
DISCO: A Constraint Database System with Sets

Jo-Hag Byon and Peter Z. Revesz

Department of Computer Science and Engineering
University of Nebraska-Lincoln, Lincoln, NE 68588, USA

email: {byon,revesz}Qcse.unl.edu

Abstract. This paper describes the implementation of a constraint database
system with integer and set of integers data types. The system called
DISCO allows Datalog queries and input databases with both integer

gap-order [30] and set order constraints [31]. The DISCO query language
can easily express many complex problems involving sets. The paper also

presents efficient running times for several sample queries.

1 Introduction

Recently there has been much interest in constraint databases that generalize
relational databases by allowing infinite relations that are finitely represented
using constraint tuples (ex., [23, 3, 4, 8, 17, 21, 25, 28)]).

DISCO (short for Datalog with Integer and Set order COnstraints) is a con-
straint database system being developed at the University of Nebraska. DISCO

implements a particular case of constraint query languages for which a general
framework was proposed in [23] analogously to the constraint logic programming
framework of Jaffar and Lassez [18].

The particular type of constraints implemented in DISCO are integer gap-
order and set order constraints. The incorporation of these constraints into

databases was described theoretically in [30, 31, 34] but not implemented be-

fore.

DISCO combines the advantages of constraint logic programing and database
systems. DISCO provides a non-procedural, logic-based query language and al-

lows users to express the database inputs in a compact and often the only natural

way, i.e., using constraints. Like many other database systems, DISCO also works

by a translation to a procedural, algebraic language and a bottom-up evaluation

that is guaranteed to terminate with some constraint database output. These
features make DISCO applicable in various problems in computer-aided design,

scientific databases and other areas where set-type data are used.

The current version of DISCO also incorporates several optimization meth-
ods. The running time of DISCO as measured on some traditional problems
like boolean satisfiability is quite reasonable compared with other solutions.

Since DISCO has a DEXPTIME-complete data complexity, any implementation

will have some bad worst cases. (Data complexity measures the computational

complexity of evaluating fixed size query programs as the input database size

varies [7, 38].) However, the running times of most user queries may be faster in

the average case. Developing good benchmark problems for constraint database
systems is a topic of research in the future.

The paper is organized as follows. Section 2 describes the DISCO query lan-
guage. Section 3 presents the outline of the implementation of DISCO, including
the data structures, the optimization methods used and the algorithm for query
evaluation. In Section 4 we present the testing results on some example queries.
In Section 5 we mention related work. Finally, in Section 6 we list some open

problems to improve the system that we are working on.

2 The DISCO Query Language

The syntax of the query language of DISCO, denoted Datalog<2°S?@ , is that of

traditional Datalog (Horn clauses without function symbols) where the bodies of
rules can also contain a conjunction of integer or set order constraints. That is,
each program is a finite set of rules of the form: Ro :— R1,Ro,..., Ry. The ex-
pression Ro (the rule head) must be an atomic formula of the form p(v,..., vn),
and the expressions R,,..., R; (the rule body) must be atomic formulas of one

of the following forms:

1. p(vi,...,Un) where p is some predicate symbol.

2. v@u where v and wu are integer variables or constants and @ is a relational
operator =,#,<,<,>,>,<, where g is any natural number. For each g the

atomic constraint v <, u is used as shorthand for the expression v + g < u.
3. V CU or V =U where V and U are set variables or constants.

4.c€U ore ¢ U where c is an integer constant and U is a set variable or
constant.

Atomic formulas of the form (2) above are called gap-order constraints and
of the form (3-4) are called set order constraints. In this paper we will always
use small case letters for integer variables and capital letters for set variables.
Set variables always stand for a finite or infinite set of integers.

Remark: In Datalog<?*S?@ the left hand side of any €,¢ constraint must
be a constant. Without this restriction the query language is not evaluable [33].

Next we give as an example of Datalog<%S?@ the query for testing the sat-

isfiability of a propositional formula in conjunctive normal form.

Example 2.1 We assume that the input propositional formulas are in conjunc-

tive normal form and contain only the propositional variables 21, £9,....

