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Abstract each other by an affinity of the plane, also the re-
sulting triangulations can be mapped to each other

A robust image similarity measure is presented by that same affinityy.
for patterned triangles. A novel feature of the new Unfortunately, our computer experiments on a
similarity measure is the reduction of the patterns set of over400 bird images led to poor results. It
to a simple set of affine-invariant bar-codes. appears that the colorful and richly patterned bird

images need to be considered in their entirety. The

images can be abstracted or reduced to a set of tri-
1 Introduction angles that are affine-invariant, but apparently too

much valuable information is lost in the process. In

Different images of the same object affine-  fact, consider two objects whose overall shapes are
invariant transformations of each other under the single triangles. If one ignores the patterns within
so-calledwveak perspective assumptifdi2]. Hence  the triangles and only concentrates on their con-
recognizing that a new image and a stored imagetours, then one cannot say anything definite because
show the same object requires affine-invariant  two black triangles are always affine-invariant to
similarity measurdoetween pairs of images. each other.

Previously proposed affine-invariant similarity  The present paper is motivated by enriching the
measures consider the similarity between pairs of method in [8] by considering the colorful patterns
points and contour lines, for example tmein-  within the individual triangles. Our goal is to
imum Hausdorff distance measuf8], the geo-  achieve a good recognition even if all objects have a
metric hashing[14] technique, and least squares triangular shape. For complex objects that are com-
distance-based similarity measures [9], and in gen-posed of several triangles, the the new method can
eral ignore the complex colored patterns that arepe easily combined with the earlier method in [8]
present in the pictures. that considers the spatial relationships of the set

In line with these methods, in [8], we proposed of affine-invariant triangles into which the pictures
an affine triangulation method for spatial data that can be decomposed.
is composed of a set of triangles. Our method is  The outline of this article is as follows. Section 2
based on the computation of barycentric points in discusses barcodes in patterned triangles. In this
convex polygons obtained by the so-callgietch  section, Theorem 2.1 shows that the barcodes are
of the image. A spatial triangulation method is affine-invariant. Section 3 describes the barcode-
calledaffine-invariant if whenever it is applied to  based similarity measure for patterned triangles and
two spatial figuresA and B that can be mapped to  presents some examples on various different types

*This research was partially funded by a Fulbright U.S. se- _Of patter_ns. Section 4 presents ways _Of fad‘?“”g color
nior scholarship and a Alexander von Humboldt Research Fel- information to the barcode-based similarity mea-
lowship. sure.
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Figure 1. A striped triangle  ABC (left) and its affine-transformation A’ B’C’ (right).

2 Barcode-based similarity measures
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Barcodes provide an inspiration for robust
affine-invariant similarity measures. Barcodes en-

co%e mforma;t::on n fa dr;rtl)(u:;;n?cmnbea;:eaq?ﬁ ij\fN erly comes highly distorted. However, in triangfeBC
using sequences o '9 S with artter= one can identify the poinD as the midpoint on the

ent widths. The optical scanners which read bar- I . .
. edgeCD. Similarly, one can identify also the cor-
codes are quite robust and already allow the presen-

: o L)
tation of barcodes from slightly different angles. responding mldpomD on the (_adgeﬁ D.'
Now let us consider scanning the line segment

Although natural objects do not have barcodes, Ap from point A to point D. During the scan one
they have rich patterned and textured surfaces withsees a series of lighter and darker areas. In particu-
a variety of colors. For example, the feathers of lar, one sees in sequence 1 unit light area, 3 units
many birds have interesting patterns, such as thegark area, 1 unit light area, 2 units dark area, 2
feathers of the parrot shown in Figure. units light area, and 1 unit dark area. Hence the

The surface of objects can be broken into a set ofbarcode of thed D segment can be represented as
triangles that each contain some interesting pattern.(1, 3,1, 2,2, 1), with the boldface numbers repre-
Let us concentrate on just one triangular addaC’ senting the dark areas.
with some unique pattern as shown on the left side Interestingly, when one scans the line segment
of Figure 1. TriangleABC is transformed by the A’D’, one finds also a similar sequence of light
affine motion: and dark areas. In particular, one sees 2 units light

into another triangled’ B’C’ shown on the right
side of Figure 1. The shape of triangleBC be-



area, 6 units dark area, 2 unit light area, 4 units Equalize the total length of the two line seg-
dark area, 4 units light area, and 2 units dark area.ments by scalinds by the factord. After scaling
Hence the barcode of’ D’ can be represented as we obtain a barcode = (¢4, ...,c,) where each
(2,6,2,4,4,2). ¢ =b;xdforl <i<n.

