
Efficient and Robust Constraint Automaton-Based
Genome Map Assembly

Peter Z. Revesz

University of Nebraska-Lincoln
Department of Computer Science and Engineering

Lincoln, NE 68588
1 402 472 3488

revesz@cse.unl.edu

Dipty Singh
University of Nebraska-Lincoln

Department of Computer Science and Engineering
Lincoln, NE 68588

1 402 472 7767
singh@cse.unl.edu

ABSTRACT
DNA sequences are cut into smaller fragments using restriction
enzymes in order to facilitate analysis. Application of different
restriction enzymes to multiple copies of a DNA sequence
generates many overlapping fragments. To reconstruct the original
DNA, these fragments need to be sequenced and assembled. This
problem of finding the original order of the fragments is called the
genome map assembly problem. We propose a constraint
automaton solution to solve the genome map assembly problem
for both error prone and error free data. Plasmid vectors puc57,
pKLAC1-malE, pTXB1 and phage vector Adenovirus2, having a
size in base pairs of 2710, 6706, 10153 and 35937 respectively,
were used to prove that computational time for solving genome
map assembly problem using constraint automaton solution is
linear with both precise and approximate data.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences –
biology and genetics.

General Terms
Algorithms, Experiments, Measurement.

Keywords
Constraint automaton, genome map assembly, plasmid, virus.

1. INTRODUCTION
DNA sequences range from thousands to billions of base pairs.
However, currently available sequencing machines can only
handle a couple of thousand base pairs at a time. So the long DNA
sequences have to be cut into smaller subsequences using
restriction enzymes. After cutting the DNA, small fragments just
float randomly in the solution, losing all the information about the
original order of the sequence. After the subsequences are
sequenced and analyzed, they have to be arranged and assembled
to obtain the original sequence. This process is called genome
map assembly and the problem of fully executing the genome map
assembly process to recover the original sequence is called the
Genome Map Assembly Problem (GMAP). The common
solutions to the genome map assembly problem are based on

using restriction enzyme fingerprints [1,2,4,5,6,14,17,18]. Revesz
proposed an extension of this approach based on constraint
automata [9,7,10] that derive from constraint databases [3]. This
paper improves on the existing constraint automata solution for
both precise and error-prone data. The latter is a practical problem
because error may be introduced by imprecise measurements of
the lengths of genome fragments as measured by number of base
pairs.

This paper is organized as follows. Section 2 describes basic
concepts of constraint automata the genome map assembly
problem and constraint automata solutions to the genome map
assembly problem. Section 3 presents new methods that extend
the constraint automata solutions. Section 4 describes experiments
and analyzes the results. Section 5 presents some conclusions and
future work.

2. BASIC CONCEPTS
2.1 Constraint Automata
Based on conditions that are described using constraints on
variables, constraint automata, are used to control the operation of
a system. It has to find the set of reachable configurations, which
is the set of states and state values that the constraint automaton
can enter. This is one of the important problems in constraint
automata. Each constraint automaton consists of set of states, a set
of state variables, transitions between states, an initial state, and
the domain and initial values of the state variable. Each transition
consists of guard constraints (set of constraints) followed by
assignment statements. In constraint automata, the assignment
statements are shown using the symbol ‘=’ and guards are
followed by questions marks, e.g. a>=100?

If there is a transition whose guard constraints are satisfied by the
current values of the state variables, a constraint automaton can
move from one state to another. In addition to the state variables,
the transitions of a constraint automaton may contain variables.
Some of the values for these variables must be found such that the
guard constrains are satisfied and the transition can be applied.
For this reason, these variables are said to be existentially
quantified variables. By sensing the current value of a variable, a
constraint automaton can interact with its environment. This is
expressed by read(x) command on a transition between states,
where x is any variable. This command can appear either before
or after the guard constraints, which updates the value of x.

