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Interpolation methods are needed for spatiotemporal data sets to fill in missing

data and predict the future. Spatiotemporal interpolation is more challenging than

pure spatial or temporal interpolations, and currently there are only a few known

spatiotemporal interpolation methods.

We analyze spatiotemporal data sets by introducing spatial and temporal relation-

ship strength measures for them. Based on the relative strengths of the spatial and the

temporal relationships in the data sets, we classify them as being spatial-dominated

or temporal-dominated.

This analysis of spatiotemporal data sets allows us to introduce a class of adap-

tive spatiotemporal interpolation methods. An adaptive spatiotemporal interpola-

tion method combines a spatial interpolation method with a temporal interpolation

method in such a way that the degree of reliance on the two components is propor-

tional to the measured spatial and temporal relationship strengths. Hence a spatial-

dominated spatiotemporal data set would be interpolated more like a spatial data

set. Similarly, a temporal-dominated spatiotemporal data set would be interpolated

more like a temporal data set. Adaptive spatiotemporal interpolation reduces in a

flexible way the spatiotemporal interpolation problem to the problem of pure spatial

and temporal interpolation.

Adaptive reduction works in principle for both point-based and region-based spa-

tiotemporal data sets. Although there are many point-based spatial interpolation



methods, there is a lack of region-based spatial interpolation methods. As many spa-

tiotemporal data sets are region-based, as a practical matter, we also propose two

region-based variations on the well-known inverse distance weighting interpolation

method. The first variation assigns uniform weights between neighbors and the sec-

ond variation assigns weights proportional to the centroid distances. We also propose

a new temporal interpolation method, called the exponential decay temporal inter-

polation method. Finally, we test the adaptive spatiotemporal interpolation methods

on a spatial-dominated climate data set and on a temporal-dominated election data

set.
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Chapter 1

Introduction

1.1 Motivation

Missing data is a problem that is regularly encountered in databases. Given any

large dataset, it is likely that there will be missing values scattered in it. Missing

data could be a potential threat to the validity of a research study. For example,

the Standardized Precipitation Index (SPI) is a common and simple measure of the

intensity and duration of drought at certain measured point locations [47, 52]. When

there are missing data (e.g., a couple weeks gap), the SPI can not be calculated for any

interval that includes the data gap [64]. As another example, the climate community

and many federal agencies use climate data sets to model natural resources which will

be used by many agencies to make decisions [16]. However, those climate data sets

usually have some missing values.

Interpolation algorithms, which fill in the missing values, are important in many

areas, such as Geographic Information Systems (GIS), environmental studies, image

processing, and remote sensing. For example, interpolation can offer insights into sig-

nificant geological structure and behavior, which may not be otherwise apparent [63].
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Interpolating animal tracking data solves the problem of uneven sampling [61]. Inter-

polation is important for geographically distributed statistics for agricultural produc-

tions, disease prevalence, pollution levels, soil types, precipitation, and temperatures.

Interpolation can also help accounting for topographic effects in spatial climate anal-

ysis [26].

Spatiotemporal data, which have both spatial and temporal dimensions [34], are

used in many applications. For example, in mobile computing, mobile device users

can move in space and register their location at different time instances. In GIS

tracking animals and weather conditions will create spatiotemporal data by storing

locations of observed objects over time. The interpolation of spatiotemporal data is

considerably less well-understood than the interpolation of pure spatial data. This

dissertation presents some new ideas on this topic.

1.2 Overview of Contributions of This Disserta-

tion

After a literature review about interpolation methods in Chapter 2, we present the

following main contributions.

Spatiotemporal data classification: In Chapter 3, which is partly based on [22],

we introduce a new classification of spatiotemporal data. We describe the spa-

tial and temporal relationship strength measures that are applicable for any

spatiotemporal data. We apply these measures to show that particular spa-

tiotemporal data are classifiable as spatial-dominated or temporal-dominated.

We call a spatiotemporal data spatial-dominated, if the spatial relationship is

stronger than the temporal relationship, else we call it temporal-dominated.



3

An adaptive spatiotemporal interpolation method: In Chapter 4, which is based

on [19], we propose a novel adaptive spatiotemporal interpolation method. The

adaptive interpolation method can be used for both spatial-dominated and

temporal-dominated data. The basic idea behind the adaptive method is to

combine a pure spatial interpolation method with a pure temporal interpolation

method. The combination is flexible to allow leaning more on the former in case

of spatial-dominated data and more on the latter in case of temporal-dominated

data. We propose three combination types: step function-based combination,

linear function-based combination, and variance comparison-based combination.

Spatial interpolation of region-based spatial data: Although there are many

point-based spatial interpolation methods, there is a lack of region-based spatial

interpolation methods. As many spatial and spatiotemporal data are region-

based, we need to modify the point-based spatial interpolation methods to be

applicable to region-based data. In Chapter 5, which is based on [20], we pro-

pose two region-based variations on the well-known inverse distance weighting

interpolation method: IDW with uniform weights (IDWU) and IDW with cen-

troid distance weights (IDWC).

Exponential decay temporal interpolation: In Chapter 6, which is based on [21],

we propose the exponential decay temporal interpolation method, which we com-

pare with an IDW-based temporal interpolation method. A special case of

IDW-based interpolation is the inverse linear temporal method.

Climate data interpolation: In Chapter 7, which is based on [18], we apply our

new spatiotemporal interpolation methods to climate data. Climate data is

spatial-dominated and point-based. The experimental results show that our

adaptive method is better than several pure spatial interpolation or pure tem-
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poral interpolation methods.

Election prediction: In Chapter 8, which is partly based on [20, 22], we apply

our new spatiotemporal interpolation methods to the USA presidential election

data. Election data is temporal-dominated and region-based. The experimen-

tal results show that our adaptive method is better than several pure spatial

interpolation or pure temporal interpolation methods.

After these main contributions, we also give in Chapter 9 conclusions and sugges-

tions for future work.
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Chapter 2

Literature Review

In Section 2.1 we describe a classification of point-based spatiotemporal data and

region-based spatiotemporal data. In Section 2.2 we introduce spatial interpolation

methods for point-based spatiotemporal data. In particular we give in Section 2.2.1 a

detailed introduction to the inverse distance weighting (IDW) interpolation method

which we use in our research. In Section 2.3 we describe several spatiotemporal

interpolation methods. In Section 2.4 we introduce prediction as a special case of

interpolation and describe several commonly used presidential election forecasting

models.

2.1 Point-Based and Region-Based Spatiotempo-

ral Data

In [41] Li and Revesz categorize the spatiotemporal databases into three groups ac-

cording to whether the data representation is based on points, regions, or constraints.

Point-based spatiotemporal relations have the scheme of (x, y, t, w1, w2, . . . , wm), where

(x, y) is the point location and t is the time instance, wi (1 ≤ i ≤ m) indicate the
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features at point (x, y) and time t. Region-based spatiotemporal databases have both

spatial and temporal parts. The spatial part has the scheme of (RegionID, bound-

ary), where RegionID is a unique identifier for each polygonal-shaped region and

boundary is a sequence of corner vertices. The temporal part has the scheme of (Re-

gionID , t, w1, w2, . . . , wm), where t is the time instance and wi (1 ≤ i ≤ m) record the

features in that region at time t.

We conduct the experiments on two different data sets, climate data and USA pres-

idential election data. The climate data records the climate observations in weather

stations in Nebraska and Colorado. The general form is (StationID, latitude, longi-

tude, t, w1, w2, . . . , wm), where StationID is the unique identifier of a weather station,

(latitude, longitude) is its location, t specifies the time instance, and wi (1 ≤ i ≤ m)

are fields that record the values of minimum temperature, maximum temperature,

amount of precipitation and etc. The USA presidential election dataset records the

presidential election results in different states. In each state the voting results are

recorded by counties. The general form is (CountyName, t, w1, w2, . . . , wm), where

t specifies the election year, and wi (1 ≤ i ≤ m) represent the total votes and the

votes for different candidates. According to [41] the climate data can be identified

as a point-based spatiotemporal data and the USA presidential election data as a

region-based spatiotemporal data.

2.2 Spatial Interpolation for Point-Based Data

There are several characteristics of spatial interpolation methods, including point-

based versus region-based, global versus local, exact versus approximate, stochastic

versus deterministic, and gradual versus abrupt [15]. Point-based interpolation meth-

ods estimate values at specific points in space based on the values and locations of
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other sample points in space. For example, a point-based interpolation method could

predict carbon monoxide concentration at a specific latitude and longitude based on

the measurements from a monitoring network. Region-based interpolation methods

estimate values for entire areas based on data available for a different set of areas.

For example, estimate the population in a county based on the population in its

neighboring counties.

2.2.1 Inverse Distance Weighting

Inverse distance weighting (IDW) [55] is an example of a point-based, local, exact,

deterministic, and gradual interpolator in which points closer to the measured data

points receive more weight in the averaging formula. Since IDW is a point-based

interpolator, for point-based spatiotemporal data like climate data, we can just use

the standard IDW as the spatial interpolator to do the spatial estimation part.

IDW has been used to interpolate spatial data by many authors, for example, by

Legates and Willmont [35] and Stallings et al. [59]. The main assumption of IDW is

that if A, B and C are three different locations, such that A is closer to B than to C,

then the value we are interested in (temperature, precipitation, percentage of voters

preferring a particular candidate, etc.) is also closer between A and B than between

A and C. Hence, if the value at location A is unknown, while the values at locations

B and C are known, then the value at B should be more important than the value

at C in estimating the value at A.

The relative importance of the known values is reflected by the weights assigned

by the IDW method to them. In the IDW method the sum of the weights is equal

to 1, and the weights are assigned proportionally to the inverse of some power of the

distance between the known and unknown locations.

IDW interpolations are of the form [29]:
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w(x, y) =
N∑

i=1

λi · wi (2.1)

λi =
(
1

di

)
p

N∑

k=1

(
1

dk

)
p

(2.2)

where w(x, y) is the interpolated value at point (x, y), λi is the weight for the

individual sampled neighbor of point (x, y), wi is the variable observed in the sampled

neighbor, N is the number of closest sampled neighbors, di is the Euclidean distance

between each (xi, yi) and (x, y), and p is the exponent, which influences the weighting

of wi on w.