The two barcodes are similar because they have Next comparez ande. If one is an affine trans-
the same number of light and dark areas and thoseormation of the other, then by Theorem 2.1 and the
have the same length ratios, which are equal to thechoice of the scaling factat, the following holds:
ratio of the lengths of the two line segments.

Let the length of a line segmentbe denoted % _ _ % _ length(ly) —1 Vi<i<n
aslength(l). The similarity of barcodes is a gen- ¢ b; xd length(la) x d -
eral feature of affine transformations as expressed
in Theorem 2.1.

In general, one cannot expect two barcodes to be
perfect affine transformations of each other, that is
Theorem 2.1 Let(ay,...,a,)and(bs,...,b,)be  to havea; = ¢; for eachl < i < n. Hence one
the barcodes of two corresponding line segménts needs to consider how mueh andc; deviate from
andl, in two affine transformations of a patterned each other. One can use a root mean square error
triangle. Themnn = m and the following hold for  measurement as follows:
eachl <7 <n:

i length(l N
a; _ length(ly) (a1 — e)?
b;  length(ls) v
. . E@e) =\ =t — (1)
Example 2.1 Consider again the barcodes 4D ’ n
and A’ D’ of the two affine transformations shows
in Figure 1. In this case the barcodeAD is: _Example 31lLeta = (1,2.5,1,2,2.5,1) and

B b = (2,5.5,2,4.5,4,2). Thenlength(a) = 10
(01,05, 03, 04, 05, a6) = (1,3,1,2,2,1) and length(b) = 20 henced = 0.5 andc =

and the barcode od’'D’ is: (1,2.75,1,2.25,2,1). Further,
(b1,b2,b3,b4,b5,b6) = (2,6,2,4,4,2) B(@.o) \/02+(—.25)2+02+(—.25)2+.52+o2
a,c) = 5
We have that length(AD) = 10 and — 0.375
length(A’D') = 20. Further, as expected by
Theorem 2.1, Since the root mean square error is small, the two
a; 10 barcodes are quite similar.

b—i:%:O.5 V1<i<6
3.1 Different patterns
3 Similarity measures for barcodes
The barcode-based similarity measure can ac-
Next we present a similarity measure for two commodate other patterns beside striped patterns.
barcodes. Leta = (a1,...,a,) @and b = Forexample, Figure 2 shows that if the triangles are
(b1,--.,bm) be the barcodes of two corresponding spotted with ovals instead of having stripes, then
line segmentd; andl; in two affine transforma-  the barcodes are still similar after the same affine
tions of a patterned triangle. § # m, then we  transformation.
simply say that the two barcodes are not similar.  Note that the barcodes in Figures 1 and 2 are
Otherwise, let the same. That means that a single barcode for a
length(ly) triangle is incapable of distinguishing between the
- m striped and the spotted patterns within the triangle.
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Figure 2. A spotted triangle  ABC (left) and its affine-transformation A’ B’C’ (right).

However, one can improve the situation by consid- sists of the ratiog}, ¢, 2, X I 2 Cr gng 5L,

ering not one but two or three barcodes for a sin- The experiments in [8] showed that the primary
gle triangle. Each barcode is scanned along thecolor ratio measure performs well with respect to
line segment whose endpoints are a corner vertexthe rainbow color ratio measure under the same
of the triangle and the midpoint vertex on the oppo- lightning conditions.

site side of the triangle. Figurg? shows the three There are other ways to add color to the barcode-
line segmentsA’ D', B'E’ andC’F”’ in the striped  based similarity measure. For example, the barcode
and the spotted triangles. can be enhanced with a sensor of the color (or av-
erage color) in each “bar” instead of sensing only
4 Addition of color white and black. Assume that in Figure 1 non-white

stripes (shown as black) are from left to right red,

In [8], we described two affine-invariant color plue, and red. Then a barcode representation of the
measures: thprimary color ratio measur@and the  striped triangle would bél — white,3 — red,1 —

rainbow color ratio measure The primary color  hite, 2 — blue, 2 — white, 1 — red). Such a col-

ratio measure finds the ratigsand 2 for the total ~ ored barcode representation would be distinguish-

amount ofR, G, andB in the triangles. able form another colored barcode representation
The rainbow color ratio measure ugedifferent such ag1—white, 3—blue, 1 —white, 2—red, 2—

colors: red, green, blue, yellow, turquoise, purple, hite, 1 — blue) based purely on the color differ-

white, gray and blackwhich are defined precisely ences.

in [8]. The areas colored with these are denoted

R,G,B,Y, T, P,W,Gr and Bl, respectively. For References
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Figure 3. Midpoints of a striped triangle
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