2.2 Genome Map Assembly Problem
Currently available sequencing machines can only handle DNA
fragments of a couple of thousand base pairs. The long DNA
sequences have to be cut into small fragments using restriction
enzymes. This cutting results in the loss of information about the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by other than ACM must be
honored. Abstracting with credit is permitted. must be honored. To copy
otherwise or to redistribute to lists requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
C3S2E’14, August 03-05, 2014, Montreal, QC, Canada.
Copyright 2014 ACM ACM 978-1-4503-2712-1/14/08-0133 $15.00.
http://dx.doi.org/10.1145/2641483.2641533

original order of the fragments. After these fragments are
sequenced and analyzed, they have to be arranged and assembled
to obtain the original sequence. This process is called Genome
Map Assembly. The problem of reassembling these fragments
from data that is incomplete, imprecise, ambiguous and often
contradictory is known as the Genome Map Assembly Problem
(GMAP) [10].

Genome sequencing is the process of finding the precise order of
DNA nucleotides in a genome; the exact order of adenine,
cytosine, guanine, and thymine that make up an organism’s DNA.
Genome sequencing allows scientists to sequence genes and
genomes. Due to the limitation of how many bases can be
sequenced in one experiment, DNA has to be broken into smaller
fragments before they can be sequenced and reassembled.

Genome mapping is the process of finding the approximate
position of genes in a genome without getting into the details of
the actual sequence. It is a graphical representation that helps to
find out where you are and how to get to where you want to go. It
identifies the order of the specified subsequences in the genome.
The genome map contains various landmarks identified with a
series of letters and numbers, which help the researchers, find
where specific pieces of DNA belong in the overall genomic
jigsaw puzzle.

Restriction endonucleases, commonly called restriction enzymes,
are nucleases that are made by bacteria to protect themselves from
a virus by cutting their genomes at sites that have a specific
pattern [3]. Restriction site analysis and hybridization are the two
most popular method of getting fingerprints. In restriction site
analysis, one or more restriction enzymes are applied to the DNA
sequence and the lengths of the resulting fragments are measured,
these lengths thus serve as the “fingerprint” of each subsequence.
In hybridization fingerprinting, certain small sequences are
checked to see if it binds to fragments, the subset of such small
sequences that binds to the fragment serves as its fingerprint.

2.3 The Constraint Automata for GMAP
The algorithm of the constraint automata for GMAP can be
described easily, if we define GMAP as a Big-Bag Matching
Problem [10]. The Constraint Automata Solution proposed by
Ramanathan and Revesz [7] has been modified to deal with both
error prone and error free sub fragments of DNA.

A bag is a multiset, a generalization of a set in which each
element can occur multiple times. A big-bag is a multiset whose
elements are bags that can occur multiple times. [10].

Each permutation of the bags and permutation of the elements of
each bag within a big-bag is called a presentation [9,10] There are
several different presentations of a single big-bag. The big-bag
matching decision problem (BBMD) is the problem of deciding
whether two big-bags match. The big-bag matching problem
(BBM) is the problem of finding matching presentations for two
given big-bags if they match [24][25]. We use the concept of
BBM to solve the GMAP. A modified version of Revesz’s
Fingerprint [10] data has been used to collect fingerprints of input
data. Instead of using three restriction enzymes only two enzymes
have been used. The fingerprints collected will later be used as an
input for Constraint Automata Solution for GMAP. The
methodology was as follows:

1. An original DNA sequence was copied.

2. Restriction enzyme “a” was applied to the copied
sequence which created several fragments of varying
lengths depending on the restriction site.

3. Individual fragments were separated.

4. Restriction enzyme “b” was applied to the separated
fragments from step 3, producing sub-fragments.

5. 5.The length of individual sub-fragments was measured.

6. Steps 1-5 were repeated, but restriction enzyme “b” was
applied first and restriction enzyme “a” was applied
consequently.

All the elements from first copy of DNA are stored in Big-bag-A
and elements from the second copy of DNA are stored in Big-bag-
B. For the GMAP, we use a constraint automaton (see Figure 1)
that is a modified version of the ones proposed by Revesz and
Ramanathan [9,7,10]. The automaton has the following states:

• INIT – this is where the automaton begins

• A-ahead – if A bag is ahead

• B-ahead – if B bag is ahead

• HALT – if the solution is found

The automaton has the following state variables:

• UA: set of A bags which has not been used yet

• UB: set of B bags which has not been used yet

• S: set of elements by which either A or B bag is
currently ahead

The automaton starts in the INIT state and tries to reach the
HALT state. The automaton moves from left to right by adding
either an A bag or a B bag. If A bag is greater than B bag, it goes
to A-ahead state. Else, it goes to B-ahead state. If they are equal, it
goes to INIT state and starts the automaton with remaining UA
and UB. When UA, UB, and S are empty and all the bags are
used, automaton goes into HALT state and stops.