For simplicity in the following we assume that p = 1. Therefore,

λi =

1

di

N∑

k=1

1

dk

(2.3)

Example 2.2.1 In Figure 2.1, point (x, y) is the target point where the value Es

of an attribute at time t needs to be interpolated. The target point has five spatial

neighbors, (x1, y1), . . . , (x5, y5), and their values of that attribute at time t are known

as w1, . . . , w5.

In order to follow the IDW interpolation, we first calculate the distance di between

the target point (x, y) and its ith neighbor (xi, yi) as follows.

di =

√
(xi − x)2 + (yi − y)2

We then calculate the λi for the ith neighbor using Equation 2.3 as follows.
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(x4,y4,w4)
(x3,y3,w3)

(x2,y2,w2)

,y(x 1,w1)

(x5,y5,w5)

(x, y, E s)

1

Figure 2.1: Target point and its spatial neighbors

λi =

1

di
5∑

k=1

1

dk

Now we can calculate Es using Equation 2.1 as follows.

Es =
5∑

i=1

λi · wi

Example 2.2.2 Assume that A = (5, 0), B = (0, 0), and C = (20, 0) and the value

at A is unknown but the values at B and C are 100 and 200, respectively. Then,

the number of known points is N = 2. We use the subscripts B and C instead of

numbers in this simple example. We can calculate that:

λB =
1
5

1
5

+ 1
15

=
3

4

λC =
1
15

1
5

+ 1
15

=
1

4
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Hence the value of A will be interpolated based on B and C to be:

wA = λB × wB + λC × wC

=
3

4
× 100 +

1

4
× 200

= 125

Note that since point C is three times more distant than B is from point A, the

weight λC is only a third of the weight λB. Hence wA is much closer to wB than to

wC .

2.2.2 Other Spatial Interpolation Methods

Other spatial interpolation methods for point-based data are kriging [13], regres-

sion model [4], shape functions [43], splines [24], and trend surface analysis [67].

A relatively new type of interpolation methods employ artificial neural networks

(ANN) [58, 45, 39, 57].

There is an extensive literature on the comparison of the various interpolation

techniques. Early reviews of interpolation techniques include [33, 53]. Burrough and

McDonnell [4] provide a solid introduction and detailed overview to different types of

interpolation, and discuss how the assumptions influence the final result.

2.3 Spatiotemporal Interpolation Methods

Spatiotemporal interpolations are frequently found in applications such as digital

image processing and human vision [62, 46, 12]. In those applications spatiotemporal
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interpolations are used to reconstruct the images from spaced samples or estimate

the motion of moving objects.

Spatiotemporal interpolation in GIS started from the incorporation of three-

dimensional data structures into existing GIS and the development of spatiotem-

poral representations, i.e., four-dimensional representations [3]. Miller describes an

approach to interpolation in four dimensions using Kriging in [48].

Alternative spatiotemporal interpolation methods are given in [40, 43, 52]. Revesz

and Wu [52] give a general method to model a class of recursively defined spatiotem-

poral concepts and apply the method to represent the epidemiological definitions and

predictions about the spread of infectious diseases. In [43] Li and Revesz design a

spatiotemporal method which reduces the spatiotemporal interpolation problem to a

regular spatial interpolation case. The method based on IDW works in two steps.

First, it interpolates using a piecewise linear function the measured value over time

at each sample point. Second, it substitutes the desired time instant into the regular

IDW interpolation functions. For example, the first step works as follows.

Assume the value at the location i at time ti1 is wi1, and at time ti2 the value is

wi2. The value at the location i at any time between ti1 and ti2 can be approximated

using a piecewise linear function in the following way:

wi(t) =
ti2 − t

ti2 − ti1
wi1 +

t− ti1
ti2 − ti1

wi2

Then the value of the unsampled point at location (x, y) at time t can be inter-

polated as follows.

w(x, y, t) =
N∑

i=1

λiwi(t) , λi =
( 1

di
)p

∑N
k=1(

1
dk

)p

Chomicki et al. [7, 9] give an alternative classification of spatiotemporal data
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based on their algebraic closure properties. The pioneering paper for the constraint

database representation of various types of spatiotemporal databases is [8].

2.4 Prediction as a Special Case of Interpolation

Usually interpolation is used to estimate the data which are missing or unknown in

an arbitrary time. Prediction is used to predict the unknown value in the future.

Therefore, generally speaking, prediction is a special case of interpolation.

Election prediction is an interesting issue in the prediction area, and the presiden-

tial election prediction may be the most difficult and exciting among them. We pick it

as a special example showing how to use interpolation methods to do the prediction.

The modern age of election forecasting began in the late 1970s. Among the ear-

liest presidential forecasting models were [17, 56, 54, 37]. Most of these models have

been amended, updated and are still used. The core of Fair’s model [17] is eco-

nomic conditions and incumbency. It consists of seven variables, three economic (two

measures of per capita GDP growth and one of inflation) and four political (incum-

bency, terms in office, party, and war). Sigelman’s model [56] analyzes the connection

between presidential approval ratings and subsequent election results. Rosenstone’s

model [54] modifies the usual vote by conditions that prevail in a given election such as

the economy, war, incumbency, region, and trends over time. Lewis-Bech and Rice’s

model [37] is a adaptation of Edward Tufte’s approval rating and economic perfor-

mance model to forecast both congressional and presidential elections. Aramowitz [1]

amended this model by appending a “time for a change” variable (i.e., a penalty if the

president’s party has been in office two or more terms) to it. Forecast produced by

Aramowitz’s model have been consistently accurate. Campbell and Wink [5] built a

model using only two indicators, the trial-heat poll and second quarter GDP growth
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in the year of the elections. This model is noteworthy for its simplicity and accuracy.

Chappell [6] developed a model that predicts the election result in each state rather

than for a whole country. His methods is based on growth in the national economy,

nationwide Gallup Poll results during the campaign, and each states voting record in

the previous presidential election. Lewis-Beck and Tien’s model [38] is based on eco-

nomic growth in the first half of the election year, July presidential approval ratings,

and a survey indicator of the publics outlook for peace and prosperity. Lichtman [44]

devised a systems based on patterns evident in elections since 1860. He identified

13 keys to the presidential election and predicted the winning presidential candidate

based on the number of keys favoring each party’s candidate. This approach is more

analytical and less number-oriented than the other models. Table 2.1 gives a simple

summary of several above models.

With the exception of Lichtman’s, nearly all of the previous discussed models use

multi-variate ordinary least squares regression, a common statistical method in the

social sciences [25]. This approach enables the forecaster to identify factors that have

influenced past election outcomes and determine how much weight should be given

to each factor. The appropriate data for the present election are then inserted into

the model to produce a forecast.

All these models are frequently cited for their use in forecasting and the accuracy

is admirable, however, most of them share limitations. For example, the choice of

factors to include in the model adds to the uncertainty. The decision to include one set

of variables, such as presidential popularity and growth in GNP, rather than another,

such as the rate of inflation and unemployment, changes the prediction outcome [25].

Most models are limited by the lack of historical information on the relationship

between political and economic fundamentals and elections [25]. Hence we consider

if we can turn the direction into the historical election data itself and use it as the
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basis of spatiotemporal interpolations without a set of variables.

Table 2.1: Presidential forecasting models

Model author(s) Indicators Authors’ area
Aramowitz economic growth in the first half of the

election year, presidential approval rating
in June, term

political scientist

Campbell and Wink trial-heat poll and second quarter GDP
growth in the election year

political scientist

Chappell growth in the national economy, nation-
wide Gallup Poll results during the cam-
paign, and each states voting record in the
previous presidential election

economist

Lewis-Beck and Tien economic growth in the first half of the
election year, presidential approval rating
in July, and survey on peace-prosperity

political scientist

Lichtman 13 keys: party mandate, contest, in-
cumbency, third, short-term economy,
long-term economy, policy change, so-
cial unrest, scandal, foreign/military fail-
ure, foreign/military success, incumbent
charisma, challenger charisma

historian

Fair two measures of per capita GDP growth
and one of inflation, incumbency, terms in
office, party, and war

economist

Rosenstone party, key issues, the economy, war, incum-
bency, region, and trends over time

political scientist
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Chapter 3

Classification of Spatiotemporal

Data Sets

We introduce a new classification of spatiotemporal data sets based on the spatial and

temporal relationship strengths among them. Section 3.1 describes the spatial and

temporal relationship strength measures that are applicable for any spatiotemporal

data. Section 3.2 gives the definition about how to classify the spatiotemporal data

as being spatial-dominated or temporal-dominated.

3.1 Relationship Strength Measures

Spatiotemporal data contains information in both space and time. We can measure

the spatial and temporal relationship strength for them. For a spatiotemporal data

set, the spatial relationship strength can be quantified as a parameter, denoted as

Sσ; and the temporal relationship strength can be quantified as a parameter, denoted

as Tσ. Although the calculations of Sσ and Tσ largely depend on the particular data

set, we can still give some general ideas about how to calculate these two parameters.
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Table 3.1: Temperatures on same day for ten consecutive years of weather stations
in Nebraska

Station 1 Station 2 Station 3 Station 4 Station 5 Tσ

Sep 8 Mar 7 Apr 1 Jun 6 Feb 9
1986-1995 1989-1998 1993-2002 1994-2003 1994-2003

38 12 27 58 13
46 31 16 58 21
51 12 16 55 31
60 31 22 55 10
50 31 31 43 23
67 23 22 52 28
37 10 27 50 28
42 9 19 53 1
55 14 17 59 24
38 21 28 47 10

Mean 48.4 19.4 22.5 53 18.9
Std Deviation 10.15 9.16 5.48 5.16 9.85 7.96

From a spatiotemporal data set, we take a set of values which vary in space but

not in time. For example, the set (p1, p2, . . . , pM) indicates the values taken at the

neighboring points at the same time, then this set may show the relations in space

among the values of the neighboring points. Similarly, assume we have a set of values

which vary in time but not in space. For example, the set (q1, q2, . . . , qN) indicates

the values taken on the same day in different years at the same location, then this

set of values may show the relations among values in time. If a data set is normally

distributed, then the standard deviations of (p1, p2, . . . , pM) and (q1, q2, . . . , qN) can

be used to measure Sσ and Tσ, respectively. That is, Sσ can be calculated as follows:
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Table 3.2: Temperatures in neighboring weather stations in Nebraska

Station 1 Station 2 Station 3 Station 4 Station 5 Sσ

9/8/1991 3/7/1994 4/1/1998 6/6/1999 2/9/2002

Self 67 23 22 52 24
Neighbor 1 68 22 27 49 22
Neighbor 2 65 23 26 48 26
Neighbor 3 63 25 21 55 26
Neighbor 4 69 25 25 58 21
Neighbor 5 71 25 25 53 28

Mean 67.17 23.83 24.33 52.5 24.5
Std Deviation 2.86 1.33 2.34 3.73 2.66 2.58

Sσ =

√√√√√√
M∑

k=1

(pi − pi)
2

M
(3.1)

pi =
1

M

M∑

k=1

pi (3.2)

Similarly, Tσ can be calculated as follows:

Tσ =

√√√√√√
N∑

k=1

(qi − qi)
2

N
(3.3)
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qi =
1

N

N∑

k=1

qi (3.4)

Let us look at an example showing how to calculate Tσ and Sσ for a spatiotemporal

data set.

