function based methods, the 3-D method is much less

error-prone than the ST product method for IDW based approaches.

4.3.3 Constraint Types

The constraint type for both the IDW based ST product and 3-D methods are poly-

nomial.



72

0 2 4 6 8 10 12
0

20

40

60

80

100

120

Number of months

M
A

E
 fo

r 
ho

us
e 

da
ta

 (
n=

3,
p=

1)

ST product method
3-D method

Figure 4.4: IDW susceptibility to time aggregation according to MAE (Mean Absolute
Error). The solid lines are the actual result, while the dashed lines are the linear
regression functions that best approximate the tendency of MAE.

4.3.4 Not Invariance to Coordinate Scale

IDW is not invariant to coordinate scale. Consider the IDW interpolation with 2

neighbors and power 2, based on equation (2.21), we have

λ1 =
(x− x2)

2 + (y − y2)
2

(x− x1)2 + (y − y1)2 + (x− x2)2 + (y − y2)2
.

Assume that the x dimensional scale enlarges to n times. Then after scaling, λ1 will

be

λ′1 =
n2(x− x2)

2 + (y − y2)
2

n2(x− x1)2 + (y − y1)2 + n2(x− x2)2 + (y − y2)2
,

which is not the same result as before scaling. Therefore, IDW is not invariant to

coordinate scale.
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Figure 4.5: IDW susceptibility to time aggregation according to RMSE (Root Mean
Square Error). The solid lines are the actual result, while the dashed lines are the
linear regression functions that best approximate the tendency of RMSE.

4.4 Experimental Result of Kriging Based Meth-

ods

We use the Matlab Kriging Toolbox (version 4.0) provided by Gratton to do the ex-

periments. It is available from http://www.inrs-eau.uquebec.ca/ activites/repertoire/

yves gratton/krig.htm. This toolbox is almost entirely made up of functions from

Deutsch & Journel (1998) and Marcotte (1991). It actually implemented high dimen-

sional Cokriging with Matlab. Cokriging is the multi-variable extension of Kriging.

It means Kriging with more than one variables. When the Cokriging program is

called with only one variable, it will return the Kriging result. Since we have only

one variable, the house price, we only need Kriging.

Since the reduction approach of Kriging for spatiotemporal interpolation is not
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a feasible approach (see Section 2.3), the following comparison is referring to the

extension approach (i.e. 3-D Method) of Kriging.

4.4.1 Accuracy

With the search radius be 500, the number of nearest neighbors be 10, and some

other default input parameters for point cokriging, we have tested several choices of

variogram models. The result of linear model with nugget effect has been the best.

We put the result of this model into Table 4.3. The MAE and RMSE values of

Kriging based 3-D method are slightly better than IDW based 3-D method. But they

are worse than shape function based both ST product and 3-D methods.

4.4.2 Error-Proneness to Time Aggregation

Similarly to the analysis of shape function and IDW based methods, we test the same

twelve ways of time aggregation for Kriging based 3-D method. Figure 4.6 shows the

experimental results of both MAE and RMSE. From the column Slope in Table 4.3,

we can see that Kriging based 3-D method is not error-prone.

4.4.3 Constraint Types

The constraint type for Kriging based 3-D method is polynomial since the calculation

of variograms by equation (2.25) is already quadratic.

4.4.4 Not Invariance to Coordinate Scale

Since Kriging is similar to IDW in the weighting mechanism that is influenced by

distances, Kriging is also not invariant to coordinate scale.
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Figure 4.6: Kriging susceptibility to time aggregation according to MAE (Mean Ab-
solute Error) and RMSE (Root Mean Square Error). The solid lines are the actual
result of MAE and RMSE, while the dashed lines are the linear regression functions
that best approximate their tendency.

4.5 Comparison Summary

Table 4.3 shows that the extension method with shape functions is the most accurate

spatiotemporal interpolation method as measured by mean absolute error (MAE)

and root mean square error (RMSE). It is also the only one which can be represented

using linear constraints.