This algorithm does not use backtracking. If it does not find the
elements in S in both A-bag and B-bag it goes back to INIT state
and starts the automaton all over again. This makes it very
inefficient. We further improved the efficiency by making a
deterministic, backtracking automaton and also extended it to be
able to handle errors. Our new constraint automaton (see Figure 2)
adds new state and state variables to the existing constraint
automaton. Following are the states:

• Error-Check – check to see if input data has any errors

• Replace-Error- – if there is an error, replace it with the
mean of two mismatched data elements from both A
and B bags

• INIT – this is where the automaton begins

• A-ahead – if A bag is ahead

• B-ahead – if B bag is ahead

• Backtrack – if solution is not yet found but the S is
empty

• HALT – if the solution is found or if the error is greater
than error tolerance value

The automaton has the following state variables:

• Error: difference between mismatched values from A
and B bags

• ErrorTolerance: the specified error tolerance

• Length-A : all the elements of S that belongs to Big-
Bag-A

• Length-B : all of the elements of S that belong to Big-
Bag-B

• UA: set of A bags which has not been used yet

• UB: set of B bags which has not been used yet

• CurrBag : current bag, which is the SelBag from
previous state

• S: set of elements by which either the A or the B bag is
currently ahead

• Options: the set of bags from which the next bag can be
chosen

• SelBag: the bag that as selected from the Option as the
next bag

• Choices: set of remaining bags that were not picked
from Options besides the SelBag.

• Cflag: 0 if Choices is empty and 1 if Choices is not
empty.

The automaton goes through the following steps to solve the
GMAP. The input to the constraint automaton is the fingerprints
of DNA fragments. Bags of big-bag A and big-bag B are fed to
the constraint automaton. The automaton starts with Error-Check
state where input data are checked for any errors. An error may
occur when the length of sub-fragments of DNA is measured,
which results in two different sets of elements in big-bags A and
B. To check for any errors, each element of bags within big-bag-A
is compared with the elements of bags within big-bag-B. If the
elements do not match, then the input data has some error.
Otherwise the input data is error free.

If there is no error in the data it goes to INIT state. If the error is
more than specified error tolerance value, then it goes to HALT
state.

If the error is less than or equal to the specified error tolerance
value, it goes to Replace-Error state.

If the data has some error, it goes to the Replace-Error state. The
idea is to replace the wrong data with the mean of two
mismatched data, so that it will have the same set of data in both
big-bag A and big-bag B.

Let’s consider the sequence of plasmid puc57. If we use the
procedure discussed earlier to collect fingerprints of the sequence,
we will get the following fingerprint data:

Big-Bag A Big-Bag B

355 355, 19

19, 196 196, 288, 121, 13, 541

288 416

121 373

13 320

541, 416, 373, 320, 68 68

While measuring the length of each sub-fragment, if we get “17”
instead of “13” in Big-Bag-A and “418” instead of “416” in Big-
Bag-B. Then we will have the following as the input data.

Big-Bag A Big-Bag B

355 355, 19

19, 196 196, 288, 121, 13, 541

288 418

121 373

17 320

541, 416, 373, 320, 68 68

The automaton compares each element of both bags and finds that
17 and 13, and 416 and 418 do not match. It takes the mean of
each pair of mismatched elements and replaces them with their
mean in both Big-Bag-A and Big-Bag-B.

Big-Bag A Big-Bag B

355 355, 19

19, 196 196, 288, 121, 15, 541

288 417

121 373

15 320

541, 417, 373, 320, 68 68

After replacing the wrong data, both bags contain the same set of
elements and they move to INIT state.