We describe each input propositional formula @ using three EDB (extensional

database [37]) relations: No_vars, No_clauses, Clause. The unary EDB relations
No.vars and No-_clauses describe respectively the number of distinct variables

and clauses in @.
Each clause of @ is represented by a constraint tuple of the Clause EDB

relation. In each constraint tuple the first argument gives the clause number and
the second argument gives the elements of the clause. The second argument is a

set in which integer i (or —7) appears if and only if variable x; occurs positively

(or negated) in the clause.

For example, let @ be the propositional formula (#1 V 2 V £3) A (721 V t2 V
£4) A (n%3 V £4). Then ¢ is represented by the following constraint EDB.

No-vars(4).
No-clauses(3).

Clause(1, {1, 2, 3}).
Clause(2, {—1, 2, 4}).
Clause(3, {—3, 4}).

We use the EDB relation Literal to express all the possible literals that may

occur in @. We will also use the EDB relation Choice to express the fact that
either variable 7 or its negation is true for each propositional variable.

Literal({1}).
Literal({2}).
Literal({3}).
Literal({4}).
Literal({—1}).
Literal({—2}).
Literal({—3}).
Literal({—4}).

Choice(1,X)-1¢€X,-1¢ X.
Choice(1,X)-1¢X,-1e X.
Choice(2,X)-2€ X,-2¢ X.
Choice(2, X) -2¢ X,-2€ X.
Choice(3, X) -3€ X,-3¢ X.
Choice(3, X) :- 3 ¢ X,-3€ X.
Choice(4,X)-46€ X,-4¢ X.
Choice(4, X) -4¢ X,-4€ X.

We also assume that the input database contains the Nezt relation with the

tuples Next(0,1), Next(1,2), Next(2,3), Next(3,4). The Nest relation is used
for iterating over the number of clauses and variables. Clearly the clauses are
satisfiable if and only if there is a valid and satisfying truth assignment. Hence
a satisfying truth assignment will be found by first finding all possible truth
assignments by iterating over the variables and making choices over each variable
and second testing for each assignment whether it satisfies all the clauses.

We represent truth assignments to a set of propositional variables by a set

of integer numbers where the set contains integer 7 if 2; is true and — if z; is

false. For example, the truth assignment in which x; and gz are true and z3 and
x4 are false is represented by the set {1,2,-3, —4}.

Assgn(0, X).
Assgn(j,X) :- Assgn(i, X), Next(i, j), Choice(j, X).

Sat(0,X) :- No_vars(n), Assgn(n, X).
Sat(j, X) + Sati, X), Next(i, 3), Clause(j, C), Literal(V),V CC,V C X.

Yes(X) -- No_clauses(m), Sat(m, X).
Let’s see how the program tests that the assignment X = {1,2,—3, —4} is

a satisfying truth assignment. Clearly X is a possible truth assingment, hence
Sat(0, {1, 2, —3, —4}) will be true. Since Next(0,1) and the first clause contains
variable x; which is true in X, Sat(1, {1,2, —-3, —4}) will also be true. Similarly
we can find Sat(2, {1,2, -3, —4}) and Sat(3, {1,2, -3, —4}) to be true. Since we
have three clauses, by the last rule Yes({1,2, —3, —4}) will be true. Since Yes is
a non-empty relation the input sentence is satisfiable. 0

It is shown in the earlier papers [30, 31] that Datalog with integer gap-order

only Datalog<2
and Datalog with set order constraints only DatalogS?@ has a fixpoint model
which coincides with the least model. We will show that the same property holds

for Datalog<2°S?@) queries.

Definition 2.1 Let M be the set of all possible ground tuples over the integers
and sets of integers. Let P be a Datalog<2’SP@ program and d be a constraint
database. Let D be the set of ground tuples implied by d. The function Tp from
and into M is defined as follows.
Tp(D) = {te M : there is arule Ro :— R,..., Ry in P and an instantiation 0
such that
Ro = t, and R,6 holds if R; is a constraint and R,@ € D otherwise for each

1<i<k.}
Now we prove that for Datalog<¢*SP@) programs the least model and the least
fixpoint coincide.

