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Abstract

We consider spatio-temporal interpolation of geographic data using both the reduc-
tion method, which treats time as an independent dimension, and the extension
method, which treats time as equivalent to a spatial dimension. We adopt both
2-D and 3-D shape functions from finite element methods for the spatio-temporal
interpolation of 2-D spatial and 1-D temporal data sets. We also develop new 4-D
shape functions and use them for the spatio-temporal interpolation of 3-D spatial
and 1-D temporal data sets. Using an actual real estate data set with house prices,
we compare these methods with other spatio-temporal interpolation methods based
on inverse distance weighting and kriging. The comparison criteria include interpo-
lation accuracy, error-proneness to time aggregation, invariance to scaling on the
coordinate axes, and the type of constraints used in the representation of the inter-
polated data. Our experimental results show that the extension method based on
shape functions is the most accurate and the overall best spatio-temporal interpola-
tion method. New color rendering algorithms are also developed for the visualization
of time slices of the interpolated spatio-temporal data. We show some visualization
results of the real estate data set including the vertical profile of house prices.
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1 Introduction

Geographic Information System (GIS) applications often require spatio-temporal
interpolation of an input data set. Spatio-temporal interpolation requires the
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estimation of the unknown values at unsampled location-time pairs with a sat-
isfying level of accuracy. For example, suppose that we know the recording of
temperatures at different weather stations at different instances of time. Then
spatio-temporal interpolation would estimate the temperature at unsampled
locations and times.

Spatial interpolation is already frequently used in GIS. There are many spatial
interpolation algorithms for spatial (2-D or 3-D) data sets. Shepard (1968)
discusses in detail inverse distance weighting, Deutsch and Journel (1998)
kriging, Goodman and O’Rourke (1997) splines, Zurflueh (1967) trend sur-
faces, and Harbaugh and Preston (1968) Fourier series. Lam (1983) gives a
review and comparison of spatial interpolation methods.

There are surprisingly few papers that consider the topic of spatio-temporal
interpolation in GIS. In fact, we could only find papers in spatio-temporal
interpolation that estimate the motion of moving objects, which is a major
concern in human vision but unrelated to GIS. One exception is Miller (1997),
which utilizes kriging for spatio-temporal interpolation.

Most GIS researchers assume that spatio-temporal interpolation is reducible
to a sequence of spatial interpolations. This reduction is convenient only if
we sample the same locations at the same times. For example, this may be
true for the above temperature data set if each weather station records the
Monday noon temperature on each Monday. Then we can do a separate spatial
interpolation for each time instance for which we have the temperatures at the
weather stations.

However, irregular data sets are also quite common. For example, consider
a data set that records the price of houses sold in a city. For each day of
sale, this data set can give us only the exact price of a set of houses (those
that are sold that day). This subset varies day by day. This is unlike the set
of weather stations which are fixed. For such irregular data sets the above
reduction method is unnatural to apply.

The outline of our paper and our main contributions are the following.

(1) In Section 2 we give a literature review about using 2-D and 3-D shape
functions to approach spatial interpolation problems.

(2) In Section 3 we start by describing two general methods for spatio-
temporal interpolations. The reduction method treats time independently
from the spatial dimensions. The extension method treats time as equiv-
alent to a spatial dimension.

(3) In Section 3.1 we consider 2-D space and 1-D time spatio-temporal in-
terpolation. We illustrate the reduction approach using a combination of
2-D shape functions for space and 1-D shape functions for time (Section
3.1.1). We also illustrate the extension approach using 3-D shape func-
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tions where the first two dimensions are for space and the third dimension
is for time (Section 3.1.2). In both cases we consider visualization of the
spatio-temporal interpolation. For the reduction method we give a new
color rendering scheme which utilizes 1-D shape functions.

(4) In Section 3.2 we consider 3-D space and 1-D time spatio-temporal inter-
polation. For the reduction method we use the combination of 3-D shape
functions for space and 1-D shape functions for time (Section 3.2.1). For
the extension method we first divide the 4-D domain by a 4-D Delaunay
Tesselation (see Section 2.3). Then we develop new 4-D (Section 3.2.2)
shape functions that can be applied for each 4-D Delaunay Tesselation
element.

(5) Section 4 compares our interpolation methods with the inverse distance
weighting and kriging methods based on the same actual real estate data.
We show that the extension method with shape functions is the most
accurate spatio-temporal interpolation method as measured by mean ab-
solute error (MAE) and root mean square error (RMSE). It is also the
only one which can be represented using linear constraints.

The extension method, which treats time as another dimension, has a
potential problem, namely that there is no easy way to compare one tem-
poral unit with one spatial unit. Depending on the unit measure, we may
get a different value for the estimated results. Are there spatio-temporal
interpolations that are invariant with respect to the choice of units in
the spatial and temporal axes? We show that only shape functions-based
spatio-temporal interpolation are invariant.

Finally, in the real estate data instead of recording the precise date
of sale of houses we may have only records of monthly, bimonthly or
even yearly sales, that is, all the houses sold in that time interval are
listed together. We show experimentally that this time aggregation has
a serious negative effect on the accuracy of the reduction method, while
the extension method is barely affected.

(6) In Section 5 we give an example of using 4-D shape functions by consid-
ering an extension of the real estate data where the height of each house
is also recorded.

(7) Finally, in Section 6 we discuss some future work.

2 Literature Review

In this section, we give a literature review about 2-D and 3-D shape functions
as well as 4-D Delaunay tesselation. Shape functions, which can be viewed as
a spatial interpolation method, are popular in engineering applications, for ex-
ample, in Finite Element algorithms (Zienkiewics and Taylor, 2000; Buchanan,
1995). There are various types of 2-D and 3-D shape functions. In this sec-
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tion, we are only interested in 2-D shape functions for triangles and 3-D shape
functions for tetrahedra, both of which are linear approximation methods.