The extension method, which treats time as another dimension, has a potential

problem, namely that there is no easy way to compare one temporal unit with one

spatial unit. Depending on the unit measure, we may get a different value for the

estimated results. Are there spatiotemporal interpolations that are invariant with

respect to the choice of units in the spatial and temporal axes? The column Invariance

in Table 4.3 shows that only shape functions-based spatiotemporal interpolation are



76

invariant.

Finally, in the real estate data instead of recording the precise date of sale of

houses we may have only records of monthly, bimonthly or even yearly sales, that

is, all the houses sold in that time interval are listed together. The column Slope

in Table 4.3 shows experimentally that this time aggregation has a serious negative

effect on the accuracy of the reduction method.

4.6 Visualization of Shape Function Interpolation

Result

4.6.1 Shape Function Reduction Approach: ST Product Method

The spatiotemporal interpolation result from this approach can be visualized in a

2-D display at different time instances. We illustrate the visualization result using

the same set of real estate data as described in Section 4.1.

For the color plot, six basic colors are chosen: red, yellow, green, turquoise, blue,

and purple. The 24-bit RGB values for these colors are the following: red = (255,

0, 0), yellow = (255, 255, 0), green = (0, 255, 0), turquoise = (0, 255, 255), blue

= (0, 0, 255), purple = (255, 0, 255). The colors are used to represent interpolated

values. The following two versions of color rendering have been used in the program

implementation:

Version 1: Use of 400 Smoothly Changing Colors In this version, a 1-D linear

shape function interpolation scheme is used between each pair of the basic colors.

Five simple linear interpolations are chosen for the color changes between red

and yellow, yellow and green, green and turquoise, turquoise and blue, blue and

purple. This version yields a smooth change of colors in the visualization, hence
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it avoids sharp color transitions. We give an example of one color interpolation

below.

Example 4.6.1 Suppose that between red(255, 0, 0) and yellow(255, 255, 0), we

use 80 intermediate colors of the form (255, G, 0). Here the possible values of

G can be found using the following linear function:

G = (1− x

80
) ∗ StartGV alue + (

x

80
) ∗ EndGV alue ,

where x ∈ [0, 80].

In this example between red and yellow we have StartGV alue = 0 and

EndGV alue = 255. For other intervals, the values of StartGV alue and EndGV alue

can be changed accordingly.

In Figure 4.7, the graphical output for the presentation of measured house price

data using smoothly changing colors is illustrated.

Version 2: Use of 6 Colors In this version, only the six basic colors are used in

the plots. The color red is assigned for the smallest function value and the color

purple is assigned for the largest value. Each color covers 1/6 of the total range

of values for the house price/square foot. This version results in visualizations

that show distinct boundaries between colors. Although this version seems

to have less information than the first color rendering version, for users this

may be more convenient in categorizing house price differences. Actually, this

version can be considered as an extreme case of the previous version with no

intermediate colors.

Figure 4.8 shows the graphical output for the measured house price data using

6 colors.
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Figure 4.7: Shape function reduction approach visualization version 1: continuous
color rendering for the house price data of Lincoln, Nebraska in October 1995.

4.6.2 Shape Function Extension Approach: 3-D Method

The spatiotemporal interpolation result from this approach can be visualized in a

vertical profile display. Using the same real estate data example as in Section 4.1, the

graphical output from this extension approach is illustrated in Figures 4.9. The three

slices in the figure corresponds to house price visualizations at three time instances:

August 1991, October 1995 and December 1999. They are obtained by intersecting

three horizontal time planes with the tetrahedral mesh of the 76 sample houses. Note

that after tetrahedral meshing, each slice has different coverage of area. Figure 4.9

was produced by Matlab 6.0.
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Figure 4.8: Shape function reduction approach visualization 2: rendering with 6
discrete colors for the house price data of Lincoln, Nebraska in October 1995.