Theorem 2.1 For any Datalog<?°SP@) program P, Least Model of P = Least
Fixpoint of Tp. O

Each query evaluation in DISCO yields as output a set of combined graphs for

each IDB (intensional database [37]) relation. The termination of DISCO queries
follows from the termination proofs in the earlier papers [30, 31]. Therefore we

can show the following:

Theorem 2.2 Datalog<2'S?@ queries have DEXPTIME-complete data com-
plexity. O

3 Implementation of the DISCO System

The DISCO database system not only combines the method of dealing with

Datelog<2 described in [30] and the method of dealing with Datalog<?@ described
in [31], but it improves those by the implementation of constraint generalizations

of some well-known Datalog evaluation and optimization techniques. In partic-

ular, at present the following techniques are implemented in DISCO.

3.1 Translation to Constraint Algebra

In DISCO the first step of the evaluation of any Datalog<%:SP@ query is the

translation to a SELECT-PROJECT-JOIN like constraint algebra of the right
hand side of each rule in the program. The operators in this algebra work on
relations that are put into a combined graph form. That means that each con-
straint tuple in the input database is converted from a conjunction of integer

gap-order and set order constraints to a combined graph.

A combined graph contains a gap-graph described in [30] and a set-graph
described in [31]. The first step in the conversion is the elimination of €, ¢ con-
straints by rewriting them into other types of constraints. For example the con-

straint 5 € gz is replaced by the constraint {5} C x. The second step is to
represent the remaining gap-order constraints by a gap-graph and the remaining
set-order constraints by a set-graph as in [30, 31]. The vertices of the gap-graph
are integer variables or constants and the vertices of the set-graph are integer
set variables. Directed edges with a nonnegative integer gap-value label in the
gap-graph denote order constraints (<,<,) and undirected edges equality con-
straints (=). Directed edges in the set-graph denote subset constraints (C) and
undirected edges equality constraints (=).

Once we have this representation for the input database it is possible to

evaluate any conjunctive or Datalog query by replacing the join (or project) op-

eration by a merge (or shortcut) operation defined on combined graphs. Let ¢
and t2 be two constraint tuples. Assume that the combined graph representation
of ¢; contains the gap-graph g; and set-graph s, and that of f2 contains go and
$2. The merge operation in DISCO will apply the merge operation defined in [30]
to gi; and gy and the merge operation defined in [31] to s; and sg. The short-
cut operation in DISCO will apply either the shortcut operation defined in [30]

or [31] to either g; or s; depending on whether the variables to be eliminated
are integer or set type. If R,; and Ry are two constraint relations in combined

graph form, then the generalized join will apply the merge operation to each
possible pair of tuples from R, and Ry and the generalized project will apply
the shortcut operation to each tuple in R, (or Re).

3.2. Semi-Naive Evaluation

In the naive evaluation strategy, the bodies of rules are converted into relational

algebra expressions and then evaluated. The naive evaluation technique is so
termed because it fails to recognize a key aspect of the growth of the relations

involved in an iterative evaluation of a DISCO program. Using this strategy, we
see that for each iteration, all the tuples of the relation in previous iterations

are used for the next iteration in the evaluation of the query. This is extremely
inefficient, because only the most recently added tuples can possibly generate

any new tuples. Failing to make use of this important fact makes the naive

evaluation strategy inefficient in terms of both space and time, as the size of
the intermediate tables are almost always bigger due to the presence of tuples

that do not contribute to the growth of the relation corresponding to the output
relations of the query. The semi-naive query evaluation technique, on the other

hand, uses only the set of tuples added to a relation in the previous iteration.

This set of most recently added tuples is called the ” delta set”. The semi-naive

evaluation technique is also implemented in DISCO. This optimization technique
alone gave substantial improvements in running time.

3.3. Pushing down Selection and Projection

This is done similarly to the algorithms of pushing down selection and projection

in [37] for regular relational algebra expressions. The idea is that selections and
projections are made as early as possible to reduce the size of the intermediate
relations during the evaluation, thereby improving the overall efficiency of the

query evaluation (see [37]). We found that the savings by this method alone were
substantial even including the time of pushing down selection and projection.
(In Section 4 the time of pushing down selection and projection is included in
the total running time.) In the semi-naive evaluation strategy, the selection and

projection pushing is applied to the delta relations as opposed to the entire

relation.