2.1 2-D Shape Functions for Triangles

2.1.1 Triangular Meshes

When dealing with complex geometric domains, it is convenient to divide the
total domain into a finite number of simple sub-domains which can have tri-
angular or quadrilateral shapes in the case of 2-D problems. Mesh generation
using triangular or quadrilateral domains is important in Finite Element dis-
cretization of engineering problems. For the generation of triangular meshes,
quite successful algorithms have been developed. A popular method for the
generation of triangular meshes is the “Delaunay Triangulation” (Goodman
and O’Rourke, 1997; Preparata and Shamos, 1985; Shewchuk, 1996). We em-
bedded in our system the Delaunay triangulation algorithm available from the
public website www.geom.umn.edu/software/∼qhull and used this for one
of our spatio-temporal data approximation methods which will be described
in Section 3.1.1.

2.1.2 Linear Approximation in 2-D Space

A linear approximation function for a triangular area can be written in terms
of three shape functions N1, N2, N3, and the corner values w1, w2, w3. In
Figure 1, two triangular finite elements, I and II, are combined to cover the
whole domain considered.

I

II

w2

w1

w4

w3

Fig. 1. Linear Interpolation in Space for Triangular Elements.

In this example, the function in the whole domain is interpolated using four
discrete values w1, w2, w3, and w4 at four locations. A particular feature of
the chosen approximation method is that the function values inside the sub-
domain I can be obtained by using only the three corner values w1, w2 and w3,
whereas all function values for the sub-domain II can be constructed using the
corner values w2, w3, and w4. The linear interpolation function for the sub-
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domain of element I can be written as

w(x, y) = N1(x, y)w1 + N2(x, y)w2 + N3(x, y)w3 = [N1 N2 N3]















w1

w2

w3















(1)

where N1, N2 and N3 are the following shape functions:

N1(x, y)=
[(x2y3 − x3y2) + x(y2 − y3) + y(x3 − x2)]

2A

N2(x, y)=
[(x3y1 − x1y3) + x(y3 − y1) + y(x1 − x3)]

2A
(2)

N3(x, y)=
[(x1y2 − x2y1) + x(y1 − y2) + y(x2 − x1)]

2A
.

The area A of element II in equation (2) can be computed using the corner
coordinates (xi, yi) (i = 1, 2, 3) in the determinant of a 3× 3 matrix according
to

A =
1

2
det















1 x1 y1

1 x2 y2

1 x3 y3















. (3)

It should be noted that for every sub-domain, a local approximation function
similar to expression (1) is used. Each local approximation function is con-
strained to the local triangular sub-domain. For example, the function w of
equation (1) is valid only for sub-domain I. For sub-domain II, the local ap-
proximation takes a similar form as the expression (1): we just have to replace
the corner values w1, w2 and w3 with the new values w2, w3 and w4.

Alternatively, considering only sub-domain I, the 2-D shape function (2) can
also be expressed as follows (Revesz and Li, 2002b):

N1(x, y) =
A1

A
, N2(x, y) =

A2

A
, N3(x, y) =

A3

A
, (4)

where A1, A2 and A3 are the three sub-triangle areas of sub-domain I as shown
in Figure 2, and A is the area of the outside triangle w1w2w3 which can be
computed by equation (3). All the Ai’s (1 ≤ i ≤ 3) can also be computed
similarly to equation (3) by using the appropriate coordinate values.
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w1 w2

w3

w A1
A2

A3

(x1,y1) (x2,y2)

(x3,y3)

(x,y)

Fig. 2. Computing shape functions by area divisions.

2.2 3-D Shape Functions for Tetrahedra

2.2.1 Tetrahedral Meshes

Three-dimensional domains can be divided into finite number of simple sub-
domains. For example, we can use tetrahedral or hexahedral sub-domains.
Tetrahedral meshing is of particular interest. With a large number of tetra-
hedral elements, we can also approximate complicated 3-D objects. Figure 3
shows a tetrahedral mesh of a 3-D object. This object has a cutout (one quar-
ter of a cylinder) behind the boundary defined by the points ABCD.

A

C

DDDD

A

C

A
B

Fig. 3. A Tetrahedral Mesh.

There exist several methods to generate automatic tetrahedral meshes, such as
the 3-D Delaunay tetrahedrilization and some tetrahedral mesh improvement
methods to avoid poorly-shaped tetrahedra. For example, the tetrahedral mesh
generation by Delaunay refinement (Shewchuk, 1998) and tetrahedral mesh
improvement using swapping and smoothing (Freitag and Gooch, 1997).

2.2.2 Linear Approximation in 3-D Space

A linear approximation function for a 3-D tetrahedral element can be written
in terms of four shape functions N1, N2, N3, N4 and the corner values w1,
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w2, w3, w4. In Figure 4, two tetrahedral elements, I and II, cover the whole
domain considered.

w2

w1

w4

w3

I II

w5

Fig. 4. Linear Interpolation in Space for Tetrahedral Elements.

In this example, the function in the whole domain is interpolated using five
discrete values w1, w2, w3, w4, and w5 at five locations in space. To obtain the
function values inside the tetrahedral element I, we can use the four corner
values w1, w2, w3 and w4. Similarly, all function values for element II can be
constructed using the corner values w1, w3, w4 and w5. The linear interpolation
function for element I can be written as:

w(x, y, z)=N1(x, y, z)w1 + N2(x, y, z)w2 + N3(x, y, z)w3 + N4(x, y, z)w4

= [N1 N2 N3 N4]
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(5)

where N1, N2 N3 and N4 are the following shape functions:

N1(x, y, z) =
a1 + b1x + c1y + d1z

6V
, N2(x, y, z) =

a2 + b2x + c2y + d2z

6V
,

(6)

N3(x, y, z) =
a3 + b3x + c3y + d3z

6V
, N4(x, y, z) =

a4 + b4x + c4y + d4z

6V
.