The automaton comes to INIT state, if either the data has no error
or if all the errors have been replaced by the means of two
mismatched data. All the A bags are stored in UA and all B bags
are stored in UB. Since this is the first state where it actually starts
processing data for solving GMAP, it can pick any bag from
either the big bag A or B. So Options is set to all the bags from A
and B. The leftmost bag is selected from Options and set to
SelBag and remaining bag is set to Choices. The elements of
SelBag are set to S. Since Choices is not empty, Cflag is set to 1.
The bag that is just selected is removed from either UA or UB,

from where ever it belongs The elements of the bag in SelBag are
set to either Length-A or Length-B. If the Length-A is greater than
Length-B, the automaton goes to A-ahead state, if not then it
moves to the B-ahead state.

Using figure 2.5, if A1 is picked as the SelBag, then, UA=A2, A3,
A4, A5; S = 355 and Length-A = 355. The automaton goes to the
A-ahead state.

If the automaton is in A-ahead state, the next bag to be picked is
selected from UB. The automaton tries to match the elements of
S and SelBag as far as possible.

If S is a subset of SelBag, then the automaton moves to B-ahead
state and S is set to the difference between S and the elements of
SelBag.

If SelBag is a subset of S, then the automaton moves to A-ahead
state and S is set to the difference between S and the elements of
SelBag

The elements of S are now compared with the elements of all the
bags of UB. All the bags that are either a subset or a superset of S
are set to Options. If it doesn’t find any bags that meet these
criteria, the automaton goes to Backtrack state. Using Figure 2, if
S = “541, 288, 121, 373, 68, 416, 320” and Options = “B3, B4,
B6, B5”. Again, the leftmost bag is picked and set to SelBag.

If the automaton is in B-ahead state, the next bag is selected from
UA. Similar procedure as in step 4 is followed to select the next
SelBag. Again, if SelBag is empty, it goes to backtrack.

If the automaton is in the backtrack state, it goes back to the last
node of which Cflag is set to 1. The idea is to select some other
bags from Options besides the one picked initially, which might
have led to the backtrack state. So it tries to go to a node where
there are some other Choices. For this reason Cflag was used
initially to help keep track of Choices, if we need to come back
and look for other options.

It retrieves the values of all state variables from that particular
node and resets the current values of state variables with the one
from that node. It either goes to A-ahead or B-ahead state,
depending on the current value of Length-A or Length-B. No
matter which state it goes to, it picks the next bag from Options,
discarding the ones that it has already tried and has failed.

If Length-A is greater than Length-B, automaton goes to A-ahead
state; if Length-B is greater it goes to B-ahead state. But
sometimes, both Length-A and Length-B can be equal. In this
case, the automaton selects one random bag from UA and
continues the automaton.

If all the bags in UA and UB are used and if S is empty, the
solution has been found and it goes to the HALT state.

3. METHODOLOGY
The constraint automaton was implemented using Perl (Practical
Extraction and Report Language) v5.12.2 downloaded from
<http://www.activestate.com/activeperl/downloads>. Perl is
commonly used in bioinformatics [17].

In addition, the program was compiled in Eclipse SDK v3.5.2
(http://www.eclipse.org/downloads/) using EPIC (Eclipse Perl
Integration). Eclipse is a multi-language software development
environment. EPIC is an open source Perl Integrated
Development Environment is based on the Eclipse platform.

3.1 Data Sources and Data Collection
To implement and test any algorithm we need to have data sets.
The data for the implemented algorithm are the sequences of
DNA of plasmids and phage. The sequence of DNA is often
stored in a flat text file called FASTA file. It is a text-based
format for representing nucleotide sequence or peptide sequence.
“A sequence in FASTA format begins with a single-line
description, followed by lines of sequence data. The description
line is distinguished from the sequence data by a greater than
(“>”) symbol in the first column.” The FASTA files for the
plasmids and phage were downloaded from New England
BioLabs. (http://www.neb.com).

One way of making copies of a DNA is to insert a DNA piece into
the genome of an organism, a host or vector and let the organism
multiply itself. The inserted piece (the insert) gets multiplied
along with the original DNA of the host upon host multiplication.
“A plasmid is a piece of circular DNA that exists in bacteria.”
[13]. It replicates itself when the cell divides and each copy of a
daughter cell keeps one copy of the plasmid. Plasmids make good
vectors but can only handle inserts up to 15kbp [13].
Bacteriophages or just phages are viruses that infect bacteria.
They are often used as vectors. Inserts in phage DNA get
replicated when the virus infects a host bacterium. To observe the
variation in computational complexity with respect to different
length sequences, plasmid and phage ranging from 2710 to 35937
bp were chosen. The following plasmids and phage are used to
test the purposed algorithm.