3.4 Outline of the DISCO System

DISCO is implemented in the C++ programming language. The pseudo-code of
the DISCO query processor is given at the end of this section. The main data

structures used by the query processor are described below and an overview of

them is given in Figure 1.
Argument Class: Each Argument is a token returned by the parser with type

indicated to be an integer constant, an integer variable, a set constant, or a set

variable.

Constraint Class: This class represents DISCO atomic constraints which are
described in Section 2.

Predicate and Rule Classes: In DISCO a, Predicate consists of a predicate

name and a parenthesized, comma-separated argument list of variables or con-

stants. A Rule consists of predicates and constraints as described in Section 2.

This class contains the member function rectify that is used to rectify the pred-

icates and rules similar to [37].
GapGraph, SetGraph and CombinedGraph Classes: In DISCO the data
structure used to represent each combined graph is a pair of adjacency matrices
with the first matrix representing the gap-graph and the second the set-graph
part. The rows and columns in the first matrix correspond to variables or con-
stants and in the second matrix only to variables. The 7, jth entry in the first
matrix is —2 if there is no edge from the ith vertex to the jth vertex, —1 if they

are equal and a non-negative integer if there is an edge from i to j with the
same gap-value. The 7, jth entry in the second matrix is —2 if 7 and j are not

 GapGraph

CombinedGraph

Database

Fig. 1. The class hierarchy used in the implementation

connected, —1 if the ith vertex is C the jth vertex, 0 if they are equal and 1 if
the ith vertex is D the jth vertex. In addition the last two columns of the second
matrix are used to describe the set-constant lower and upper bounds for each

variable (with the emptyset and the set of integers Z as the default values). The

member functions in each of these classes are: Consistent, Satisfies, Subsume,

Shortcut and Merge.

Relation Class: This class is used to represent a generalized relation. It is
comprised of a name, an argument list and two tables of generalized tuples rep-
resented by a CombinedGraph, one being the table of actual relational tuples in

the relation, the other being the ”delta table”, i.c., a table containing references
to those tuples added to the relation in the most recent iteration of the query
evaluation routine. This is to facilitate the implementation of the semi-naive

query evaluation algorithm. The Relation has member functions that implement
the Select, Project and Join operations, as well as a member function AddTuple

which ensures that a tuple being added to the relation is consistent, and that it

is not subsumed by any other generalized tuple in the relation.

Database Class: This class implements a generalized database. It consists of a
set of instances of the Relation class, and member functions that implement in-
sertion and deletion of relations into and from the database. It is in the Database

class that the tokens returned by the lexical front-end are stored and manipu-

lated. The Database class defines the concept of a module, which is a list of
DISCO facts and rules bracketed by a begin and an end. The ModuleHandler
member function of this class evaluates the DISCO query in a semi-naive way.

Query Class: Each query is a combination of a program and a database. This
class contains the functions of insert-relation, delete-relation and evaluate-query.

The following algorithm in pseudo-code describes the working of the query
evaluation technique used in DISCO. Eventhough there were two evaluation
techniques are used for each versions of DISCO, only the algorithm for semi-
naive evaluation is represented. The algorithm for naive evaluation technique
can be achieved by changing the body of repeat statement to ’call Function

Query.Eval. In function Relation. CreateHDB() all the facts are converted into
the set of combined graphs and stored into the database. The reason that a
fact clause is converted into a set of combined graphs is that an integer gap-
order constraint of the body of the fact could be converted into two gap-graphs
(eq. two gap-graphs of s < y and x > y for the integer gap-order constraint

x # y) and each of two gap-graphs combines with a set graph resulting in two
combined graphs. The function Rule. Rectify() takes care of the rectification of the
rules. The fuction Query.Eval produces a set of new tuples satisfying rule clauses

having predicates in its body. The algorithm terminates when there are no more
tuples that can be added to any IDB relations by the function Query. Eval.