4.7 4-D Shape Function Example for 3-D Space

and 1-D Time Problems

We implemented the 4-D shape functions in Section 2.1.2.2 by Matlab. We also

extended the 2-D space and 1-D time real estate example to a 3-D space and 1-D

time problem by adding the elevation information to each house as shown in Tables 4.6

and 4.7.

We used our Matlab program to interpolate the 4-D test data and compared it

with the original values according to MAE and RMSE. The result of MAE is 8.54

and the result of RMSE is 10.25. These results are slightly worse than the 3-D shape

functions methods in Table 4.3. This can be explained by the fact that the elevations

of those houses in the selected test area are similar and the house elevation is not a

factor to contribute to house prices. Therefore, it adds noisy to the interpolation by

considering the house elevation.
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Figure 4.9: Shape function extension approach visualization: vertical profile of house
price data of Lincoln, Nebraska in August 1991, October 1995 and December 1999.

4.8 Query Examples

In this section, we give some sample queries. We assume that the input constraint

relations are House(x,y,t,p) and Built (x,y,t). House(x,y,t,p) represents the inter-

polation result of house price data, and Built (x,y,t) records the time t (in month)

when the house at location (x, y) was built. The Built relation can be usually easily

obtained from real estate or city planning agencies.

We write queries in the Datalog query language, which is a rule based-language

used in several constraint database systems (Kanellakis et al. 1995, Kuper et al. 2000,

Revesz 2002). Next we give a few sample queries:

Query 4.8.1 For each house, find the starting sale price when the house was built.
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Table 4.6: Sample 4D (x, y, z, t, p).

X Y Z T P (price/square foot)

888 115 1305 4 56.14
888 115 1305 76 76.02

1630 115 1294 118 86.02
1630 115 1294 123 83.87

...
...

...
...

...
2240 2380 1295 51 91.87
2650 1190 1288 43 63.27

Table 4.7: Test 4D (x, y, z, t).

X Y Z T

115 1525 1294 16
115 1525 1294 58
115 1525 1294 81
115 1610 1293 63
...

...
...

...
120 1110 1300 30
615 780 1306 59

This can be expressed in Datalog as follows:

Start price(x, y, p) : − Built(x, y, t),

House(x, y, t, p).

Query 4.8.2 Suppose that we know house prices in general decline for some time

after the first sale. For each house, find the first month when it become profitable,

that is, the first month when its price exceeded its initial sale price.
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This can be expressed as follows:

not Profitable(x, y, t) : − Built(x, y, t).

not Profitable(x, y, t2) : − not Profitable(x, y, t1),

House(x, y, t2, p2),

Start price(x, y, p),

t2 = t1 + 1, p2 ≤ p.

Profitable(x, y, t2) : − not Profitable(x, y, t1),

House(x, y, t2, p2),

Start price(x, y, p),

t2 = t1 + 1, p2 > p.

Query 4.8.3 How many months did it take for each house to become profitable?

This translates as:

Time to Profit(x, y, t3) : − Built(x, y, t1),

P rofitable(x, y, t2),

t3 = t2 − t1.

All of the above queries could be a part of a more complex data mining or decision

support task. For example, a buyer may want to find out which builders tend to build

houses that become profitable in a short time or best keep their values. We do not

illustrate such an analysis in more details, because that would lead too far from

the main GIS issues. It is enough to see that constraint database systems provide

a flexible, yet powerful rule-based query language to use in building a full decision
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support system.
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Chapter 5

Implementation

5.1 MLPQ System

MLPQ (Management of Linear Programming Queries) system is a constraint database

system for rational linear constraint databases (Revesz & Li 1997, Kanjamala, Revesz

& Wang 1998, Revesz 2002). This system has a graphic user interface (GUI) which

support Datalog-based and icon-based queries, as well as visualization and anima-

tions. One of the main application areas of the MLPQ system is managing GIS

spatial and spatiotemporal data. It can outdo the popular ArcGIS system (Johnston

et al. 2001) by powerful queries (such as join and recursive queries) and the ability

to animate spatiotemporal data.