• pUC57: 2710 base pairs

• pTXB1: 6706 base pair

• pKLAC-malE – 10153 base pairs

• pB85766 – 14875 base pairs

• Adenovirus-2 – 35937 base pairs

To collect fingerprints of sequences, restriction enzymes MvaI
and MaeII were used. MvaI is an isolate from Micrococcus
varians RFL19 and has restriction site at CC^WGG. “W” can be
either A or T. MaeII is isolated from Methanococcus aeolicus and
has restriction site at A^TCG.

DNA sequences were cleaved into fragments and sub-fragments
by using Webcutter 2.0 [35]. Each DNA sequence is first cleaved
by MvaI and each individual fragement was again cleaved by
MaeII to obtain sub-fragments. This is the data for Big-Bag-A.

No Fragments Sub-Fragments

1 355 355

2 215 19, 196

3 288 288

4 121 121

5 13 13

6 1709 541, 416, 373, 320, 68

Again, each DNA sequence is cleaved by MaeII and then by MvaI
to obtain Big-Bag-B.

No Fragments Sub-Fragments

1 374 355, 19

2 1159 196, 288, 121, 13, 541

3 416 416

4 373 373

5 320 320

6 68 68

4. EXPERIMENTAL RESULTS AND
ANALYSIS
Input data of all five DNA sequences were fed to the implemented
application and the results were analyzed separately and also
compared with one another. The results were compared by the
time it takes to assemble each subsequence for both erroneous and
error free data. To better analyze the results we considered input
data both without measurement errors and with error. For space
limitations, we describe only the latter case.

We set the error tolerance to 5, that is, we allowed a percent of the
original data values to deviate by at most 5 units from the precise
measurements. Table 1 illustrates the process of adding random
errors within the threshold to mimic measurement errors. Below is
a summary of the same input data.

A1 A2 A3 A4 A5 A6
355 19, 196 288 121 541, 416,

373, 320,
68

13

355,
19

196, 13,
288, 121,
541

416 373 320 68

B1 B6 B2 B3 B4 B5

The execution steps of the constraint automaton are shown in
Table 1. The average execution time for the erroneous input data
for each DNA sequences is as follows:

Sequence Base Pairs Bags Time (s)

pUC57 2710 10 0.32

pTXB1 6706 44 0.88

pKLAC-malE 10153 46 1.04

pB85766 14875 84 19

Adenovirus 35937 221 76

The execution time data for error-free and erroneous data are
visualized in Figures 3 and 4.

With errorenous input data, the R-square value for linear equation
is 0.96 and P-value is 0.003. This concludes that the linear
function better fits (R-square value approximately equal to 1 and

P-value <0.01) the execution time and the length of DNA
sequence than the cubic, quadratic and exponential functions.

Functions P-Value R2- Value
Linear 0.96 0.003
Quadratic 0.987 0.013
Cubic 0.997 0.071
Exponential 0.845 0.027

The execution times for different sets of input were analyzed to
predict the pattern of output and use the results to help reduce the
execution time to find the solution for GMAP.

Sequence A
Bags

B
Bags

Difference Time

pUC57 5 5 0 0.31

pTXB1 20 24 4 0.84

pKLAC-malE 21 25 4 1.01

pB85766 51 33 18 18.1

Adenovirus 137 84 53 74.6

From the above table, the difference between number of bags in
Big-Bag-A and Big-Bag-B for pB85766 is 18. The higher the
difference between numbers of bags, there is a high chance that
there will be more bags with just one element in which ever big
bag has higher number of bags.

If the numbers of bags with only a single element is high, there is
less likelihood of finding the overlapping fragments in the
opposite Big-Bag without backtracking multiple times. The output
file in Appendix BA shows the stepwise fragment assembly for
pB85766. The program backtracks several times and ultimately
finds the solution at an average execution time of 18.1 seconds.