The volume V of the tetrahedron used for the shape functions in (6) can
be computed using the corner coordinates (xi, yi, zi) (i = 1, 2, 3, 4) in the
determinant of a 4 × 4 matrix according to
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V =
1

6
det








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









1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4


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

. (7)

By expanding the other relevant determinants into their cofactors, we have

a1 = det
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b1 = −det
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c1 = −det















x2 1 z2

x3 1 z3

x4 1 z4















d1 = −det















x2 y2 1

x3 y3 1

x4 y4 1















with the other constants defined by cyclic interchange of the subscripts in the
order 4, 1, 2, 3 (Zienkiewics and Taylor, 1989).

w2(x2,y2,z2)

w1(x1,y1,z1)

w3(x3,y3,z3)

w4(x4,y4,z4)

��� ��� ��� ��	

Fig. 5. Computing shape functions by volume divisions.

Alternatively, considering only the tetrahedral element I, the 3-D shape func-
tion (6) can also be expressed as follows:

N1(x, y, z) =
V1

V
, N2(x, y, z) =

V2

V
, N3(x, y, z) =

V3

V
, N4(x, y, z) =

V4

V
(8)

V1, V2, V3 and V4 are the volumes of the four sub-tetrahedra ww2w3w4,
w1ww3w4, w1w2ww4, and w1w2w3w, respectively, as shown in Figure 5; and V
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is the volume of the outside tetrahedron w1w2w3w4 which can be computed
by equation (7). All the Vi’s (1 ≤ i ≤ 4) can also be computed similarly to
equation (7) by using the appropriate coordinate values.

2.3 4-D Delaunay Tesselation

The Delaunay tesselation in 4-D space is a special case of n-D space Delaunay
tesselation when n = 4. The n-D Delaunay tesselation is defined as a space-
filling aggregate of n-simplices (Watson, 1981). Each Delaunay n-simplex can
be represented by an (n+1)-tuple of indices to the data points. We can use
Matlab to compute the n-D Delaunay tesselation by function delaunayn. T =
delaunayn(X) computes a set of n-simplices such that no data points of X are
contained in any n-D hyperspheres of the n-simplices. The set of n-simplices
forms the n-D Delaunay tessellation. X is an m×n array representing m points
in n-D space. T is an s × (n + 1) array where s is the number of n-simplices
after the n-D Delaunay tesselation. Each row of T contains the indices into X

of the vertices of the corresponding n-simplex. In order to solve 4-D Delaunay
tesselation in Matlab, we need to give the delaunayn function proper X array
with size m× 4. An example of a 4-D Delaunay tesselation by Matlab is given
below.

Example 2.1 Assume X is an array that contains seven 4-D points (m = 7,
n = 4) as follows:

X =
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115 1525 500 16

890 1880 750 36

1120 1650 300 22

730 1660 600 13

725 1320 780 42

880 1140 678 69

1610 2570 890 95
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Then T = delaunayn(X) will return the following set of nine 5-simplices
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(s = 9):

T =


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3 New Approaches to Spatio-Temporal Interpolation

There are two fundamentally different ways for spatio-temporal interpolation:
reduction and extension (Li and Revesz, 2002). These methods can be de-
scribed briefly as follows:

Reduction This approach reduces the spatio-temporal interpolation problem
to a regular spatial interpolation case. First, we interpolate (using any 1-D
interpolation in time) the measured value over time at each sample point.
Then by substituting the desired time instant into some regular spatial
interpolation functions, we can get spatio-temporal interpolation results.

Extension This approach deals with time as another dimension in space
and extends the spatio-temporal interpolation problem into a one-higher
dimensional spatial interpolation problem.

In this section, we discuss new approaches to spatio-temporal interpolation by
shape function based reduction and extension methods for 2-D space & 1-D
time and 3-D space & 1-D time problems.

3.1 2-D Space and 1-D Time

3.1.1 Reduction Approach: ST Product Method

Since this approach is obtained by multiplying two interpolation functions
in space and time, we call this method ST (space time) product method.
This approach for 2-D space and 1-D time problems can be described by two
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steps: 2-D spatial interpolation by shape functions for triangles (Section 2.1)
and approximation in space and time (Section 3.1.1.1). Although there exists
similar shape function based ST product methods such as the temperature
distribution function in time-dependent heat conduction problems (Huebner,
1975), we discuss in this paper an ST product method which combines 2-D
shape function in space and 1-D shape function in time.

3.1.1.1 Approximation in Space and Time Since in the reduction ap-
proach we model time independently, approximation in space and time can be
implemented by combining a time shape function with the space approxima-
tion function (1).

Assume the value at node i at time t1 is wi1, and at time t2 the value is wi2.
The value at the node i at any time between t1 and t2 can be approximated
using a 1-D time shape function in the following way:

wi(t) =
t2 − t

t2 − t1
wi1 +

t − t1

t2 − t1
wi2 . (9)

Using the example shown in Figure 1 and utilizing formulas (1) and (9), the
approximation function for any point constraint to element I at any time
between t1 and t2 can be expressed as follows (Li and Revesz, 2002):

w(x, y, t)= N1(x, y)
[

t2 − t

t2 − t1
w11 +

t − t1

t2 − t1
w12

]

+ N2(x, y)
[

t2 − t

t2 − t1
w21 +

t − t1

t2 − t1
w22

]

+ N3(x, y)
[

t2 − t

t2 − t1
w31 +

t − t1

t2 − t1
w32

]

(10)

=
t2 − t

t2 − t1
[N1(x, y)w11 + N2(x, y)w21 + N3(x, y)w31]

+
t − t1

t2 − t1
[N1(x, y)w12 + N2(x, y)w22 + N3(x, y)w32] .