Example 3.1.1 Suppose we have a climate data set recording the daily minimum

temperatures in 50 years for weather stations in Nebraska. Tables 3.1 and 3.2 demon-

strate how to calculate Tσ and Sσ for this climate data. The five sets of values in

Table 3.1 are the daily minimum temperatures on the same day for ten years at five

weather stations. The stations, days and years are selected randomly. The set for

station 1 records the minimum temperature on September 8th from 1986 to 1995,

station 2 March 7th from 1989 to 1998, station 3 April 1st from 1993 to 2002, station

4 June 6th from 1994 to 2003, and station 5 February 9th from 1994 to 2003. We

calculate the standard deviation for each set of values and choose the mean of the

five standard deviation values as Tσ.

Table 3.2 records the temperatures in neighboring stations for the same five target

stations in Table 3.1. We only choose the five closest neighbors for each target station.

The days for each station are station 1 September 8th in 1991, station 2 March 7th in

1994, station 3 April 1st in 1998, station 4 June 6th in 1999, and station 5 February

9th in 2002, respectively. We calculate the standard deviation for each set of values

and choose the mean of the five standard deviation values as Sσ. We can see that for

this case of climate data, Sσ (2.58) is much smaller than Tσ (7.96).

3.2 Spatial-Dominated VS Temporal-Dominated

Now we introduce a new classification of spatiotemporal data set based on the relative

strengths of the spatial and the temporal relationships in the data set.
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Definition 3.2.1 For a spatiotemporal data set, if Sσ < Tσ, then we call it spatial-

dominated, else temporal-dominated.

Consider again the climate data set in Example 3.1.1. Since Sσ (2.58) is much

smaller than Tσ (7.96), according to Definition 3.2.1 the climate data is spatial-

dominated.

In the spatial-dominated data set the spatial relationship between the data values

is stronger than the temporal relationship. For example, in a climate data set, the

temperature sampled in one weather station may be very similar to that in a neigh-

boring weather station but may be very different from the temperature sampled one

day ago. Another example is a data set on heavy metal pollutants in floodplain soils.

It is known that the heavy metal pollutants depend on several factors, and one of the

most important is the distance to the river [4].

In the temporal-dominated data set the temporal relationship between the data

values is stronger than the spatial relationship. For example, in the United States

people who vote for Democratic presidential candidate will more likely vote for Demo-

cratic candidate again in the next election. Hence, in the USA presidential election

data set, the outcomes in one state may remain the same for many years, while the

outcomes of two neighboring states may be significantly different. Another example

is an air ticket data set. The air ticket price is more likely higher in a peak season

year after year.

Now let us look at a specific example of election data showing why the election

data set is temporal-dominated.

Example 3.2.1 Suppose we have a USA presidential elections data set recording

the vote percentages for democratic candidates in the past 50 years for all counties

in Florida. Tables 3.3 and 3.4 show how to calculate Tσ and Sσ for this election data
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Table 3.3: Vote percentages for democratic candidate in six USA presidential elections
in Florida

Alachua Clay Jefferson Marion St. Johns Tσ

1980 52.27 31.63 57.16 37.94 36.64
1984 46.43 20.28 47.82 30.02 28.73
1988 48.82 22.97 46.73 33.09 29.29
1992 49.61 23.33 48.55 35.44 30.74
1996 53.9 28.16 52.9 41.08 34.43
2000 55.25 25.48 53.89 40.39 32.1

Mean 50.21 25.27 52.18 36.33 31.99
Std Deviation 3.34 4.07 4.1 4.31 3.07 3.78

set. The five counties are chosen randomly. Table 3.3 records the vote percentages

for democratic candidate in six USA presidential elections for five counties in Florida.

The five sets of values in Table 3.3 are the vote percentages for democratic candidates

in six consecutive elections starting from 1984, that is, elections in 1984, 1988, 1992,

1996, and 2000, for the five counties, Alachua, Clay, Jefferson, Marion, and St. Johns,

respectively. We calculate the standard deviation for each set of values and choose

the mean of the five standard deviation values as Tσ.

Table 3.4 records the vote percentages for democratic candidates in neighboring

counties of the above chosen five counties. As examples, the column of Alachua

contains the election votes in 1984 in its neighboring counties, Clay in 1988, Jefferson

in 1992, Marion in 1996, and St. Johns in 2000. We calculate the standard deviation

for each set of values and choose the mean of the five standard deviation values as
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Table 3.4: Vote percentages for democratic candidate in USA presidential elections
in neighboring counties in Florida

Alachua Clay Jefferson Marion St. Johns Sσ

(1984) (1988) (1992) (1996) (2000)

Self 46.43 22.97 48.55 41.08 32.1
Neighbor 1 36.18 48.82 49.12 53.9 25.48
Neighbor 2 20.28 28.34 45.36 44.44 40.74
Neighbor 3 32.59 35.96 35.6 40.25 51.25
Neighbor 4 33.82 36.72 34.55 44.63 46.14
Neighbor 5 35.81 42.23 47.75
Neighbor 6 30.02 29.29 45.56
Neighbor 7 40.61 49.28
Neighbor 8 29.65

Mean 33.93 34.9 42.64 45.86 39.14
Std Deviation 7.34 8.84 7.06 4.44 10.42 7.62

Sσ. We can see that for this case of election data, Tσ (3.78) is much smaller than Sσ

(7.62). Hence we think this is a temporal-dominated data set.
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Chapter 4

Adaptive Spatiotemporal

Interpolation

We describe a new adaptive spatiotemporal interpolation method which is a combi-

nation of spatial interpolation and temporal interpolation. Section 4.1 describes the

adaptive method and its features. Section 4.2 discusses the general idea and issues

in applying the adaptive method. Section 4.3 introduces step function-based, linear

function-based and variance comparison-based combination relationships to solve the

combination issue mentioned in Section 4.2.

4.1 Adaptive Method of Spatiotemporal Interpo-

lation

The adaptive interpolation method developed by Gao and Revesz [19] is a general

method to interpolate spatiotemporal data. The basic idea behind the adaptive

method is to combine a pure spatial interpolation method with a pure temporal inter-

polation method. The combination is flexible to allow leaning more on the former in
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case of spatial-dominated data and more on the latter in case of temporal-dominated

data. Let Es be the interpolated value using the spatial interpolation method, Et

the interpolated value using the temporal interpolation method, α the weight of Es,

and β the weight of Et. Then the overall interpolated value E can be calculated as

follows:

E = α× Es + β × Et (4.1)

where α + β = 1 and 0 ≤ α, β ≤ 1.

The adaptive method offers the following features:

1. It captures the essence of interpolation of spatiotemporal data at a high level. It

could be used as a starting point to develop a formal interpolation methodology

for a spatiotemporal data set.

2. It is Open and flexible, which means the method is domain and application

independent. We can explain it as follows. From the point view of interpo-

lation methods, we can choose any spatial interpolation method or temporal

interpolation method appropriate for a specific application. From the point

view of combination, we can define a particular relationship between the spatial

estimate and temporal estimate for an application.

3. A main strength of this method is its ability to borrow information across both

space and time. Borrowing information across both space and time is cer-

tainly not a new idea. In climate prediction and many other fields, people have

borrowed information across time, usually from the past, through dynamical

models. However, our method can be viewed as a generalization from spatial or

temporal interpolation methods to a method interpolating in both spatial and
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temporal directions.

One thing to note about is that our general method is not strictly “general”. We

have pre-selected the linear combination relationships among final estimate, spatial

estimate and temporal estimate, and α and β. Linear relationships are often the first

approximation used to describe any relationship. When there is very little information

to determine what the relationship is, assuming a linear relationship is simplest and

thus is a reasonable starting point. For example, round-trip delay time (RTT) is

significant in systems that require two-way interactive communication. Transmission

Control Protocol (TCP) implementations attempt to predict future round-trip times

using a linear function as below:

tRTT = β · tRTTsample + (1− β) · tRTT

where β is a constant between 0 and 1 that controls how rapidly the tRTT adapts

to changes.

It should be noticed that how to determine the weights of spatial and temporal

estimates is closely related to the specific application. In order to find the right

relationship we need to develop computation models based on history data. For

example, in the application of climate data interpolation, we choose the standard

deviation of elevations of weather stations, spatial estimates and temporal estimates

to build the computation model, calculate and verify the interpolation result with

history data.
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Figure 4.1: Flow chart describing general idea of applying adaptive methods

4.2 Applying the Adaptive Method

4.2.1 General Idea of Applying the Adaptive Method

Figure 4.1 illustrates a flow chart which describes a general idea of applying our

adaptive spatiotemporal interpolation method. Spatiotemporal data inputs usually

contain both spatial information and temporal information. For example, data from

surrounding climate weather stations are spatial information, and local historical

weather records are temporal information. Therefore, we project the data into the

time dimension and get the spatial data, and project into space dimension and get

the temporal data. We then choose a type of spatial interpolation method to do

the estimation on the spatial data input. Similarly, we choose a type of temporal

interpolation method to do the estimation on the temporal data input. We also need

to analyze the relationship strengths and determine the values of alpha and beta.

After that we can calculate the final estimate according to the adaptive model.
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4.2.2 Issues in Applying the Adaptive Method

In order to follow the flow chart described in Section 4.2.1 to apply the adaptive

spatiotemporal interpolation method to a specific application, we need to answer the

following three questions:

(1) What spatial interpolation method is used to determine Es?