To investigate whether or not difference in numbers of bags with
two big bags effect the execution time, another pair of restriction
enzymes; MaeI(C^TAG) and Hinfl(G^ANTC) were applied to the
DNA sequence of pB85766. In this case, the number of A and B
bags changed and the execution time improved as follows.

Sequence A
Bags

B
Bags

Difference Time

pB85766 44 40 4 3.5

Even though the total number of bags are almost the same, the
difference between numbers of bags is significantly reduced. This
resulted in many overlapping fragments in the opposite big-bags
and led to finding the solution within only 3.5 seconds by
eliminating many backtrackings.

5. CONCLUSIONS AND FUTURE WORK

The Genome Map Assembly Problem was solved using an
abstraction of the GMAP that allows error tolerance unlike the
original proposal by Revesz [10]. During fragment assembly the
algorithm does not distinguish between these two sub-fragments
and may result in wrong assembly of original DNA In the future,
this application can be modified to create unique fingerprint for
each sub-fragment, so that the fragment assembly is more precise
even in the presence of duplicate length sub-fragments.

Future research may also take advantage of more general methods
of combining information that may be slightly contradictory, like
in the case of measurement errors for the number of base pairs.

For example, contradictory infromation can be combined using
arbitration operators [8] and classification integration techniques
[12]. Trying to reconstruct an phylogenetic tree of evolutionarily
related species also needs the combination of the divergent
genomes of existing species into a hypothetical common ancestor
genome. Although in this case the differences are not due to
measurement errors but to ecolutionary drift [15], the combination
needs a similar approach. A recent proposal that emphasises
commonalities insteaad of differences while reconstructing a
hypothetical evolutionary tree is [11].

Figure 1. The original non-deterministic constraint automaton for the genome map assembly problem.

Figure 2. The new deterministic constraint automaton for the genome map assembly problem.

Table 1. This table shows the process of taking the original input data and randomly applying changes that mimic measurement
errors. The individual bags are also randomly reordered. All the introduced errors are less than or equal to the threshold value.

Original Input Data Randomized Input Data with Error Bags

<BAG> <BAG> Big-Bag-A

355 355 A1

19 196 19 196 A2

288 288 A3

121 121 A4

13 541 416 373 320 68 A5

541 416 373 320 68 13 A6

<BAG> <BAG> Big-Bag-B

355 19 359 19 B1

196 288 121 13 541 416 B2

416 373 B3

373 325 B4

320 68 B5

68 196 285 121 13 541 B6

Table 2. Stepwise fragment assembly of pUC57 with error.

Node

No
CurrBag S UA UB Options SelBag Choices Cflag

1 A1 {357}
A2 A3 A4

A5 A6

B1 B2 B3 B4

B5 B6
{B1} {B1} {} 0

2 B1 {19}
A2 A3 A4

A5 A6

B2 B3 B4 B5

B6
{A2} {A2} {} 0

3 A2 {196}
A3 A4 A5

A6

B2 B3 B4 B5

B6
{B6} {B6} {} 0

4 B6
{286 13 541

121}

A3 A4 A5

A6
B2 B3 B4 B5

{A3 A6 A5

A4}
{A3}

{A6 A5

A4}
1

5 A3 {13 541 121} A4 A5 A6 B2 B3 B4 B5
{A6 A5

A4}
{A6} {A5 A4} 1

6 A6 {541 121} A4 A5 B2 B3 B4 B5 {A5 A4} {A5} {A4} 1

7 A5
{373 68 322 121

416}
A4 B2 B3 B4 B5

{B3 B5 B4

B2}
{B3}

{B5 B4

B2}
1

8 B3
{68 322 121

416}
A4 B2 B4 B5 {B5 B4 B2} {B5} {B4 B2} 1

9 B5 {322 121 416} A4 B2 B4 {B4 B2} {B4} {B2} 1

10 B4 {121 416} A4 B2 {B4 B2} {A4} {B2} 1

11 A4 {416} B2 {B2} {B2} {} 0

Figure 3. Regression model for error free data, using execution time as dependent variable and length of sequence as predictor

Figure 4. Regression model for erroneous data, using execution time as dependent variable and length of sequence as predictor.