Since the space shape functions (N1, N2 and N3) and the time shape functions
(9) are linear, the spatio-temporal approximation function (10) is not linear
but quadratic.

3.1.1.2 Visualization The spatio-temporal interpolation result from this
approach can be visualized in a 2-D display at different time instances. We
illustrate the visualization result using a set of real estate data obtained from
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the Lancaster county assessor’s office in Lincoln, Nebraska. House sale histories
since 1990 are recorded in the real estate data set and include sale prices and
times. We randomly select 126 residential houses from a quarter of a section
of a township, which covers an area of 160 acres. Furthermore, from these 126
houses, we randomly select 76 (60%) houses as sample data, and the remaining
50 (40%) houses are used as test data. Tables 1 and 2 show instances of these
two data sets. Based on the fact that the earliest sale of the houses in this
neighborhood is in 1990, we encode the time in such a way that 1 represents
January 1990, 2 represents February 1990, . . ., 148 represents April 2002. Note
that some houses were sold more than once in the past, so the sales corresponds
to different tuples. For example, the house at the location (2215, 110) was sold
at times 27, 77, and 114 (which represent 3/1992, 5/1996, and 6/1999).

Table 1
Sample(x, y, t, p)

X Y T P (price/square foot)

888 115 4 56.14

888 115 76 76.02

1630 115 118 86.02

1630 115 123 83.87
...

...
...

...

2240 2380 51 91.87

2650 1190 43 63.27

Table 2
Test(x, y, t)

X Y T

115 1525 16

115 1525 58

115 1525 81

115 1610 63
...

...
...

120 1110 30

615 780 59

For the color plot, six basic colors are chosen: red, yellow, green, turquoise,
blue, and purple. The 24-bit RGB values for these colors are the following:
red = (255, 0, 0), yellow = (255, 255, 0), green = (0, 255, 0), turquoise =
(0, 255, 255), blue = (0, 0, 255), purple = (255, 0, 255). The colors are used
to represent interpolated values. The following two versions of color rendering
are used in the program implementation:

Version 1: Use of 400 Smoothly Changing Colors A 1-D linear shape
function interpolation scheme is used between each pair of the basic colors.
Five simple linear interpolations are chosen for the color changes between
red and yellow, yellow and green, green and turquoise, turquoise and blue,
blue and purple. This version yields a smooth change of colors in the visu-
alization, hence it avoids sharp color transitions. We give an example of one
color interpolation below.

Example 3.1 Suppose that between red(255, 0, 0) and yellow(255, 255, 0),
we use 80 intermediate colors of the form (255, G, 0). Here the possible val-
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Fig. 6. Version 1: continuous color rendering for the house price data of Lincoln,
Nebraska in October 1995.

ues of G can be found using the following linear function:

G = (1 −
x

80
) ∗ StartGV alue + (

x

80
) ∗ EndGV alue ,

where x ∈ [0, 80].
In this example between red and yellow we have StartGV alue = 0 and

EndGV alue = 255. For other intervals, the values of StartGV alue and
EndGV alue can be changed accordingly.

Version 2: Use of 6 Colors Only the six basic colors are used in the plots.
The color red is assigned for the smallest function value and the color purple
is assigned for the largest value. Each color covers 1/6 of the total range of
values for the house price/square foot. This version results in visualizations
that show distinct boundaries between colors. Although this version seems
to have less information than the first color rendering version, for users this
may be more convenient in categorizing house price differences. Actually,
this version can be considered as an extreme case of the previous version
with no intermediate colors.

In Figures 6 and 7, the graphical output for the presentation of measured
house price data is illustrated.

3.1.2 Extension Approach: 3-D Method

This method treats time as a regular third dimension. Since it extends 2-D
problems to 3-D problems, this method is very similar to the linear approxima-
tion by 3-D shape functions for tetrahedra (Section 2.2). The only modification
is to substitute variable z in equations (5)–(8) by the time variable t.
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Fig. 7. Version 2: rendering with 6 discrete colors for the house price data of Lincoln,
Nebraska in October 1995.
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Fig. 8. Vertical profile of house price data of Lincoln, Nebraska in August 1991,
October 1995 and December 1999.

Visualization The spatio-temporal interpolation result from this approach
can be visualized in a vertical profile display. Using the same real estate data
example as in Section 3.1.1, the graphical output from this extension approach
is illustrated in Figures 8. The three slices in the figure corresponds to house
price visualizations at three time instances: August 1991, October 1995 and
December 1999. They are obtained by intersecting three horizontal time planes
with the tetrahedral mesh of the 76 sample houses. Note that after tetrahedral
meshing, each slice has different coverage of area. Figure 8 was produced by
Matlab 6.0.
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3.2 3-D Space and 1-D Time

In this section, we discuss the shape function based reduction and extension
approaches for 3-D space and 1-D time spatio-temporal problems.

3.2.1 Reduction Approach: ST Product Method

This shape function based reduction data approximation in 3-D space and 1-D
time can be described in the following two steps: 3-D spatial interpolation by
shape functions for tetrahedra (Section 2.2) and approximation in space and
time.