(2) What temporal interpolation method is used to determine Et?

(3) What is the relationship between α and β?

There are many answers for the first two questions since there are numerous in-

terpolation methods in the world. We adopt IDW as the basic method, modify and

improve it into appropriate spatial interpolation and temporal interpolation meth-

ods for calculating Es and Et. We choose IDW due to the following reasons. First,

IDW is a popular method and used in problems as diverse as predicting of rain-

fall and temperature, mapping of crop spraying, monitoring extent of contaminated

groundwater plumes or quantitatively assessing the extent of contamination in aquatic

sediments [60]. Second, IDW is easy to use and has low computation charge [10].

Compared with other methods, most notably kriging, the IDW method is simpler to

program and does not require pre-modelling or subjective assumptions in selecting

a semi-variogram model [60]. Third, IDW provides a measure of uncertainty of the

estimates that is directly related to the values being estimated, in contrast to kriging

standard deviation which is based on the modelled semi-variogram [2]. We have given

a detailed introduction of IDW in Section 2.2.1.

To solve the third question we propose two kinds of combination relationships:

step function-based, linear function-based, and combination variance comparison-based

combination which are described in Section 4.3.
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4.3 Combination Types

4.3.1 Step Function-Based Combination

Considering the relationship between α and β, a natural combination function is a

step function as shown in Figure 4.2. First let us explain why step function-based

combination is a natural choice. Let IM
i,t be the interpolated value for some location i

at time t using method M and Oi,t be the observed value for the location i at time t.

In particular, we have IS
i,t for IM

i,t using the spatial interpolation method and IT
i,t for

IM
i,t using the temporal interpolation method.

Figure 4.2: Step function-based combination

Let DM
i,t be the absolute difference between the interpolated value using method

M and the observed value at location i at time t, that is,

DM
i,t = |IM

i,t −Oi,t| (4.2)

In a step function, we find some parameter σi and fix some threshold value θ.

If for most locations with σi < θ, we have DS
i,t < DT

i,t and for most locations with
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σi ≥ θ, we have DS
i,t ≥ DT

i,t, then it means for locations with σi < θ the spatial

interpolation method is more accurate and for locations with σi ≥ θ the temporal

interpolate method is more accurate. Therefore, for locations with σi < θ, we set

α = 1 and β = 0, which enforces that we use the pure spatial interpolation method;

and for locations with σi ≥ θ, we set α = 0 and β = 1, which enforces that we use

the pure temporal interpolation method. In summary,





α = 1, β = 0 if σi < θ

α = 0, β = 1 if σi ≥ θ
(4.3)

The selection of the parameters σi and θ in a step function is according to the

specific application.

The data set shown in Figure 4.3 gives an example showing how step function

works. It is an ideal situation, because for all locations on the left side of the vertical

dashed line σi = 6, we have DS
i,t < DT

i,t and for all locations on the right side of the

vertical dashed line σi = 6, we have DS
i,t ≥ DT

i,t.

4.3.2 Linear Function-Based Combination

Another simple and natural combination is a linear function-based combination. For

example, we have a data set shown in Figure 4.4. In this data set, when σi < 11,

DS
i,t increases with the increase of σi; when σi ≥ 11 the increasing trend continues,

however, the degree becomes less. It means that the accuracy of spatial interpolation

is decreasing with the increase of σi, and after some threshold θ (i.e., θ = 11 in

Figure 4.4), the deceasing degree becomes less.

We can simplify this situation into a linear function shown in Figure 4.5. When

σi < θ the weight of spatial interpolated values varies inversely with σi, else keep the

weight some constant r. In summary,
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α =





1− σ × 1−r
θ

if σi < θ

r if σi ≥ θ
(4.4)

where r is a rate constant between 0 and 1.

Similarly to the step function-based combination, the parameters σi, θ, and r are

selected according to the specific application.

4.3.3 Variance Comparison-Based Combination

The third type of combination is called variance comparison-based combination. In

this combination, we compare the two relationship strength measures. If spatial re-
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lationship is stronger than temporal relationship, we use spatial interpolation only;

if temporal relationship is stronger than spatial interpolation, we use temporal inter-

polation only. In summary,





α = 1, β = 0 if Sσ < Tσ

α = 0, β = 1 if Sσ ≥ Tσ

(4.5)

One advantage of the variance comparison-based combination is that it is easier

to use and there is no need for additional parameters, for example, the parameter θ

in the step function-based combination.
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Figure 4.5: Linear function-based combination

4.3.4 Methods to Determine α and β

Now we give a method to determine α and β which is applicable to all spatiotemporal

data sets.

Give a spatiotemporal data set, we first apply the measures described in Section 3.1

to find the spatial and temporal relationship strengths.

Based on the spatial and temporal relationship strengths, we classify the data set

to spatial-dominated or temporal-dominated.

We choose a spatial interpolation method and a temporal interpolation method

for this data set. Then we can calculate the DS
i,t or DT

i,t as described before.

We decide how to choose the parameters σi and constant threshold θ. For a

particular data set, we may need other parameters.

Finally, we analyze the relations between DS
i,t (or DT

i,t) and σi. We then can decide

whether step function-based or linear function-based combination is more appropriate

for this spatiotemporal data set.
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Chapter 5

Interpolation of Region-Based

Spatial Data

Although there are many point-based spatial interpolation methods, there is a lack

of region-based spatial interpolation methods. As many spatial and spatiotempo-

ral data are region-based, we need to modify the point-based spatial interpolation

methods to be applicable to region-based data. In Section 5.1 and Section 5.2 we

propose two region-based variations on the well-known IDW interpolation method:

IDW with uniform weights (IDWU) and IDW with centroid distance weights (IDWC),

respectively.

To spatially interpolate the region-based data, we find the centroid of the region.

In geometry, the centroid of an object X in n-dimensional space is the intersection of

all hyperplanes that divide X into two parts of equal moment about the hyperplane.

Informally, it is the “average” of all points of X. After finding the centroid of a

region, we assign total value of data in that region to the centroid, and treat it

as point interpolation. For example, in the USA presidential election data set, the

data of votes are counted in county level. That is, the data are region-based (or
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Table 5.1: Latitude and longitude of centroid of 67 counties of Florida, USA

County name Latitude Longitude

Alachua 29.676436 -82.379953
Baker 30.287517 -82.236268
Bay 30.219170 -85.638788
. . .

Wakulla 30.144620 -84.366174
Walton 30.637995 -86.155962
Washington 30.630591 -85.638396

county-based). In order to interpolate such data, we could find the centroid of each

county and assign to its centroid the total votes or the votes for a party candidate for

that county. Table 5.1 lists the centroid of 67 counties in Florida, which is obtained

from the official web site www.census.gov. By using the latitude and longitude of its

centroid as the simulator of locations for each county, we could treat this region-based

data as point-based data.

In order to apply IDW in this region-based data interpolation, one problem arises.

How can we calculate the distance between two regions? One natural solution is to

calculate the distance between the centroid of two counties. However, we realize that

since all surrounding counties are neighbors of a target county, the distances between

neighbors should be equal in this sense. Hence it is also reasonable to use uniform

distances in this case. Therefore, to use IDW to spatially interpolate region-based

spatiotemporal data, we propose two variations of the standard IDW, that is, IDW

with uniform weights (IDWU) and IDW with centroid distance weights (IDWC).
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Figure 5.1: County C and its neighbors

5.1 IDW with Uniform Weights

In this variation of IDW, all the distances between the target point (centroid of target

region) and one of its neighboring points (centroid of its neighboring regions) are the

same. Suppose we want to predict the votes for county C, which has the following

neighboring counties, N1, N2, . . . , Nk. We assume all the distances between counties

C and Ni, 1 ≤ i ≤ k, are the same. Hence by Equation 2.3 each neighbor Ni has

exactly the same weight λi = 1
k
, 1 ≤ i ≤ k. For example, in Figure 5.1, county C has

five neighbors and each neighbor has the same weight 1
5
.

Example 5.1.1 Assume we need to interpolate the value in Region R. Let y1 = 100,

y2 = 200, y3 = 300, and y4 = 400 be the values measured at the surrounding regions

of Region R, that is, R1, R2, R3, and R4, respectively. By IDWU the distances

between Region R and Region Ri (1 ≤ i ≤ 4) are the same. Using Equation 2.3 we

can calculate that:



35

λ1 = λ2 = λ3 = λ4 =
1

4

Hence, using Equation 2.1 the value of Region R will be interpolated based on

Regions R1, R2, R3, and R4 to be:

y =
4∑

i=1

λi · yi

=
1

4
× 100 +

1

4
× 200 +

1

4
× 300 +

1

4
× 400

= 250

5.2 IDW with Centroid Distance Weights

In this case the distance between the target region and its surrounding region is

calculated as the distance between the two corresponding centroid. Consider again the

example of neighboring counties. Now the distances between counties C and Ni, 1 ≤
i ≤ k should be the distances between the centroids of those counties. Consider

the example shown in Figure 5.1, if we use IDWC, the distances d1, d2, d3, d4, and

d5 should be like in Figure 5.2. Because of the near-spherical shape of the Earth,

calculating an accurate distance between two points requires the use of the following

spherical geometry formulae introduced by Weisstein [65].

distance =

√
(x1 − x0)

2 + (y1 − y0)
2 + (z1 − z0)

2 (5.1)
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Figure 5.2: Centroids and distances

where for 0 ≤ i ≤ 1

xi = R× cos(longi)× sin(90◦ − lati)

yi = R× sin(longi)× sin(90◦ − lati)

zi = R× cos(90◦ − lati)

R = 6368KM

Example 5.2.1 As in Example 5.1.1 we need to interpolate the value in Region R.

At this time we assume the distances between the centroid of Region R and the

centroid of Region Ri (1 ≤ i ≤ 4) are d1 = 5, d2 = 10, d3 = 15, and d4 = 20,

respectively. By IDWC and using Equation 2.3 we can calculate that:
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λ1 =
1
5

1
5

+ 1
10

+ 1
15

+ 1
20

=
12

25

λ2 =
1
10

1
5

+ 1
10

+ 1
15

+ 1
20

=
6

25

λ3 =
1
15

1
5

+ 1
10

+ 1
15

+ 1
20

=
4

25

λ4 =
1
20

1
5

+ 1
10

+ 1
15

+ 1
20

=
3

25

Hence, using Equation 2.1 the value of Region R will be interpolated based on

Regions R1, R2, R3, and R4 to be:

y =
4∑

i=1

λi · yi

=
12

25
× 100 +

6

25
× 200 +

4

25
× 300 +

3

25
× 400

= 192
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Chapter 6

Exponential Decay Temporal

Interpolation

We present two approaches to temporal interpolation. In one approach, which we de-

scribe in Section 6.1, we apply the spatial IDW method to the temporal interpolation

and measure the “distance” as time difference instead of spatial difference. A more

interesting approach is the exponential decay temporal interpolation method, which is

described in Section 6.2.