Algorithm 3.1 : The Query Evaluation Algorithm in Pseudo-Code

Function Relation. CreateEDB()
begin

for each EDB predicate P; do
begin

initialize a relation E;;

for each fact F; with predicate P, do
begin

create a list L of combined graphs in the following manner:
construct a disjunction of gap-graphs corresponding to the integer
order constraints in the body of F;;
construct a set-graph corresponding to the set order constraints
in the body of F;;

construct a set of combined graphs by combining each gap-graph
to the set-graph;

for each combined graph c in L do
if (c does not subsume any combined graph in P,)

add c to E;;

end

if (BH; is not in the database)
add F; to the database;

end

end /* end of Function Relation.CreateEDB */

Function Rule. Rectify()
begin

for each rule r; in module M do

begin

initialize an empty attribute list A;;

for each predicate symbol P; in the body of r; do

begin

rectify P; for both integer and set variables by calling Pred. Rectify;
/* see [37] for the description of how predicates are rectified. */

end

for each constraint c; in the body of r; do
begin

if (any operand of c; is a integer or set variable)
add this operand to the attribute set of the relation A;;

if (c; can be applied to any P; of r; as a selection constraint)
add c; to selection list of P, of r; as a selection constraint;

end

mark rule r; as rectified;

end

end /* end of Function Rule.Rectify */

Function Query.Eval()
begin

initialize I; corresponding to IDB predicate P; to be an empty set.

repeat

for each IDB predicate symbol P; do

begin

call EVAL-INCR() analogously to [37].
It returns AJ,, the list of newly added combined graphs;
if (any combined graph in AI, does not subsume those already in I;)

add that new combined graph to J;;
end

until (no new combined graphs are added to any I;)

end /* end of Function Query.Eval */

/* main program begins here */

call Function Parse ();
call Function Relation. CreateEDB();
call Function Rule. Rectify();
call Function Query. Eval();

4 Testing Results

We first describe two more examples adapted from [31].

Example 4.1 We can express the successor function for values between 1 and
2° using only O(s) space. The idea is to encode the binary notation of each
number as some subset of {s1, s0,...,21, 20,11, 10}, where #1 or 20 will be present

according to whether in the binary encoding the ith digit from the right is 1 or
0, respectively. For example, let s = 4. Then the number 9 can be represented
as {41,30, 20, 11}.

We first create a relation Digit(N,i,z) which is true if and only if in the
binary notation of n the ith digit from the right is x.

Digit(N,1,0):—10€ N11 N.
Digit(N,1,1):—11€ N,10¢N.

Digit(N,s,0) :— s0E N,s1 ZN.
Digit(N,s,1) :— slEN,s0¢N.
We also add to the input database the facts Next(0,1),...,Next(s — 1,8)

and the fact No_digits(s) and Time_bound({s1,...,11}) that describe that we
have s binary digits in each number and the largest number is 2°. Note that the
size of the database is O(s). Now we express the successor relation Succ(N, M)
which is true if and only ifm =n+1 for any n,m < 2* where N and M express

the integers n and m respectively.
Suce(N,M) :— Succ2(N,M,s), No-digits(s).

Succ2(N,M,i) -— Succ2(N,M,j), Nezt(j,1), Digit(N,1, x), Digit(M,i, x).
Suce2(N, M, 1) :— Digit(N, 1,0), Digit(M, 1, 1).
Succ2(N,M,1) -—— Succ3(N, M,j), Nezt(j,1), Digit(N, i, 0), Digit(M, i, 1).

Succ3(N,M,1) -—— Succ3(N, M,j), Nezt(j,1), Digit(N, i, 1), Digit(M, i, 0).
Succ3(N, M,1) :-— Digit(N, 1,1), Digit(M, 1, 0).
It is easy to see that in the above Succ3(N, M, 7%) is true if the first i digits

of N are all 1’s and of M are all 0’s. The second and third rules of Succ2 ensure

that for some i the first i digits of N represent 2¢ — 1 and those of M represent

2‘. The first rule for Succ2 ensures that N and M agree on all subsequent digits,
hence N = M +1 will be true for Succ2(N, M,s) for any s greater than i.

Note that in the succesor example the size of the output database is expo-

nential in the size of the input database. We could not have such a case without

constraints. The next example concerns inheritance hierarchies.