Approximation in Space and Time Similarly to the reduction approach
to 2-D problems, 3-D approximation in space and time can be implemented by
combining the time shape function (9) with the space approximation function
(5). Using the example shown in Figure 4, the linear approximation function
for any point constraint to the sub-domain I at any time between t1 and t2
can be expressed as follows:

w(x, y, z, t)= N1(x, y, z)
[

t2 − t

t2 − t1
w11 +

t − t1

t2 − t1
w12

]

+ N2(x, y, z)
[

t2 − t

t2 − t1
w21 +

t − t1

t2 − t1
w22

]

+ N3(x, y, z)
[

t2 − t

t2 − t1
w31 +

t − t1

t2 − t1
w32

]

+ N4(x, y, z)
[

t2 − t

t2 − t1
w41 +

t − t1

t2 − t1
w42

]

(11)

=
t2 − t

t2 − t1
[N1(x, y, z)w11 + N2(x, y, z)w21 + N3(x, y, z)w31 + N4(x, y, z)w41]

+
t − t1

t2 − t1
[N1(x, y, z)w12 + N2(x, y, z)w22 + N3(x, y, z)w32 + N4(x, y, z)w42] .

Since the space shape functions (N1, N2, N3 and N4) and the time shape
functions (9) are linear, the spatio-temporal approximation function (11) is
quadratic.

3.2.2 Extension Approach: 4-D Method

This method treats time as a regular fourth dimension. We develop new linear
4-D shape functions to solve this problem. In the engineering area, the highest
number of dimensions of shape functions is three because there are no higher
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dimensional real objects. By developing 4-D shape functions, we will be able
to interpolate an unsampled value at location (x,y,z) and time t. For example,
the location can be house locations, including the elevation z. In a flat city
the elevation is not important. In a hilly city the elevation may be important
(for example, nice ocean view may be preferred).

Our linear 4-D shape functions are based on 4-D Delaunay tesselation, which
is briefly described in Section 2.3. In this Section, we develop new 4-D shape
functions using two different approaches. Although they yield mathematically
equivalent results, the first approach yields very long symbolic expressions
whereas the second approach gives simple expressions.

3.2.2.1 Approach I Since we want to develop linear 4-D shape functions
to do the 4-D approximation, we can assume that within each element we have
some constants a, b, c, d and e such that:

w(x, y, z, t) = a + bx + cy + dz + et .

Let Φ(x, y, z, t) = [1, x, y, z, t] and fT = [a, b, c, d, e], we have

w(x, y, z, t) = Φ(x, y, z, t) f . (12)

We use the five known nodal values (wi’s, 1 ≤ i ≤ 5) to calculate f as follows:

Φ(x1, y1, z1, t1) f = w1

Φ(x2, y2, z2, t2) f = w2

Φ(x3, y3, z3, t3) f = w3

Φ(x4, y4, z4, t4) f = w4

Φ(x5, y5, z5, t5) f = w5

This can be written as Af = w, where A =





























Φ(x1, y1, z1, t1)

Φ(x2, y2, z2, t2)

Φ(x3, y3, z3, t3)

Φ(x4, y4, z4, t4)

Φ(x5, y5, z5, t5)





























,

and wT = [w1, w2, w3, w4, w5]. We obtain the solution for f as:

f = A−1w . (13)
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Let

N(x, y, z, t) = Φ(x, y, z, t)A−1 . (14)

After substituting (13) into (12), we have

w(x, y, z, t)=Φ(x, y, z, t)A−1w

=N(x, y, z, t)w

= [N1 N2 N3 N4 N5]





























w1

w2

w3

w4

w5





























(15)

Now it is clear that (14) is the shape function matrix that we need to find. We
calculated the result of (14) by Matlab. Since A is a 5× 5 matrix in symbolic
form, its inverse is very complicated and messy. The expression result of N

based on the xi’s, yi’s, zi’s, ti’s and wi’s (1 ≤ i ≤ 5) is very redundant and
unreadable. Each shape function expression Ni (1 ≤ i ≤ 5) covers about four
pages. Next, we introduce a second approach which is based on the linear 3-D
shape functions (6) or (8) and yields a neat symbolic expression.

3.2.2.2 Approach II The idea in the second approach is to reduce the
4-D case to a 3-D case. This can be done if the deletion of a dimension does
not collapse two nodes into one. For example, if we have (x, y, z, t) data points
and we delete z coordinates, then we should not get two points with the
same (x, y, t) values. Let us denote the 3-D shape functions by N̂i(x, y, z)
(1 ≤ i ≤ 4). Then the 4-D linear approximation in terms of these can be
expressed as follows:

w(x, y, z, t) = âN̂1(x, y, z) + b̂N̂2(x, y, z) + ĉN̂3(x, y, z) + d̂N̂4(x, y, z) + êt .

Let Φ̂(x, y, z, t) =
[

N̂1(x, y, z), N̂2(x, y, z), N̂3(x, y, z), N̂4(x, y, z), t
]

and

f̂T =
[

â, b̂, ĉ, d̂, ê
]

, we have:

w(x, y, z, t) = Φ̂(x, y, z, t) f̂ . (16)
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We use the five known nodal values (wi’s, 1 ≤ i ≤ 5) to calculate f̂ as follows:

Φ̂(x1, y1, z1, t1) f̂ = w1

Φ̂(x2, y2, z2, t2) f̂ = w2

Φ̂(x3, y3, z3, t3) f̂ = w3

Φ̂(x4, y4, z4, t4) f̂ = w4

Φ̂(x5, y5, z5, t5) f̂ = w5

Assuming mi = N̂i(x5, y5, z5) (1 ≤ i ≤ 4), this can be written as Bf̂ = w,

where B =





























Φ̂(x1, y1, z1, t1)

Φ̂(x2, y2, z2, t2)

Φ̂(x3, y3, z3, t3)

Φ̂(x4, y4, z4, t4)

Φ̂(x5, y5, z5, t5)





























=





























1 0 0 0 t1

0 1 0 0 t2

0 0 1 0 t3

0 0 0 1 t4

m1 m2 m3 m4 t5





























and wT = [w1, w2, w3, w4, w5].