The MLPQ system has been kept improving in the past several years. For example,

Syed (2002) did a good job to enhance the MLPQ system by adding the SQL query

ability into the system, a color-animation algorithm that allows visualization of the

changing value of each cell in map displays, and a translation algorithm between

ArcGIS shape files and MLPQ input data files.
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5.2 Data Translation between ArcGIS System and

MLPQ System

This is a joint work with Mohiuddin Syed (Syed 2002) and Andrew Rutlege at GIS

Works Inc. A translation algorithm between ArcGIS shape files and MLPQ input data

files is implemented. ArcGIS is an integrated system for geographic data creation,

management, integration, and analysis. It is developed by ESRI, the world leading

vendor for GIS softwares such as ArcView and ArcInfo. ArcGIS is a new system

which can include ArcView and ArcInfo packages. Since ArcGIS system is a very

popular GIS software, it is important to convert the data from ArcGIS to MLPQ

and vice versa. Our work focused on the conversion between ArcGIS shape data and

MLPQ input data files.

The Arc shape data describes the region information. Shape data is set of three

files: (i) a shape file which contains vector information of the regions, (ii) an index file,

and (iii) a dBase file containing information about the region. During the translation

from Arc shape files to MLPQ input data files, these three files are first converted

into an intermediate form (Li 2001), and then from the intermediate form to the

MLPQ input data form. In the intermediate form, each region is represented as

a polygon with coordinates in acyclic form, appended with respective information

from the dBase file. Each line in the intermediate file represents a polygon or cell,

terminated by a semi-colon (”;”) except that the last line which is terminated by

period (”.”). This intermediate file is then converted in to MLPQ input data format.

The translation from Arc shape format to the intermediate format is done under

the help of Andy Rutledge at the GISWORKSHOP. The rest conversion job is done

by Mohiuddin Syed. The details of this algorithm for this translation can be found

in Syed (2002).
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5.3 Visualization of Spatiotemporal Data in MLPQ

5.3.1 Point-based and Region-based Spatiotemporal Data Vi-

sualization

Point-based and region-based spatial-temporal data can be visualized by animated

histograms. For point-based data, each bar in a histogram represents a point and the

bar height is animated with time according to the measured value at the point. For

region-based data, each bar represents a region and the height of the bar changing with

time according to the measured value of the region. For example, for Example 1.2.2 in

Chapter 1, we can visualize the total corn yield animation in 24 counties in Nebraska

from 1947 to 2000. Figures 5.1 and 5.2 show two snapshots during the animation.

Figure 5.1: The total yield of corn in 1947.
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Figure 5.2: The total yield of corn in 1998.

5.3.2 Constraint-based Spatiotemporal Data Visualization

Since constraint-based spatiotemporal data can be either created from point-based

or region-based spatiotemporal databases as shown by edges a and c in Figure 1.1

in Chapter 1, we discuss constraint-based spatiotemporal data visualization in two

categories: (i) translated from point-based data and (ii) translated from region-based

data.

5.3.2.1 Translated from Point-Based Data

In order to translate spatiotemporal data from point-based STDBs into constraint-

based STDBs, we need to use some spatiotemporal interpolation methods. Choosing

proper spatiotemporal interpolation methods will lead to more accurate representa-

tion of the data.

For example, we can use shape functions to interpolate each of the 12 snapshots

of the monthly SPI data in 1992 in Nebraska. Since this is a 2-D spatial problem, the
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corresponding shape function is based on triangulation of the sample weather station

locations. For each triangles, we will have a shape function to approximate SPI values

of all the inside points. A sample shape function for a triangle is given as follows:

test(id, x, y, w) :- id = 0,

-13.39x + y >= 9929075.15,

-1.67x + y <= 3187523.83,

-1.02x + y >= 2759839.18,

151.50x - 137.53y + 10000000w = -385625717.32.

5.3.2.2 Translated from Region-Based Data

We use animated color maps to visualize constraint data translated from region-based

spatiotemporal databases. In such a map, each region is represented by a polygon

with a certain color. The color of a polygon represents the measured value of the

region and it changes during the animation.