Example 4.2 Consider an inheritance hierarchy in which People is the super-

class of the Employee and Customer classes and Employee is the superclass of

the Manager class. Suppose that each class in the hierarchy has some set con-

straints (lower and upper bounds) on its set of elements. The lower bounds tell
which persons are definitely in the class, while the upper bounds tell which per-
sons may be in the class. Any set in between the two is a possible solution.

Consider the input database shown below. There the given constraints for the
Employee class allows two possible solutions, one is {al, bob, cari} the other is

{al, bob, cari, dave}. (We use lower case character strings instead of fixed ID

numbers to make the example clearer.)

Root(person)
Subclass(1, person, employee)
Subclass(2, person, customer)
Subclass(1,employee, manager)

No-subclasses(person, 2)
No-_subclasses(employee, 1)
No-_subclasses(manager, 0)
No_subclasses(customer, 0)

Nesxt(0, 1)
Nezt(1, 2)

Inbounds(per son, P)
Inbounds(employee, EF) :— {al, bob, cari} C E,E C {al, bob, carl, dave}
Inbounds(manager, M) :— {al, bob} C M
Inbounds(customer, C) :— {ed, fred, greg} C C,C C {ed, fred, greg, li},

C C fed, fred, greg, han, ken}, joe ¢ C

A natural question is to find the tightest lower and upper bounds for each
class implied by the entire inheritance hierarchy. This can be done by:

Upper_bound(c2,52) :— Subclass(n, ci, c2), Upper -bound(ci, $1),S2 C 1,
Inbounds(c2, 82)

Upper_bound(c, S) :— Root(c), Inbounds(c, S)

Lower-bound(c,S) — :— Inbounds(c, S), Lower_bound2(n,c, S),
No-_subclasses(c, n).

Lower_bound2(n,c, S) :— Lower-bound2(m, c, S), Lower_bound(ca, $2),
So C §, Nezt(m, n), Subclass(n, c,c2)

Lower_bound2(0, c, S)

The intuitive idea is that the upper bound of a superclass is also an upper

bound of its subclasses. Similarly, the lower bound of a subclass is a lower bound

of its superclass.

For example, the program will find the upper bound for the class Manager
to be M C {al, bob, cari, dave}, and the lower bound for the class Person to be

{al, bob, carl, ed, fred, greg} C P.O

Both the naive and the semi-naive versions of the evaluation routines included

an algebraic optimization of the right hand sides of the rules. The optimization
implemented uses pushing down selections and projections (see Section 3). The
CPU times shown in Figures 2 and 5 are measured in seconds on a Silicon Graph-
ics 4.1.3 mainframe machine. The figures show the total CPU times for parsing,

150.0

100.0 +
oO

3
&
oO

£

50.0 +

0.0 er
2.0 3.0 4.0 5.0 6.0

number of digits

Fig. 2. Plot of running times for successor query

rectifying, algebraic optimizations, as well as the naive (dotted line) or semi-
naive (solid line) fixpoint evaluations of the queries. Not shown in the figures are
the running times for the inheritance query. We found that the naive evaluation

for the inheritance query took 3.92 seconds and the semi-naive evaluation took
2.98 seconds.

5 Related Work

There is a number of constraint logic programming sytems that allow finite sets
as a data type and constraints on finite sets, inlcuding ECLIPSE [14], CLPS [27],

Conjuncto [15], and {log} [13]. In addition, we should mention CHIP [12] that
allows linear arithmetic constraints over both the rationals and bounded subsets

of the integers and CLP(2”) [40] that allows finite sets of strings as a data type.
DISCO is different from these in its main evaluation method and in allowing
infinite sets.