We obtain the solution for f̂ as:

f̂ = B−1w . (17)

Let

N(x, y, z, t) = Φ̂(x, y, z, t)B−1 . (18)

After substituting (17) into (16), we have

w(x, y, z, t)= Φ̂(x, y, z, t)B−1w

=N(x, y, z, t)w

= [N1 N2 N3 N4 N5]





























w1

w2

w3

w4

w5





























(19)

The shape function result of (18) can be calculated as follows:
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Ni = N̂i +
mih

detB
(1 ≤ i ≤ 4) and N5 =

h

detB
, (20)

where detB = −m1t1 − m2t2 − m3t3 − m4t4 + t5 is the determinant of B and
h = N̂1t1 + N̂2t2 + N̂3t3 + N̂4t4 − t. This method can be generalized to derive
shape functions of n dimension from shape functions of n − 1 dimensions.

4 Comparison with IDW and Kriging for 2-D Space and 1-D Time

Problems

So far we have discussed the reduction and extension approaches for the shape
function based interpolation methods. Other spatial interpolation methods
may also have reduction and extension approaches for spatio-temporal prob-
lems. In this section, based on the same set of actual real estate data as used
in Sections 3.1.1 and 3.1.2, we will compare the above shape function based
methods with IDW (Inverse Distance Weighting) and kriging interpolation
methods in both reduction and extension approaches.

4.1 Experimental Result of Shape Function Based Methods

4.1.1 Accuracy

We compare the estimated values of price per square foot with the true values
for each sale instance of the 50 test houses according to Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE). The definition of MAE and
RMSE is as follows:

MAE =

∑N
i=1 | Ii − Oi |

N
RMSE =

√

∑N
i=1(Ii − Oi)2

N

where N is the number of test houses, Ii is the interpolated house price, and
Oi is the original house price.

In Table 3, the MAE and RMSE columns summarize the accuracy analysis
of the methods. We can see that the ST product method yields a slightly
better accuracy (less MAE and RMSE values) than the 3-D method for shape
function based interpolation.
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Fig. 9. Shape function susceptibility to time aggregation according to RMSE (Root
Mean Square Error). The solid lines are the actual result, while the dashed lines are
the linear regression functions that best approximate the tendency of RMSE.

4.1.2 Error-Proneness to Time Aggregation

The unit of time is a special issue for spatio-temporal data. For example, the
following questions are of interest:

(1) For a specific spatio-temporal data set, how fine should the granularity
of time be to obtain the best result of interpolation?

(2) For some data sets that only have a coarse granularity of time, what kind
of spatio-temporal interpolation methods should be used?

To answer these questions, the error criteria of MAE and RMSE have been
measured according to twelve different ways of time aggregation of the house
price data. The twelve approaches of time aggregation include monthly, bi-
monthly, quarterly, . . ., yearly. That is, each month is treated as a different
time instance in monthly aggregation, every two months are treated a different
time instance in bimonthly aggregation, . . ., each year is treated as a different
time instance in yearly aggregation.

Figure 9 shows the experimental results of RMSE for error proneness to time
aggregation of the shape function based methods. The results of MAE are
very similar to RMSE. The Matlab function polyfit has been used to calculate
the linear regression functions. In Table 3, the column Slope summarizes the
slopes of MAE and RMSE linear regression functions. Steeper slope indicates
less error-proneness to time aggregation. It is shown that the 3-D method is
much less error-prone than the ST product method.
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4.1.3 Constraint Types

For the ST product method, if wi’s (1 ≤ i ≤ 3) are linear functions of t,
the constraint types are quadratic; if we use a polynomial function of t to
approximate the wi’s, we will get even higher polynomial functions for wi’s.
For the 3-D method, we can find in linear time a constraint relation to repre-
sent the whole interpolation by representing the tetrahedral method in each
tetrahedron with a separate constraint tuple (Li and Revesz, 2002).

In Table 3, the Constraint Type column summarizes the type of constraints
of these methods. For shape function based approaches, since the 3-D method
yields only linear constraints and the ST product yields polynomial con-
straints, the 3-D method has an advantage over the ST product method: query
evaluation is more efficient.

4.1.4 Invariance to coordinate scaling

Shape functions for triangles and tetrahedra are invariant to coordinate scal-
ing, which means their results will remain the same even if the scale of a
dimension (or dimensions) changes. Being invariance to coordinate scale is a
very charming characteristic of a spatio-temporal interpolation method espe-
cially when we want to use the extension approach. This is because we don’t
have to worry about what time unit should be used when mixing the space
and time dimension. In Table 3, the column Invariance summarizes whether
the method is invariant to coordinate scaling. We prove that 2-D triangular
shape functions are invariant to scaling in below. The proof for the invariance
of 3-D tetrahedral shape functions can be similarly obtained.

Proof 4.1 2-D triangular shape functions are invariance to coordinate scal-
ing.

Consider N1(x, y) in the triangular shape function (2). After substituting the
determinant result of A, we have

N1(x, y) =
[(x2y3 − x3y2) + x(y2 − y3) + y(x3 − x2)]

x2y3 − y2x3 − x1y3 + y1x3 + x1y2 − y1x2

.