Voronoi Regions For Example 1.2.3 in Chapter 1, we can use animated color maps

to visualize those Voronoi diagrams. The color map animation has been implemented

in MLPQ. Users only need to push the color animation button and input the following

three parameters: the beginning time instance, ending time instance and step size.

Then the color of each region of the map will be animated according to its value at

a specific time instance. Figure 5.3 shows the 116 2nd-order Voronoi diagram for the

48 weather stations in Nebraska at the snapshot when t = 1992.

Other Regions Besides using Voronoi regions, there are many other types of re-

gions. For example, to visualize the total corn yield animation in each county in

Nebraska during a given period, we can use county-based regions. First of all, we

need to represent each county polygon in MLPQ. Since such county vector data in
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Figure 5.3: The 2rd order Voronoi diagram for 48 weather stations in Nebraska, which
consists of 116 regions.

US are usually available in ArcView shape file format, we did a program to convert

ArcView shape files to MLPQ input text files. The conversion from MLPQ files to

shape files was also implemented. With such two-way conversion programs to transfer

data between ArcView and MLPQ, on one hand, we can explore the special features

of MLPQ such as querying on real data sets from ArcView databases; on the other

hand, newly generated data in MLPQ can be translated back to ArcView data for-

mat. Figures 5.4 and 5.5 show two snapshots during the color map animation when

t = 1947 and t = 1998.

5.4 Query in MLPQ/PReSTO

Query 5.4.1 Find those counties which will be more productive (more yield) than

county 109 (Lancaster county) in irrigated corn in 2010.
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Figure 5.4: A Snapshot of Color Map Animation for County-based Corn Yield in
Nebraska when t=1947.

This is an unusual query since 2010 is a future instance and its information does

not exist in any traditional databases. However, constraint databases are a natural

approach to this problem. We can use constraint databases and store the NASS corn

data as in Table 1.5. Since the attribute yield, as acres and production, is stored as

a linear regression function for each county, we can estimate easily the corn yield of

a county at any time (even in the future) by substituting the right t value into the

linear regression function. This query can be expressed in SQL as follows:

Select C2.county From Corn_Constraint as C1, Corn_Constraint as C2

Where C1.practice = ’irrigated’ and C2.practice = ’irrigated’

and C1.year = 2010 and C2.year = 2010

and C1.county = 109 and C2.yield > C.yield.

Alternatively, this can be expressed in Datalog as:



91

Figure 5.5: A Snapshot of Color Map Animation for County-based Corn Yield in
Nebraska when t=1998.

Productive(county2) :- Corn_Constraint(109, 2010, ’irrigated’,

arce1, yield1, production1),

Corn_Constraint(county2, 2010, ’irrigated’,

arce2, yield2, production2),

yield2 > yield1.

Query 5.4.2 Assume there is fire in an area of a county. How will the irrigated corn

production be affected by the fire in this county?

Region-based Exposure Analysis This approach assumes uniform production

for all the locations in each county. Suppose a county has 1 unit of irrigated corn

production. This county is of a rectangular shape and the fire covers also a rectangular

area as shown in Figure 5.6. Since the area of this county is 6 × 3 = 18 units, the

irrigated corn production of the whole county without considering the corn loss by
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fire can be calculated by the volume of a cube with base area 18 and height 1, which

is 18× 1 = 18. The production lost by fire can be calculated by the volume of a cube

with base area 2 × 1 = 2 and height 1, which is 2 × 1 = 2. Therefore, the adjusted

irrigated corn production considering fire is 18− 2 = 16 by this approach.

0 2 4 6

1

2

3

fire county

x

y

Figure 5.6: Region-based exposure analysis.