6.1 IDW Applied to Temporal Data

This approach considers distance as a regular time difference. For example, if we

want to estimate the minimum temperature of May 1st in 2002, then the distance

between May 1st in 2002 and May 1st in 2003 is 365 days, and the distance between

May 1st in 2002 and May 1st in 2000 is 730 days. Then follow the IDW method and

use Equation 2.3, the weights are assigned proportional to the inverse of the time

distance. Therefore, we also call this method inverse linear temporal method.
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Example 6.1.1 In Figure 6.1 assume we need to interpolate an unknown value of

an attribute at a target point at time t. The target point has some known values of

the same attribute before or after time t, that is, (t1, v1), . . . , (t5, v5).

(t 2, v2)

(t 5, v5)
(t 1, v1)

(t 4, v4)

(t 3, v3)

(t, E t)

Figure 6.1: Target point and its temporal neighbors

In order to follow the inverse linear temporal method, we first calculate the dis-

tance di between the time t and its ith temporal neighbors ti as follows.

di = |ti − t|

We then calculate the λi for the ith neighbor using Equation 2.3 as follows.

λi =

1

di
5∑

k=1

1

dk

Now we can calculate Et using Equation 2.1 as follows.

Et =
5∑

i=1

λi · vi
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Example 6.1.2 Assume we need to interpolate the value at time t for some location.

Let y1 = 100, y2 = 300, y3 = 500, and y4 = 700 be the values measured at different

time instances ti (1 ≤ i ≤ 4) at that location. Assume that the regular time distances

between time t and ti (1 ≤ i ≤ 4) are d1 = 1, d2 = 2, d3 = 3, and d4 = 4, respectively.

Using Equation 2.3 we can calculate that:

λ1 =
1
1

1
1

+ 1
2

+ 1
3

+ 1
4

=
12

25

λ2 =
1
2

1
1

+ 1
2

+ 1
3

+ 1
4

=
6

25

λ3 =
1
3

1
1

+ 1
2

+ 1
3

+ 1
4

=
4

25

λ4 =
1
4

1
1

+ 1
2

+ 1
3

+ 1
4

=
3

25

Hence the interpolated value at time t will be the following:

y =
4∑

i=1

λi · yi

=
12

25
× 100 +

6

25
× 300 +

4

25
× 500 +

3

25
× 700

= 284
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6.2 Exponential Decay Temporal Interpolation

Exponential decay or growth is observed in scientific fields and experiments such

as population growth, compound interest, radioactive decay, and value depreciation.

This gives the idea to consider the influence of any event to decay exponentially with

time. The general definition of exponential function is as follows.

Definition 6.2.1 Let a be a positive real number. The exponential function with base

a is the function:

f(x) = kacx

We apply the exponential function in assigning the weights and have the exponen-

tial decay temporal interpolation method. For simplicity we choose the base a = 2. In

this approach the weights decrease exponentially with the time difference.

For example, if we look back in time n years and have one data in each of the past

n years, then the weight of the data i years back in time will be 1
2i for 1 ≤ i ≤ (n−1)

and 1
2n−1 for n years back. Note that the last two weights will be the same and with

this rule the sum of the weights is still 1.

Example 6.2.1 We consider again the data from Example 6.1.2. Now we use the

exponential decay temporal interpolation method. Then the weights are assigned as

follows:

λ1 =
1

2
, λ2 =

1

4
, λ3 =

1

8
, λ4 =

1

8

Hence the interpolated value at time t will be the following:
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y =
4∑

i=1

λi · yi

=
1

2
× 100 +

1

4
× 300 +

1

8
× 500 +

1

8
× 700

= 275

As another example, we look at how to use these two approaches in the USA

presidential election prediction.

Example 6.2.2 Given the six USA presidential election results in 2000, 1996, 1992,

1988, 1984, and 1980, and predict the outcome of the USA presidential election in

2004. In this case when we apply the inverse linear temporal interpolation method,

we consider the time distance between 2000 and 2004 is one (even though it means

four years), the time distance between 1996 and 2004 is two and so on. Actually this

specification is still consistent with the idea of regular time distances, but simpler

and easier to understand. We use the subscripts in year instead of numbers in this

example. Using Equation 2.3 we can calculate that:
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λ2000 =
1
1

1
1

+ 1
2

+ 1
3

+ 1
4

+ 1
5

+ 1
6

=
60

147

λ1996 =
1
2

1
1

+ 1
2

+ 1
3

+ 1
4

+ 1
5

+ 1
6

=
30

147

λ1992 =
1
3

1
1

+ 1
2

+ 1
3

+ 1
4

+ 1
5

+ 1
6

=
20

147

λ1988 =
1
4

1
1

+ 1
2

+ 1
3

+ 1
4

+ 1
5

+ 1
6

=
15

147

λ1984 =
1
5

1
1

+ 1
2

+ 1
3

+ 1
4

+ 1
5

+ 1
6

=
12

147

λ1980 =
1
6

1
1

+ 1
2

+ 1
3

+ 1
4

+ 1
5

+ 1
6

=
10

147

When we consider the exponential decay temporal interpolation method, the weights

are as follows:

λ2000 =
1

2

λ1996 =
1

4

λ1992 =
1

8

λ1988 =
1

16

λ1984 =
1

32

λ1980 =
1

32

The weight 1
32

occurs twice to make the sum of the weights 1.
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Chapter 7

Spatiotemporal Interpolation of

Climate Data

The interpolation of climate data has been a focus of research for a long time. Be-

cause the availability of climatic measurements varies spatially and temporally, sets

of climate data are usually incomplete. The sources of missing data may be that

the instrument was broken and the data was never recorded, that there was a break

in the data transmission, or that there was a mistake during data-entry and data

processing. Techniques are necessary to fill gaps in data sequences before accurate

valuation analysis can be performed.

One motivation of this dissertation is that climatology researchers mainly use

spatial interpolation methods to do the estimation. However, in some situations, spa-

tial interpolation methods are not accurate enough. Suppose the IDW interpolation

method is used and consider the following scenarios.

(1) In mountainous regions, the assumptions used by the IDW method do not hold

(see Section 2.2.1 for the assumptions of IDW).

(2) Some weather stations may not have enough nearby stations for estimation,



45

while the assumption of IDW is based on certain number of surrounding sta-

tions.

(3) Several nearby stations have data for the same time instance, and spatial meth-

ods can be used for the estimation, but the estimation accuracy is poor. For

example, if we define “nearby” as within 50 miles, but all the nearby stations

are between 45 to 50 miles, then the accuracy will be poor.

Therefore we recognize that the temporal methods can be useful in combination

with spatial methods in the regions where spatial methods can not work well in

themselves.

In this chapter we discuss how to apply our adaptive spatiotemporal interpolation

method to interpolate climate data. Section 7.1 to 7.3 describe how to solve the three

issues in applying our adaptive spatiotemporal interpolation method to climate data.

Section 7.4 gives the evaluation. We compare the step function based and linear func-

tion based spatiotemporal interpolation methods with pure spatial interpolation and

pure temporal interpolation methods. We also compare the results in mountainous

regions with those in plain areas.

7.1 Determination of Es

In Section 2.1 we identify the climate data as point-based data and since IDW is a

point-based spatial interpolator, we adopt the standard IDW as the spatial interpola-

tion method to spatially interpolate climate data. Assume that some climate data are

missing at one target weather station. Following the IDW method described in Sec-

tion 2.2.1, we need to find the closest neighboring stations. In this study we look for

the five closest neighboring stations of a target station, that is, N = 5 in Equation 2.3.

Table 7.1 gives an example of the five closest neighboring weather stations of a given
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target station. After selecting the neighboring stations we can calculate the distances

between the target station and its neighboring stations using Equation 5.1. Based on

the distances we can calculate the weights for each neighbor using Equation 2.3. Now

we have the weights and observations for individual neighbor, it is ready to calculate

the spatial estimate using Equation 2.1.

Table 7.1: Neighboring stations of a target weather station

Station ID Latitude Longitude

1 40.36889 -105.51083
2 40.26694 -105.83222
3 40.18532 -105.86667
4 39.99194 -105.26667
5 39.89333 -105.86285

Target 40.22889 -105.51833

7.2 Determination of Et

Two things need to be noticed when we adopt the temporal interpolation. One thing

is that adopting temporal interpolation actually means that in reconstructing missing

data, using the local historical weather records could be an alternative to using data

from neighboring stations. The other thing is that the reconstruction of missing

climate data and weather forecasting are different because for the former the data

collected both before or after the missing gap can be used.

Assume that in a station some climate data on a particular day of a particular

year is missing and the historical records are available. We apply the inverse linear

temporal method described in Section 6.1 to calculate the temporal estimate. We first
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calculate the time distances as described in Section 6.1. Based on the time distances

we calculate the weights for each temporal neighbor using Equation 2.3. Then we

can calculate the temporal estimate using Equation 2.1 since we have the weights and

observations for individual neighbor.

7.3 Determination of α and β

We adopt the step function-based combination and the linear function-based com-

bination which are proposed in Section 4.3 to determine α and β. Therefore, in

this application of climate data interpolation, we have the following methods: our

adaptive spatiotemporal interpolation method with step function-based combination

(ASTS), adaptive spatiotemporal interpolation method with linear function-based

combination (ASTL), the spatial IDW interpolation method (IDW) and the inverse

linear temporal interpolation method (LT).

According to the definitions of IM
i,t and Oi,t in Section 4.3, in this application IM

i,t is

the interpolated value for station i at time t using method M and Oi,t is the observed

value for station i at time t. In particular, we have IIDW
i,t , IASTS

i,t , IASTL
i,t , and ILT

i,t .