Constraint logic programming systems without set type data also share with

ti
me

in
se

c
ti
me

in
se
c

40.0

30.0

20.0 -

 10.0

3.0

500.0

4.0 5.0 6.0

number of clauses with 3 variables

7.0

400.0 +

300.0 +

200.0 +

100.0 - 0.0

0.0
1 1

5.0 10.0

number of clauses with 4 variables

15.0

DISCO the idea of constraint tuples and constraint-driven evaluation. Among
these we can mention Prolog ITI that allows constraints over the 2-valued Boolean
algebra and linear arithmetic constraints over the rationals [10], CLP(R) [19]
that provides polynomial constraints over the reals, LIFE [1] that allows con-
straints over feature trees and also provides a notion of objects and Trilogy [39]

that allows constraints over integers, real numbers and strings.
In constraint logic programming languages program termination is not guar-

anteed, but in DISCO the evaluation of queries is guaranteed to terminate, as
is usually necessary in database systems. The optimization techniques best suit-

able for constraint query languages may be different from those for constraint

logic programs. Therefore the area of optimization techniques and their imple-

mentations needs to be further explored. A recent advance in this area is the

compile-time constraint solving method of [16] that is implemented within the
DeCoR database system.

Within the area of nested databases that allow abstract data types with nest-

ing of tuple and set constructors several related languages have been proposed,
for example LDL [36], CORAL [29] and ELPS [26]. The SEL [20] logic program-
ming language also incorporates the union U set constructor as a basic primitive
within Prolog. These languages however do not allow the use of set constraints
within the input (or output) database; therefore they fit neither the CLP nor the

CQL frameworks [18, 23]. Also these systems do not take advantage of quantifier
elimination for set order constraints but use set-matching and other techniques
instead (see [2] for a survey on such techniques). Some recent language proposals
within nested or object-oriented databases [5, 17, 34] allow constraint tuples but

they also fall outside the contraint query languages framework.

6 Conclusions and Open Problems

We are currently working on adding to DISCO further optimization methods
like magic sets, a better indexing method for constraint tuples (eg. [24, 6]) and
extending the types of constraints in the system. In particular we plan to add

periodicity constraints [35]. Also, in the next version of DISCO we plan to in-

clude string data type. That would enable to express the inheritance hierarchy

example with ease. We also would like to explore adding aggregate operations
and negation to the DISCO query language in a safe way. Some preliminary
theoretical results towards these are described in [9, 32].

References

1. H. Ait-Kaci, A. Podelski. Towards a Meaning of LIFE. Journal of Logic
Programming, 16, 195-234, 1993.

2. A. Aiken. Set Constraints: Results, Applications and Future Directions.

Proc. 2nd Workshop on Principles and Practice of Constraint Programming,

171-179, 1994.

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

. F. Afrati, $.S. Cosmadakis, 8. Grumbach, G.M. Kuper. Linear vs. Poly-

nomial Constraints in Database Query Languages. Proc. 2nd Workshop on

Principles and Practice of Constraint Programming, 152-160, 1994.
. A. Brodsky, J. Jaffar, M. J. Maher. Toward Practical Constraint Databases,

Proc. VLDB, 567-580, 1993.
. A. Brodsky, Y. Kornatzky. The L,,;C Language: Querying Constraint Ob-

jects. Proc. SIGMOD, 1995.
. A. Brodsky, C. Lassez, J-L. Lassez, M. J. Maher. Separability of Polyhedra

for Optimal Filtering of Spatial and Constraint Data, Proc. ACM PODS,
54-65, 1995.

. A.K. Chandra, D. Harel. Computable Queries for Relational Data Bases.
Journal of Computer and System Sciences, 21:156-178, 1980.

. J. Chomicki, T. Imielinski. Finite Representation of Infinite Query Answers.

ACM Transactions of Database Systems, 181-223, vol. 18, no. 2, 1993.
. J. Chomicki, G. Kuper. Measuring Infinite Relations, Proc. 14th ACM
PODS, 78-85, 1995.
A. Colmerauer. An Introduction to Prolog III. CACM, 28(4):412-418, 1990.
J. Cox, K. McAloon. Decision Procedures for Constraint Based Extensions
of Datalog. In: Constraint Logic Programming, MIT Press, 1993.
M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F.
Berthier. The Constraint Logic Programming Language CHIP. Proc. Fifth
Generation Computer Systems, 1988.
A. Dovier, G. Rossi. Embedding extensional finite sets in CLP. International

Logic Programming Symposium, 1993.

ECLIPSE. Eclipse user manual. Technical report. ECRC, 1994.

C. Gervet. Conjunto: Constraint Logic Programming with Finite Set Do-
mains. Proc. International Logic Programming Symposium, 339-358, 1994.