Assume that the scale in x dimension enlarges to n times of the original scale.
Then N1 will be as follows after scaling

N ′

1(x, y) =
[(nx2y3 − nx3y2) + nx(y2 − y3) + y(nx3 − nx2)]

nx2y3 − ny2x3 − nx1y3 + ny1x3 + nx1y2 − ny1x2
,

which is obviously the same result as before scaling. Invariance to y scale is
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straightforward too. Similarly, we can prove that N2 and N3 are also invariant
to coordinate scaling.

4.2 Experimental Result of IDW Based Methods

IDW (Inverse Distance Weighting) interpolation is based on the assumption
that things that are close to one another are more alike than those that are
farther apart. Revesz and Li (2002a) uses IDW to visualize spatial interpola-
tion data. In IDW, the measured values (known values) closer to a prediction
location will have more influence on the predicted value (unknown value) than
those farther away. More specifically, IDW assumes that each measured point
has a local influence that diminishes with distance. Thus, points in the near
neighborhood are given high weights, whereas points at a far distance are
given small weights.

According to Johnston et al. (2001), the general formula of IDW interpolation
is the following:

w(x, y) =
N

∑

i=1

λiwi , λi =
( 1

di

)p

∑N
k=1(

1
dk

)p
, (21)

where w(x, y) is the predicted value at location (x, y), N is the number of near-
est known points surrounding (x, y), λi are the weights assigned to each known
point value wi at location (xi, yi), di are the Euclidean distances between each
(xi, yi) and (x, y), and p is the exponent, which influences the weighting of wi

on w.

Since the experimental data is 2-D, next we briefly discuss the IDW based
reduction and extension approaches to 2-D problem. For 3-D problem, the
formulae can be similarly derived.

Reduction Approach Assume we are interested in the value of the unsam-
pled point at location (x, y) and time t. This approach first finds the near-
est neighbors of for each unsampled point and calculates the corresponding
weights λi. Then, it calculates for each neighbor the value at time t by
some time interpolation method. If we use shape function interpolation in
time, the time interpolation will be similar to (9). The formula of the this
approach can be expressed as:

w(x, y, t) =
N

∑

i=1

λiwi(t) , λi =
( 1

di

)p

∑N
k=1(

1
dk

)p
(22)

where
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Fig. 10. IDW susceptibility to time aggregation according to RMSE (Root Mean
Square Error). The solid lines are the actual result, while the dashed lines are the
linear regression functions that best approximate the tendency of RMSE.

wi(t) =
ti2 − t

ti2 − ti1
wi1 +

t − ti1

ti2 − ti1
wi2 . (23)

Each neighbor may have different beginning and ending times ti1 and ti2 in
(23) if each points are sampled at different times.

Extension Approach Since this method treats time as a third dimension,
the IDW based spatio-temporal formula is of the form of (21) with di =
√

(xi − x)2 + (yi − y)2 + (ti − t)2.

4.2.1 Accuracy

From the MAE and RMSE columns in Table 3, we can see that as different
from the shape function based methods, the 3-D method yields a slightly
better accuracy (less MAE and RMSE values) than the ST product method
for IDW based interpolation.

4.2.2 Error-Proneness to Time Aggregation

Similarly to the analysis of shape function based methods, we test the same
twelve ways of time aggregation for the IDW based methods. Figure 10 show
the experimental results of RMSE for error proneness to time aggregation of
the IDW based methods when the number of near neighbors is 3. The results of
MAE are very similar to RMSE. From the column Slope in Table 3, we can see
that similarly to the shape function based methods, the 3-D method is much
less error-prone than the ST product method for IDW based approaches.
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4.2.3 Constraint Types

The constraint type for both the IDW based ST product and 3-D methods
are polynomial.

4.2.4 Non-invariance to coordinate scaling

IDW is not invariance to coordinate scaling. Consider the IDW interpolation
with 2 neighbors and power 2, based on equation (21), we have

λ1 =
(x − x2)

2 + (y − y2)
2

(x − x1)2 + (y − y1)2 + (x − x2)2 + (y − y2)2
.

Assume that the x dimensional scale enlarges to n times. Then after scaling,
λ1 will be

λ′

1 =
n2(x − x2)

2 + (y − y2)
2

n2(x − x1)2 + (y − y1)2 + n2(x − x2)2 + (y − y2)2
,

which is not the same result as before scaling. Therefore, IDW is not invariant
to coordinate scaling.

4.3 Experimental Result of Kriging Based Methods

Kriging is an important interpolation method by using geostatistical analysis
which provides a minimum error-variance estimate of any unsampled value. It
was initially introduced by D. G. Krige as an optimal interpolation method
in the mining industry (Krige, 1951). It was later developed by G. Matheron
as the theory of regionalized variables (Matheron, 1971). Using kriging as an
interpolation method in GIS was discussed by Oliver and Webster (1990).

Kriging is similar to IDW in the sense that it uses a weighting mechanism
that assigns more influence to the nearer data points to interpolate values
at unknown locations. However, instead of using inverse distance weighting
approach, kriging uses variograms. As a measure of spatial variability, a vari-
ogram replaces the Euclidean distance by a structural distance that is specific
to the attribute and the field under study (Deutsch and Journel, 1998). As-
sume u is a location vector where the data value is unsampled. The variogram
distance measures the average degree of dissimilarity between w(u) and a
nearby known data value. For example, given two sampled data values w1 and
w2 at two different locations u + h1 and u + h2, the more “dissimilar” sample
value should receive less weight in the estimation of w(u).
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Reduction Approach This is not a feasible approach for kriging. According
to Lam (1983), a variogram (2r) can be defined as

2r =
1

N

N
∑

i=1

[w(ui + h) − w(ui)]
2 (24)

where h is the distance between two samples can N is the number of pairs
of samples having the same distance.