Let σi be the standard deviation of the elevations among the target station i and its

closet N neighbors, that is,

σi =

√√√√√√
N∑

j=1

(Si,j − Ti)
2

N
(7.1)

where Ti is the elevation of the target station i, and Si,j is the elevation of the jth

neighboring station of the target station i.

According the definition of DM
i,t in Section 4.3, in this application DM

i,t is the

absolute difference between the interpolated value using method M and the observed
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value at station i at time t. In particular, we have DIDW
i,t and DLT

i,t .

The constant threshold θ can be fixed as 100, 200 and so on. For some θ, if most

stations with σi < θ have smaller DIDW
i,t , while most stations with σi ≥ θ have smaller

DLT
i,t , then it means spatial interpolation is more accurate for stations with σi < θ

and linear temporal interpolation is more accurate for stations with σi ≥ θ. Hence a

step function-based combination as show in Figure 4.2 would be a good choice.

Now we consider the linear function-based combination. When σi increases, the

neighboring stations are less likely to be on the same elevation with the target station,

therefore we should decrease the weights of spatial estimate and increase the weights

of temporal estimate. Hence, the linear function shown in Figure 4.5 satisfies this

intuition well.

7.4 Evaluation

7.4.1 Design of the Study

We randomly select weather stations in Colorado and Nebraska and use the minimum

daily temperature data of the time period from 1993 to 2003. Figures 7.1 and 7.2 show

the weather stations we have used. We assume that the minimum daily temperature

on a particular day (e.g., May 1st) of a particular year (e.g., 2002) is unknown and

has to be reconstructed from the data from the neighboring weather stations and its

local weather records. That is, the missing data can be interpolated based on the

minimum daily temperature data on May 1st, 2002 from neighboring weather stations

and its own data on May 1st, 1993 until 2001, and 2003. We interpolate the minimum

daily temperature for the May-August period in 2002 for 50 weather stations in both

Colorado and Nebraska.
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Figure 7.1: Weather stations in Colorado

7.4.2 Evaluation Methods

Several measures are suitable for experimentally comparing the accuracy of interpo-

lation methods. We use mean absolute error (MAE) and root mean square error

(RMSE). These measures are defined as follows.

MAE =

N∑
i=1

|Ii −Oi|

N
(7.2)

RMSE =

√√√√√√
N∑

i=1

(Ii −Oi)
2

N
(7.3)

where

Ii: Interpolated value.
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Figure 7.2: Weather stations in Nebraska

Oi: Observation value.

N : Number of data.

7.4.3 Comparison of Four Methods

Figure 7.3 gives some idea about how step function-based combination works. The

x-axis is σi and the y-axis is DIDW
i,t and DLT

i,t (See Section 7.3 for the definitions of σi,

DIDW
i,t and DLT

i,t ). Each station has a star and a box on the same vertical line, where

the star is DIDW
i,t and the box is DLT

i,t . We add a vertical line on the σi value equal

to 500. On the left of the line are weather stations with σi < 500 and on the right of

the line are weather stations with σi ≥ 500. We can find that most stations on the

left have smaller DIDW
i,t and most stations on the right have smaller DLT

i,t . Therefore,

500 seems a reasonable threshold value for this data set.
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Figure 7.3: Each station appears twice as a star and a box within the vertical line
σi = θ. We see that for σi < 500, the stars are lower than the boxes in general, and
for σi ≥ 500, the boxes are lower than the stars. Both the stations and dates are
randomly chosen.
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To test the best performance of the ASTS method, we have tried the threshold

values (100, 150, . . ., 1450, 1500). we compared their MAE and RMSE with those of

the IDW and the LT methods. In Table 7.2, the MAE and RMSE columns summarize

the results for the various methods. We can see that the ASTS method yields better

performance than either the IDW or the LT method. The IDW method has 9%

and the LT method has 25% less accurate MAE than the best the ASTS method.

Similarly, the IDW method has 4% and the LT method has 28% less accurate RMSE

than the best ASTS method has.

Table 7.2: Comparison of ASTS, IDW and LT

Method Best parameters MAE Method′sMAE
BestMethod′sMAE

RMSE Method′sRMSE
BestMethod′sRMSE

ASTS θ = 950 3.8452 1.00 4.6988 1.00
IDW N = 5, p = 1 4.1958 1.09 4.8912 1.04
LT 4.8114 1.25 6.0262 1.28

In order to test the performance of the ASTL method, we did experiments on

40 threshold values (100, 200, 300, . . ., 4000) and 10 rates (0.0, 0.1, . . ., 0.9), and

recorded the best combination of those parameters and results in Table 7.3. We can

see from Table 7.3 that the ASTL method yields much better performance than either

the IDW or the LT method. The IDW method has 21% less accurate MAE than the

best the ASTL method. The LT method has 39% less accurate MAE than the best

the ASTL method. Similarly, the IDW method has 15% and the LT method has 42%

less accurate RMSE than the best ASTL method has.

Figures 7.4 and 7.5 show the MAE and RMSE of 50 weather stations in Colorado,

respectively. Both figures record the result of the best ASTL method, the IDW

method, and the LT method. From these two figures we can see that the ASTL
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Table 7.3: Comparison of ASTL, IDW and LT

Method Best parameters MAE Method′sMAE
BestMethod′sMAE

RMSE Method′sRMSE
BestMethod′sRMSE

ASTL r = 0.3, θ = 1400 3.4598 1.00 4.2586 1.00
IDW N = 5, p = 1 4.1958 1.21 4.8912 1.15
LT 4.8114 1.39 6.0262 1.42

method has better performance than the other two. While Figure 7.4 demonstrates

the trend of MAE, Figures 7.6 to 7.9 show the MAE value of individual weather

station for the IDW, ASTS, ASTL, and LT methods. Similarly, while Figure 7.5

demonstrates the trend of RMSE, Figures 7.10 to 7.13 show the RMSE value of

individual weather stations for the IDW, ASTS, ASTL, and LT methods.

Figures 7.6 to 7.8 show the MAE of 50 Colorado weather stations using the IDW,

ASTS, and ASTL methods, respectively. For the legends, the color blue means the

range of MAE is [0.00, 2.00], light blue [2.01-3.00], green [3.01-4.00], yellow [4.01-6.00],

and red [6.01-10.00]. We can see that in general both spatiotemporal methods yield

better results than IDW, and the ASTL method is the best. Figure 7.9 shows the

MAE of 50 Colorado weather stations using the LT method. We did not use the same

legend as in Figures 7.6 to 7.8, because the minimum MAE by the LT method is 3.68,

more than 2.00. Obviously the LT method is the worst among the four methods.

Table 7.4 records the minimum, average, and maximum values of MAE using the

four methods in Colorado. We can see that the IDW, ASTS and ASTL methods share

the same minimum value 1.29, while the LT method has a much higher minimum value

3.68. The ASTL method has the lowest maximum value of MAE, followed by the LT,

ASTS and IDW methods.

Figures 7.10 to 7.12 show the RMSE of 50 Colorado weather stations using the
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Figure 7.4: MAE of 50 Colorado stations over May to August 2002
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Figure 7.5: RMSE of 50 Colorado stations over May to August 2002
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Figure 7.6: MAE of weather stations in Colorado using IDW over May to August 2002
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Figure 7.7: MAE of weather stations in Colorado using ASTS over May to August 2002
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Figure 7.8: MAE of weather stations in Colorado using ASTL over May to August 2002
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Figure 7.9: MAE of weather stations in Colorado using LT over May to August 2002
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Table 7.4: Minimum, average, and maximum values of MAE and RMSE using four
methods in Colorado

MAE RMSE
Min Avg Max Min Avg Max

IDW 1.29 4.20 9.82 1.73 4.89 10.47
ASTS 1.29 3.85 9.42 1.73 4.70 10.47
ASTL 1.29 3.46 6.56 1.72 4.26 7.68

LT 3.68 4.81 7.29 4.65 6.03 8.46

IDW, ASTS, and ASTL methods, respectively. For the legends, the color blue means

the range of RMSE is [0.00, 2.50], light blue [2.51-3.50], green [3.51-4.50], yellow

[4.51-6.50], and red [6.51-11.00]. We can see that the results of RMSE and MAE

are similar, that is, the two spatiotemporal methods still yield better results than

IDW, and the ASTL is still the best. Figure 7.13 shows the RMSE of 50 Colorado

weather stations using the LT method. The figure for the LT method also uses a

different legend, because it yields much different results compared with those of the

other three methods. Similarly to that of MAE, the LT method is the worst among

the four methods.

Table 7.4 records the minimum, average, and maximum values of RMSE using the

four methods in Colorado. It shows a similar trend to that of MAE. The first three

methods still have smaller minimum value (1.72 or 1.73) than the LT method which

has 4.65. For the maximum value of RMSE, the ASTL method still has the lowest

RMSE, followed by the LT , ASTS and the IDW methods.
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Figure 7.10: RMSE of weather stations in Colorado using IDW over May to August 2002
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Figure 7.11: RMSE of weather stations in Colorado using ASTS over May to August 2002
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Figure 7.12: RMSE of weather stations in Colorado using ASTL over May to August 2002
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Figure 7.13: RMSE of weather stations in Colorado using LT over May to August 2002
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Figure 7.14: MAE of 50 Nebraska stations over May to August 2002

7.4.4 Comparison of Mountainous Regions and Plain Areas

We did experiments on Nebraska weather stations too. In this case the IDW method

yields the best performance among the tested methods. Figure 7.14 shows the MAE

of 50 weather stations in Nebraska and records the result of the best ASTL method,

the IDW method, and the LT method. We can see that the IDW method yields

slightly better performance than the ASTL method, and the LT method is the worst

case. While Figure 7.14 demonstrates the trend of MAE, Figures 7.15 to 7.18 show

the MAE value of individual weather station for the IDW, ASTS, ASTL, and LT

methods.

Figures 7.15 to 7.17 show the MAE of 50 Nebraska weather stations using the

IDW, ASTS, and ASTL methods, respectively. For the legends, the color blue means

the range of MAE is [0.00, 2.00], light blue [2.01-3.00], green [3.01-4.00], yellow [4.01-

5.00], and red [5.01-6.00]. Compared with the results in Colorado, the value of MAE
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Figure 7.15: MAE of weather stations in Nebraska using IDW over May to August 2002

is smaller. The maximum MAE is less than 6.00. We can see that among the three

methods, the IDW method is the best, with the IDW method slightly better than the

ASTL method, and the ASTL method slightly better and the ASTS method.