R. Gross, R, Marti. Compile-time Constraint Solving in a Constraint

Database System. Proc. Post-ILPS’94 Workshop on Constraints and
Databases, 13-25, 1994.
8S. Grumbach, J Su. Finitely Representable Databases. Proc. 14th ACM

PODS, 66-77, 1995.
J. Jaffar, J.L. Lassez. Constraint Logic Programming. Proc. 14th ACM
POPE, 111-119, 1987.

J. Jaffar, 8. Michaylov, P.J. Stuckey, R.H. Yap. The CLP(R) Language and
System. ACM Transactions on Programming Languages and Systems, 14:3,

339-395, 1992.
B. Jayaraman, A. Nair. Subset-Logic Programming: Applications and Im-
plementation. Univ. North Carolina Tech. Report TR-88-011, 1988.

F. Kabanza, J-M. Stevenne, P. Wolper. Handling Infinite Temporal Data.

Proc. 9th ACM PODS, 392-403, 1990.
P.C. Kanellakis, D.Q. Goldin. Constraint Programming and Database
Query Languages. Proc. 2nd TACS, 1994.
P. C. Kanellakis, G. M. Kuper, P. Z. Revesz. Constraint Query Languages.
Journal of Computer and System Sciences, vol. 51, 26-52, 1995.
P.C. Kanellakis, 8. Ramaswamy, D.E. Vengroff, J.S. Vitter. Indexing for

Data Models with Constraints and Classes Proc. 12th ACM PODS, 1993.

M. Koubarakis. Representing and Querying in Temporal Databases: the

Power of Temporal Constraints. Proc. Ninth International Conference on
Data Engineering, 1993.

26

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

. G.M. Kuper. Logic Programming with Sets. Journal of Computer and Sys-

tem Sciences, 41, 44-64, 1990.
B. Legeard, E. Legros. Short overview of the CLPS System. Proc. PLILP,

1991.

J. Paradeans, J. Van den Bussche, D. Van Gucht. Towards a Theory of

Spatial Database Queries. Proc. 13th ACM PODS, 279-288, 1994.
R. Ramakrishnan, D. Srivastava, S. Sudarshan. CORAL: Control, Relations

and Logic. Proc. VLDB, 1992.
P. Z. Revesz. A Closed Form Evaluation for Datalog Queries with Integer
(Gap)-Order Constraints, Theoretical Computer Science, vol. 116, no. 1,
117-149, 1993.
P. Z. Revesz. Datalog Queries of Set Constraint Databases, Fifth Inter-

national Conference on Database Theory, Springer-Verlag LNCS 893, pp.

425-438, Prague, Czech Republic, January, 1995.

P. Z. Revesz. Safe Stratified Datalog with Integer Order Programs, First In-
ternational Conference on Principles and Practice of Constraint Program-

ming, Springer-Verlag LNCS 976, pp. 154-169, Cassis, September, 1995.

P, Z. Revesz. Set Constraint Databases and Query Languages, Pre-PODS’95
Workshop on Theory of Constraint Databases, San Jose, California, 1995.

D. Srivastava, R. Ramakrishnan, P.Z. Revesz. Constraint Objects. Proc. 2nd

Workshop on Principles and Practice of Constraint Programming, 274-284,

1994.

D. Toman, J. Chomicki, D.S. Rogers. Datalog with Integer Periodicity Con-
straints. Proc. ILPS, 1994.
S. Tsur and C. Zaniolo. LDL: A Logic-Based Data-Language. Proc. VLDB,
pp 33-41, 1986.
J.D. Ullman. Principles of Database and Knowledge-Base Systems, Vols

1&2, Computer Science Press, 1989.
M. Vardi. The Complexity of Relational Query Languages. Proc. 14th ACM

Symposium on the Theory of Computing, 137-145, 1982.

P. Voda. Types of Trilogy. Proc. 5th International Conference on Logic Pro-
gramming, 580-589, 1988.

C. Walinsky. CLP(£”*): Constraint logic programming with regular sets.
Proc. 6th International Conference on Logic Programming, 181-190, 1989.

This article was processed using the IAT@X macro package with LLNCS style