6. REFERENCES
[1] Gillett, W., Hanks, L., Wong, G.K., Yu, J., Lim, R., and

Olson, M.V. 1996. Assembly of high-resolution restriction
maps based on multiple complete digests of a redundant set
of overlapping clones. Genomics, 33, 3 (May 1996), pp. 389-
408.

[2] Green, E. D. and Green, P. 1991. Sequence-tagged site (STS)
content mapping of human chromosomes: Theoretical
considerations and early experiences. PCR Methods Appl., 1,
2 (November 1991), pp. 77-90.

[3] Kanellakis, P. C., Kuper, G. M. and Revesz, P. Z. 1995.
Constraint query languages. Journal of Computer and System
Sciences, 51, 1 (August 1995) 26-52. DOI=
http://dx.doi.org/10.1006/jcss.1995.1051

[4] Lander, E S and M L Waterman., M. L. 1988. Genomic
mapping by fingerprinting random clones: A mathematical
analysis. Genomics, 2, 3 (April 1988), pp. 231-239.

[5] Olson, M. V., Dutchik, J. E., Graham, M. Y., Brodeur, G.
M., Helms, C., Frank, M., MacCollin, M., Scheinman, R.,
Frank, T. 1986. Random-clone strategy for genomic
restriction mapping in yeast. Proceedings of the National
Academy of Sciences of the USA, 83, 20 (October 1986), pp.
7826-7830.

[6] Pevzner, P A. 2000. Computational Molecular Biology: An
Algorithmic Approach. Bradford Book.

[7] Ramanathan, V and Revesz, P. Z. 2004. Constraint database
solutions to the genome map assembly problem. in
Proceedings of the 1st International Symposium on
Constraint Databases, Springer LNCS 3074, 2004, pp. 88-
111.

[8] Revesz, P. Z. 1997. On the semantics of arbitration.
International Journal of Algebra and Computation, 7, 2
(April 1997), 133-160. DOI=
http://dx.doi.org/10.1142/S0218196797000095

[9] Revesz, P Z. 1997. Refining Restriction Enzymes Genome
Maps. Constraints, 2, 1997, pp. 361-375.

[10] Revesz, P. Z. 2010. Introduction to Databases: From
Biological to Spatio-Temporal, Springer, New York, NY.

[11] Revesz, P. Z. 2013. An algorithm for constructing
hypothetical evolutionary trees using common mutations
similarity matrices. in Proceedings of the 4th ACM
International Conference on Bioinformatics and
Computational Biology, ACM Press, pp. 731-734.

[12] Revesz, P. Z. and Triplet, T. 2010. Classification integration
and reclassification using constraint databases. Artificial
Intelligence in Medicine, 49, 2 (June 2010), pp. 79-91. DOI=
http://dx.doi.org/10.1016/j.artmed.2010.02.003

[13] Triplet T., Shortridge, M. Griep, M., Stark J., Powers R., and
Revesz, P.Z. 2010. PROFESS: A protein function, evolution,
structure and sequence database. Database -- The Journal of
Biological Databases and Curation, 2010, DOI=
10.1093/baq011

[14] Setubal, C and J Meidanis. 1997. Introduction to
Computational Molecular Biology. Brooks/Cole Publishing
Company, Pacific Groce, CA.

[15] Shortridge, M.,Triplet, T., Revesz, P. Z., Griep, M., Powers,
R. 2011. Bacterial protein structures reveal phylum
dependent divergence, Computational Biology and
Chemistry, 35, 1 (2011), pp. 24-33.

[16] Siegel, A. F., Roach, J. C., Magness, C., Thayer, E., and van
den Engh, G. 1988. Optimization of restriction fragment
DNA mapping. Journal of Computational Biology, 5, 1
(1998), pp.113-126.

[17] Tisdall, J. Beginning Perl for Bioinformatics. O'Reilly
Media, Sebastopol, CA, 2001.

[18] Wong, G K, et al. "Multiple-complete-digest restriction
fragment mapping:Generating sequence-ready maps for
large-scale DNA sequencing." (1997): 5225-5230.