Constraint-based Exposure Analysis This approach does not assume that all

the locations in a county have the same production. Instead, it uses a variable to

represent the corn production. It is a more realistic approach since different locations

in a county should not always have the same production because of many factors,

such as different soil conditions. For example, rocky areas or poorly drained soils

have low capability to produce corn; but areas with soil pH value in the 6.0 to 7.0

range have high capability for corn production since they have optimum benefits from

applied fertilizer and herbicides (MWPS-45 2000). Suppose that the irrigated corn

production of the county without considering the corn loss by fire is also 18 units,

which is the same as in the Region-based Exposure Analysis, and the fire happens in

the area with the highest production as shown in Figure 5.7. The production lost by



93

fire can be calculated by the sum of two volumes of a pyramid and a cube, which

is shown in red in Figure 5.7, where the fire intersects with the county. As a result,

the fire volume is 2/3 + 4 = 14/3. Therefore, the adjusted irrigated corn production

considering fire is 18− 14/3 = 40/3 by this approach.

0 2 4 6

1

2

3

x

z

y

3county

firefire

Figure 5.7: Constraint-based exposure analysis.

We can see that these two approach yield different results. Since constraint-based

exposure analysis is a more realistic approach, its result is more accurate than the

region-based exposure analysis. For the constraint-based exposure analysis, if the

volume aggregate operator (Revesz 2002) is implemented, which takes three variables

x, y and z as arguments and calculates the volume of the domain defined by x, y and

z, this query can be expressed in Datalog as follows:

Adjusted(volume<x, y, z>) :- County(x, y, z), not Fire(x, y, z).
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Chapter 6

Conclusion and Future Work

This dissertation discusses the shape function-based spatiotemporal interpolation

methods: the reduction and the extension methods. Based on a set of actual real

estate data, the shape function based methods are compared with the IDW and the

kriging methods. Our experimental results show that the extension method based on

shape functions is the most accurate and the overall best spatiotemporal interpolation

method.

For the extension method based on shape functions, the resulting spatiotemporal

interpolation data can be represented using linear equality and inequality constraints.

While there are many ways of storing this representation, constraint databases (Kanellakis

et al. 1995, Kuper et al. 2000, Revesz 2002) are a convenient alternative. Linear con-

straint databases such as the DEDALE system (Grumbach, Rigaux & Segoufin 2000)

and the MLPQ system – see Chapter 18 in (Revesz 2002) – are particularly natural

for this type of interpolated data. The advantages of using MLPQ include com-

pact data storage, convenient database querying, and the availability of a number of

built-in visualization tools, including some for spatiotemporal animation.

In constraint databases, the details of the interpolation are at a lower level, that

is, hidden from the users. This results in a high level data abstraction, which makes
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querying and visualization easier for the users.

The work discussed in this dissertation can be extended into different directions.

First of all, polynomial constraints should be implemented in the future. This will

allow applications of IDW and kriging interpolation in constraint databases. The

representation of IDW and kriging using polynomial constraints is feasible in theory.

For example, Revesz & Li (2002a) discussed the representation of IDW interpolation

in polynomial constraint databases. Kriging is similar to IDW with the difference

that the weights are derived using error statistics of the data. It is also representable

in constraint databases if the variogram, or the statistically derived function of weight

and distance, is representable using constraints. If we take some (distance, weight)

samples from the variogram, then we get data in form of a time series, which can be

interpolated and translated into a linear constraint relation using the algorithm in

Revesz et al. (2001).

Second, more data sets should be used to test shape function-based spatiotemporal

interpolation methods. It seems that the main characteristic of the house price data

is that it is dense in space but sparse in time. That is, the houses are close together

but are sold only infrequently. More tests are needed to evaluate how the density in

space and time affect the accuracy of each interpolation method. It may be that for

input data with opposite characteristics, that is, sparse in space but dense in time,

the reduction method could be better than the extension (i.e. tetrahedral) method.

Last, the visualization and animation of spatiotemporal interpolation should be

improved. For example, a “Volume” function should be added in the MLPQ system.

This will contribute to queries that need to calculate volumes, see the constraint-

based exposure analysis approach in Query 5.4.2. Also, for 3-D space and 1-D time

problems, 3-D animation should be implemented to display a series of 3-D snapshots

during the visualization.
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