This result can be explained as follows. Since Nebraska is a plain area, the weather

stations in Nebraska have a better chance of having a close neighbor with similar

heights than weather stations have in Colorado which is a mountains area.

Similarly to the results in Colorado, the LT method still yields the worst per-

formance, and the difference between the LT method and the other three methods

becomes more obvious in Nebraska. Figure 7.18 shows the MAE of 50 Nebraska

weather stations using the LT methods. We did not use the same legend due to the

same reason in Colorado.

Table 7.5 records the minimum, average, and maximum values of MAE using the

four methods in Nebraska. We can see that the IDW, ASTS and ASTL methods have
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Figure 7.16: MAE of weather stations in Nebraska using ASTS over May to August 2002
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Figure 7.17: MAE of weather stations in Nebraska using ASTL over May to August 2002
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Figure 7.18: MAE of weather stations in Nebraska using LT over May to August 2002

lower minimum values (1.42, 1.43, or 1.53) than the LT method has (5.07). The trend

of maximum values is similar to that of minimum values. The first three methods

have lower maximum values than the LT method has.

Figures 7.19 to 7.21 show the RMSE of 50 Nebraska weather stations using the

IDW, ASTS, and ASTL methods, respectively. Here the legend is the following. The

color blue means the range of MAE is [0.00, 2.00], light blue [2.01-3.00], green [3.01-

4.00], yellow [4.01-6.00], and red [6.01-8.00]. Compared with the results in Colorado,

the value of RMSE is smaller, with the maximum RMSE is less than 8.00. Similarly

to the result of MAE, for all three methods, most of the stations have RMSE less

than 3.00.

Similarly to the results of MAE in Nebraska, the LT method still yields the worst

performance, and the difference between the LT method and the other three methods

is more obvious. Figure 7.22 shows the RMSE of 50 Nebraska weather stations using
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Table 7.5: Minimum, average, and maximum values of MAE and RMSE using four
methods in Nebraska

MAE RMSE
Min Avg Max Min Avg Max

IDW 1.42 2.23 5.46 1.90 2.95 7.24
ASTS 1.53 2.26 5.14 2.05 2.96 6.81
ASTL 1.43 2.27 5.22 1.92 2.98 6.74

LT 5.07 6.26 8.41 4.23 7.60 10.24

the LT methods. Using the temporal method, only one station has RMSE less than

6.00, and 33 out of 50 stations have RMSE between 6.00 and 8.00, and the other 16

stations have 8.00-11.00. We can see that for the IDW, ASTL, and ASTS methods,

all the stations have RMSE less than 8.00, furthermore, most of the stations have

RMSE less than 3.00.

Table 7.5 records the minimum, average, and maximum values of RMSE using the

four methods in Nebraska. It has almost same trend with that of MAE values. The

first three methods still have much smaller minimum and maximum values than the

LT method.
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Figure 7.19: RMSE of weather stations in Nebraska using IDW over May to August 2002
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Figure 7.20: RMSE of weather stations in Nebraska using ASTS over May to August 2002



66

0.00 - 2.00

2.01 - 3.00

3.01 - 4.00

4.01 - 6.00

6.01 - 8.00

Figure 7.21: RMSE of weather stations in Nebraska using ASTL over May to August 2002
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Figure 7.22: RMSE of weather stations in Nebraska using LT over May to August 2002
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Chapter 8

USA Presidential Election

Prediction

As describe in Chapter 3 the USA presidential election data is a typical temporal-

dominated data set. We apply our adaptive interpolation method to this election

data set. In interpolating the percentage vote for a given party in some county C for

which we do not have information, we would naturally like to rely on its historical

results in previous election and the percentage votes in its neighboring counties if

those values are known. For election voting, it is very unlikely that previous voting

result can not be found. And what people are most interested in is who will win in

the coming election. Therefore, instead of doing a interpolation, we use our method

to do a prediction.

As stated in Section 2.4, for many presidential election forecasting models one

common limitation is the choice of factors to include in the model. We aim to keep the

number of variables to a minimum. Therefore, our method focuses on the historical

election data itself and uses it as the basis of the spatiotemporal interpolation without

any additional variables.
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8.1 Determination of Et

We apply the two temporal interpolation approaches, inverse linear temporal method

and exponential decay temporal method which are proposed in Chapter 6, to calculate

the temporal interpolation values.

8.2 Determination of Es

Since the USA presidential election data is a region-based data, we apply the two

approaches, IDW with uniform weights and IDW with centroid distance weights which

are proposed in Chapter 5 to calculate the spatial interpolation values.

However, when we use IDW to do the prediction instead of interpolation, a prob-

lem arises. For example, suppose we are back in November 2004 and want to pre-

dict the percentage vote for John Kerry in the 2004 USA presidential election in

Alachua county, Florida. It is not reasonable to use the actual votes in Bradford, Clay,

Columbia, Gilchrist, Levy, Marion, Putnam, and Union, which are the neighboring

counties of Alachua, because those votes are not known yet. A possible solution is to

use the estimated data in the neighboring counties, which can be created by many

methods such as our inverse linear or exponential decay temporal methods.

An interesting aspect is that in states with long and narrow shapes, such as

Florida, there are fewer neighbors on average for each county than in counties with a

more round shape such as Ohio. Therefore, we were concerned that the overall shape

of a state can influence heavily the accuracy of our spatiotemporal interpolation

method. Hence we choose three states, that is, California, Florida, and Ohio, with

very different shapes as our test cases.

In each of our three test states, there are counties that have additional neighbors

in other states. For example, some counties in Florida are neighbors of some counties
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in Georgia. However, we did not count neighbors in other states, because we did not

have available data for them. Presumably the accuracy of our interpolation methods

can be further improved by counting those neighbors too.

8.3 Determination of α and β

We adopt the step function-based combination and the linear function-based combi-

nation which are proposed in Section 4.3 to determine α and β. Therefore, in this

application of election data prediction, we have the following methods: our adaptive

spatiotemporal interpolation method with step function-based combination (ASTS),

adaptive spatiotemporal interpolation method with linear function-based combination

(ASTL), the IDW with uniform weights interpolation method (IDWU), the IDW with

centroid distance weights interpolation method (IDWC), the inverse linear temporal

interpolation method (LT), and the exponential decay temporal method (EDT).

According to the definitions of IM
i,t and Oi,t in Section 4.3, in this application IM

C,t is

the interpolated value for county C at time t using method M and OC,t is the original

value for county C at time t. In particular, we have IIDWU
C,t , IIDWC

C,t , IASTS
C,t , IASTL

C,t ,

ILT
C,t , and IEDT

C,t .

According the definition of DM
i,t in Section 4.3, in this application DM

C,t is the

absolute difference between the interpolated value using method M and the original

value at county C at time t. In particular, we have DIDWUorIDWC
C,t and DLTorEDT

C,t .

Let σC be the changes in the vote percentages of all pairs of subsequent presidential

elections for a county C (See Section 8.4 for an example about the calculation of the

σC for a county C ), that is,

σC =

N∑
i=1

(Pi − Pi+1)

N
(8.1)
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where Pi is the vote percentage of ith election elevation in a county C.

The constant parameter θ can be fixed as 1%, 2% and so on.

Intuitively, a smaller σC means that the values in a county C are more consistent

over time, hence we can rely more on the temporal interpolation method, which

means that we should decrease αC and increase βC . Following this intuition, when we

consider a step function, if σC < θ, then we set αC = 0 and βC = 1, which enforces

that we use the temporal interpolation method; and if σC ≥ θ, then we set αC = 1

and βC = 0, which enforces that we use the spatial interpolation method. We can

describe it in the Equation 8.2, which is a reverse of the step function described in

Section 4.3.1.





αC = 0, βC = 1 if σC < θ

αC = 1, βC = 0 if σC ≥ θ
(8.2)

For some θ, if most counties with σC < θ have DLTorEDT
C,t < DIDWUorIDWC

C,t , while

most counties with σC ≥ θ have DLTorEDT
C,t ≥ DIDWUorIDWC

C,t , then the step function

of Equation 8.2 would be a good choice.

We also experimented with the linear function-based combination of the form

α = c σ + d with different values for the constants c and d. However, the linear

functions did not work as well as the step functions. One likely explanation is that

the temporal methods (LT or EDT) and the spatial methods (IDWU or IDWC) give

similar variations for most counties, that is, when the temporal interpolated value is

higher (or lower) than the original data, then the spatial interpolated value is also

higher (or lower). That makes it difficult to find a good linear function.
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8.4 Determination of σ in Election Data

Suppose we would like to predict the outcome of the USA presidential election of

2004 in Alachua, Florida. Let us look at how to calculate σAlachua.

Let Pyear be the percentage vote for the democratic candidate in the given year

in Alachua and use P00 instead of P2000 and so on. We have P00 = 55.249682 %,

P96 = 53.896139 %, P92 = 49.608382 %, P88 = 48.827313 %, P84 = 46.423513 %, and

P80 = 52.287084 %.

Let d be the absolute difference between two continuous USA presidential elec-

tions, then d1 = |P00 − P96|, . . . , d5 = |P84 − P80|. That is, d1 = |55.249682 % −
53.896139 %| = 1.353543 %, d2 = 4.287756 %, d3 = 0.781069 %, d4 = 2.4038 %, and

d5 = 5.863571 %.

Hence we get:

σAlachua =
d1 + d2 + d3 + d4 + d5

5
= 2.937948 %

Table 8.1 gives di and σC of six counties of the state of Florida. We calculated

similarly the σC for the remaining 61 counties in Florida, but we do not show them

for space limitations.

8.5 Evaluation

8.5.1 USA Presidential Election Data Sets

As stated before, in order to test our idea, we used the USA presidential election data

for the states of California, Florida, and Ohio. For Florida, the data is obtained from

the official web site [68], which is maintained by the Florida Division of Elections and

contains a comprehensive USA presidential voting data for 67 different counties in
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Table 8.1: di and σC of 67 counties of Florida, USA

di in each county 00/96 96/92 92/88 88/84 84/80 σC

Alachua 1.353543 4.287756 0.781069 2.403800 5.863571 2.937948
Baker 4.927593 5.031435 0.896374 0.045522 24.17032 7.014248
Bay 0.951147 4.895554 1.633311 2.241453 11.67629 4.279550
. . .