From equation (24), we can see that not only do variograms depend on
the location distribution (h) of samples, but also depend on the sample val-
ues (w). Since weights are determined by variograms, weights are also both
location and information dependent. That is, weights can not be calculated
without knowing the values of sample points. So, if we want to use reduction
approach, we have to know in advance which sampled points will be used
in kriging for each unsampled points and then use some temporal interpola-
tion method to estimate the sample values at the time the unsampled point
is interested in. However, different unknown points may share some same
sample points. This leads to the ambiguity about the values at what time
shall be used for those sample points. Therefore, the reduction approach of
spatio-temporal interpolation is not feasible for kriging.

Extension Approach Since kriging can be generalized into high dimension,
the extension approach of kriging is a natural approach for spatio-temporal
interpolation. There are multiple types of kriging, such as simple kriging,
ordinary kriging, universal kriging, and factorial kriging. Because ordinary
kriging is the most commonly used variant of simple kriging and it has
been the anchor algorithm of geostatistics (Deutsch and Journel, 1998), we
choose 3-D ordinary kriging to interpolate the house experimental data. By
ordinary kriging, the estimation for unknown location u is calculated as:

w(u) =
N

∑

i=1

λiwi ,
N

∑

i=1

λi = 1 , (25)

where weights λi are determined by variograms to minimize the error
variance.

We use the Matlab Kriging Toolbox (version 4.0) provided by Gratton to
do the experiments. It is available from http://www.inrs-eau.uquebec.ca/
activites/repertoire/yves gratton/krig.htm. This toolbox is almost entirely
made up of functions from Deutsch and Journel (1998) and Marcotte (1991).
It actually implemented high dimensional cokriging with Matlab. Cokriging
is the multi-variable extension of kriging. It means kriging with more than
one variables. When the cokriging program is called with only one variable,
it will return the kriging result. Since we have only one variable, the house
price, we only need kriging.
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Fig. 11. Kriging susceptibility to time aggregation according to MAE (Mean Abso-
lute Error) and RMSE (Root Mean Square Error). The solid lines are the actual
result of MAE and RMSE, while the dashed lines are the linear regression functions
that best approximate their tendency.

4.3.1 Accuracy

With the search radius be 500, the number of nearest neighbors be 10, and
some other default input parameters for point cokriging, we have tested several
choices of variogram models. The result of linear model with nugget effect has
been the best. We put the result of this model into Table 3. The MAE and
RMSE values of kriging based 3-D method are slightly better than IDW based
3-D method. But they are worse than shape function based both ST product
and 3-D methods.

4.3.2 Error-Proneness to Time Aggregation

Similarly to the analysis of shape function and IDW based methods, we test the
same twelve ways of time aggregation for kriging based 3-D method. Figure 11
shows the experimental results of both MAE and RMSE. From the column
Slope in Table 3, we can see that kriging based 3-D method is not error-prone.

4.3.3 Constraint Types

The constraint type for kriging based 3-D method is polynomial since the
calculation of variograms by equation (24) is already quadratic.
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4.3.4 Non-invariance to coordinate scaling

Since kriging is similar to IDW in the weighting mechanism that is influenced
by distances, kriging is also not invariance to coordinate scaling.

Table 3
Comparison results

Slope
Method MAE RMSE

MAE RMSE
Constraint Invariance

Reduction Shape Func 8.98 11.34 9.69 13.08 polynomial yes

(ST Product) IDW(n=3, p=1) 10.05 11.96 9.49 13.62 polynomial no

Shape Func 7.92 10.11 0.34 0.69 linear yes
Extension

IDW(n=3, p=1) 11.14 13.63 0.06 0.07 polynomial no
(3-D)

Kriging 10.25 12.59 0.07 0.08 polynomial no

5 4-D Shape Function Example for 3-D Space and 1-D Time Prob-

lems

We implemented the 4-D shape functions in Section 3.2.2 by Matlab. We also
extended the 2-D space and 1-D time real estate example to a 3-D space and
1-D time problem by adding the elevation information to each house as shown
in Tables 4 and 5.

Table 4
Sample 4D(x, y, z, t, p)

X Y Z T P (price/square foot)

888 115 1305 4 56.14

888 115 1305 76 76.02

1630 115 1294 118 86.02

1630 115 1294 123 83.87

...
...

...
...

...

2240 2380 1295 51 91.87

2650 1190 1288 43 63.27

Table 5
Test 4D(x, y, z, t)

X Y Z T

115 1525 1294 16

115 1525 1294 58

115 1525 1294 81

115 1610 1293 63

...
...

...
...

120 1110 1300 30

615 780 1306 59

We used our Matlab program to interpolate the 4-D test data and compared
it with the original values according to MAE and RMSE. The result of MAE
is 8.54 and the result of RMSE is 10.25. These results are slightly worse than
the 3-D shape functions methods in Table 3. This can be explained by the fact
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that the elevations of those houses in the selected test area are similar and
the house elevation is not a factor to contribute to house prices. Therefore, it
adds noisy to the interpolation by considering the house elevation.

6 Future Work

For the extension method based on shape functions the resulting spatio-
temporal interpolation data can be represented using linear equality and in-
equality constraints. While there are many ways of storing this representation,
constraint databases (Kanellakis et al., 1995; Kuper et al., 2000; Revesz, 2002)
are a convenient alternative. Linear constraint databases used in the DEDALE
system (Grumbach et al., 2000) and the MLPQ system – see Chapter 18 in
(Revesz, 2002) – are particularly natural for this type of interpolated data.
The advantages of using MLPQ include compact data storage, convenient
database querying, and the availability of a number of built-in visualization
tools, including some for spatio-temporal animation. For future work, we plan
to use this representation for the real estate data set and also experiment with
other data sets.
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