Wakulla 2.071604 8.078953 1.023610 1.278107 16.490388 5.7885324
Walton 3.626663 5.728941 1.235268 3.937664 20.734451 7.0525974
Washington 3.204958 5.745716 0.326218 3.265001 18.464455 6.2012696

Florida between 1980 and 2004. Table 8.2 shows a part of the post-calculated data.

For California and Ohio, the data is obtained from [36], for the time period between

1972 and 2004. We estimated the votes for the 2004 democratic candidate for USA

president (John Kerry) in those three states using our new method and compared

them with the actual votes.

8.5.2 Prediction Procedures

We tried out the inverse linear and the exponential decay temporal methods to get

the temporal estimates. We used the IDWU and IDWC to get the spatial estimates.

Once we get the temporal and spatial interpolation values, we apply Equation 4.1

to calculate the final estimation value. We tested various step functions to find the

best estimation parameters α, β, and θ. For the threshold parameter θ we tried the

ten values 1%, 2%, 3%, ..., 10%.
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Table 8.2: Votes for 2000 USA presidential election in 67 counties of Florida, USA

County name Total votes Votes for Repub-
lican candidate

Votes for Demo-
cratic candidate

Alachua 85,757 34,135 47,380
Baker 8,155 5,611 2,392
Bay 58,876 38,682 18,873
. . .

Wakulla 8,587 4,512 3,838
Walton 18,323 12,186 5,643

Washington 8,026 4,995 2,798

8.5.3 Evaluation Methods

In order to analyze the quality of interpolation we conduct the experiments based on

three measures comparing the accuracy of interpolation methods, MAE, RMSE, and

error of statewide total vote percentage (TE), which is a more interesting measure

in the voting prediction area. TE is calculated as the difference between the actual

statewide vote percentages and the estimated statewide vote percentages.

Let V Pstatee be the estimated statewide vote percentage for a given party. Sim-

ilarly, let V Pstatea be the actual statewide vote percentage for a given party.

V Pstatee =

∑
Ei × Vi∑

Vi

(8.3)

where

Ei: Estimated vote percentage for a given party in county i.

Vi: The number of all voters in county i.

Then we can calculate the error of statewide total vote percentage (TE) as follows.
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TE = |V Pstatee − V Pstatea| (8.4)

Example 8.5.1 Assume that a state S has three counties A, B, and C. For some

election the numbers of voters in counties A, B, and C are 1000, 2000, and 3000,

respectively. The estimated vote percentages for a given party in counties A, B, and

C are 40%, 50%, 60%, respectively. And the actual vote percentage for a given party

in state S is 58%. We can calculate that:

TE =
∣∣40%×1000+50%×2000+60%×3000

1000+2000+3000
− 58%

∣∣ = 4.7%

8.5.4 Experimental Results

Table 8.3 records our experimental results. We can see that the performance of

the ASTS and EDT methods is the best, getting comparatively precise predictions,

especially in predicting the 2004 USA presidential election in Florida. ASTS (with

θ = 7%) predicts for the 2004 USA presidential election, the democratic candidate

(John Kerry) will win 46.00% votes in Florida, and the actual result is 47.09%, hence

the discrepancy (TE) is only 1.09%. This contrasts favorably with a CNN poll which

predicted only 42% for John Kerry shortly before the election [69], i.e., it had a TE

of more than 5%. Let us look at the results of the presidential election forecasting

models. For example, predictions of republican votes in Florida based on the polls of

the week between Oct 25 and Nov 1 give an average TE of 2.2% [11].

The experimental results for California and Ohio are also impressive. The EDT

method shows slightly better performance, TE is 3.46 and 3.18 in California and

Ohio, respectively. Let us look at the prediction of republican votes in the exit polls.

TE is 1.5 in California and 4.4 in Ohio, respectively [11]. For all three states, MAE

and RMSE are reasonably low.
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Figure 8.1: Prediction accuracy in California, USA

The table shows that the difference between IDWU and IDWC are extremely

small.

Figures 8.1-8.6 illustrate the voting prediction results of the 2004 USA presidential

election in the states of California, Florida, and Ohio at the county level. Figures 8.1,

8.2, and 8.3 indicate the results in terms of the differences between the actual vote

percentages and the estimated vote percentages using our spatiotemporal interpola-

tion model based on step functions. We can see that for all the three states, the

differences are less than 1% in some counties and less than 4% in most counties. In

Figures 8.4, 8.5, and 8.6 the dashed line shows the actual vote percentage in each

county and the solid line describes the estimated vote percentages using ASTS in

each county. We can see that in the three states for most counties the discrepancy is

low and it almost disappears for some counties.
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Table 8.3: Comparison of ASTS, LT, EDT, IDWU, and IDWC methods

Method California 2004 Florida 2004 Ohio 2004

TE MAE RMSE TE MAE RMSE TE MAE RMSE

Using IDWU

IDWU 8.65 11.60 9.67 4.88 7.98 9.05 8.75 11.31 7.60
ASTS 3.49 4.51 6.26 1.09 2.40 5.18 3.57 4.37 3.57
(θ = 7%)
ASTS 3.55 4.77 6.38 1.10 2.40 4.72 3.89 4.66 3.88
(θ = 8%)
ASTS 3.49 4.51 6.26 1.10 2.39 4.61 3.27 4.05 3.14
(θ = 9%)

Using IDWC

IDWC 8.02 11.33 9.33 3.51 6.62 8.64 8.83 11.27 7.45
ASTS 3.58 4.63 6.83 1.10 2.39 4.84 3.45 5.06 4.88
(θ = 7%)
ASTS 3.54 4.54 6.32 1.11 2.39 4.69 3.78 4.56 3.71
(θ = 8%)
ASTS 3.50 4.51 6.03 1.11 2.39 4.59 3.25 4.03 3.10
(θ = 9%)

LT 5.46 6.66 7.25 2.68 3.81 5.12 4.10 5.09 3.74
EDT 3.46 4.48 6.01 1.10 2.39 4.59 3.18 3.99 3.10
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Legend
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Figure 8.2: Prediction accuracy in Florida, USA

Legend
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Figure 8.3: Prediction accuracy in Ohio, USA
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Figure 8.4: Predicted and actual voting in California
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Figure 8.5: Predicted and actual voting in Florida
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Figure 8.6: Predicted and actual voting in Ohio

Figure 8.7: Actual results: red and blue counties in Florida, USA
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Figure 8.8: Interpolated results: red and blue counties in Florida, USA

In Figures 8.7 and 8.8 red counties vote for Republican candidate and blue counties

vote for Democratic candidate in Florida for the 2004 USA presidential election.

Figure 8.7 is based on the actual results while Figure 8.8 shows the ASTS interpolated

results. We can see that only two out of 67 counties are different in the two figures.
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Chapter 9

Conclusion and Future Work

The work can be extended into different directions.

First of all, more data sets should be used to test our spatiotemporal interpolation

methods. In the future, we plan to apply our method to other climatic variables like

precipitation, average temperatures, or maximum temperatures. We also plan to

look at other problems that require a single value as the outcome of the interpolation

problem. For example, an aggregate health statistics, such as the number of persons

infected with various specific diseases in a state or country would be another natural

problem to look at. Another example would be to predict human population changes

in a country or worldwide. Both of these are known to be hard problems. For

example, there are widely different values for the total number of AIDS cases predicted

using different models or the predicted total human population in the world. By

improving the estimation accuracy of these and similar types of problems, we can

help governments and international health and environmental agencies to be better

prepared in the future.

Second, we plan to look into other spatial methods like polynomial regression

interpolation and develop spatiotemporal methods based on regression. Encouraged
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by results on election prediction, we plan to exploit it by factoring more variables and

fine-tune our spatiotemporal interpolation methods.

The results also show that our adaptive spatiotemporal interpolation method can

be a basis for an effective voting prediction system. Of course, any real voting pre-

diction system would need to be fine-tuned by considering many additional variables,

such as a candidate’s expenditures, gender, incumbency, and the interaction affects

of those parameters. However, it is extremely interesting and encouraging that by

combining a temporal and a spatial interpolation method, which in themselves are

not too sophisticated, already yields prediction values that are more accurate than

the results – published in various newspapers in the run-up to the elections – of much

more sophisticated prediction systems. Hence our vote prediction system has a signif-

icant potential that we plan to exploit by factoring in more variables. Furthermore,

as this approach produced both county-level and state-level results, it can be used by

election agencies in election data verification for effective government. We can com-

pare the collected election results with the estimates at the county-level and identify

possible suspected data when there is significant difference between them.

One interesting topic to explore in the future is the relationship between visual-

ization and interpolation. In many applications there is a need to represent numeric

data in a form which has more visual impact [27]. Visualization is a powerful way to

facilitate data analysis [49]. For example, visualization tools can help to unveil hidden

patterns and relationships among variables, present abstract statistical concepts and

complicated data structures in a concrete manner [66].

While visualization can be highly effective in the recognition of patterns and

trends, poor handling of missing data might lead to misleading data interpreta-

tion [14]. There are numerous sources for missing data, such as broken instruments,

data-entry errors and data-processing mistakes. Given the intrinsic collection and pre-
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sentation influenced reasons behind missing data, avoiding missing values is nearly

impossible, and the amount of missing data is likely to increase proportionally with

the size of the set [14].

Missing data can be estimated by interpolation methods based on the sampled

values. Interpolation methods have an increasing presence in advanced scientific

databases and are closely related to visualization techniques [50]. Visualization and

interpolation strengthen each other. If a good interpolation technique suggests itself

naturally, then by applying it first, we can usually get a better visualization. However,

in some cases it is hard to find a good and efficiently computable interpolation function

or such a function would be too complex to compute efficiently. In those cases, the

visualization can itself serve as a useful interpolation method, because the human eye

can see patterns that would be too complex to capture mathematically. Occasionally,

an interpolation technique may also be detrimental and hide more naturally emerging

patterns. Therefore, one may try to generate visualizations both with and without the

use of a preprocessing interpolation and then see whether the emerging pattern can

be clearer observed in one than in the other. If the merging pattern is clearer without

the interpolation technique, then that could be an indication that the interpolation

technique may not be appropriate to the current data set.

Finally, this dissertation did not consider periodic spatiotemporal objects, which

are considered for example in [51]. It remains an interesting open question how to

interpolate periodic spatiotemporal data.
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