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ABSTRACT 
DNA sequences are cut into smaller fragments using restriction 
enzymes in order to facilitate analysis. Application of different 
restriction enzymes to multiple copies of a DNA sequence 
generates many overlapping fragments. To reconstruct the original 
DNA, these fragments need to be sequenced and assembled. This 
problem of finding the original order of the fragments is called the 
genome map assembly problem. We propose a constraint 
automaton solution to solve the genome map assembly problem 
for both error prone and error free data. Plasmid vectors puc57, 
pKLAC1-malE, pTXB1 and phage vector Adenovirus2, having a 
size in base pairs of 2710, 6706, 10153 and 35937 respectively, 
were used to prove that computational time for solving genome 
map assembly problem using constraint automaton solution is 
linear with both precise and approximate data.  

Categories and Subject Descriptors 
J.3 [Computer Applications]: Life and Medical Sciences – 
biology and genetics. 

General Terms 
Algorithms, Experiments, Measurement.  

Keywords 
Constraint automaton, genome map assembly, plasmid, virus. 

1. INTRODUCTION 
DNA sequences range from thousands to billions of base pairs. 
However, currently available sequencing machines can only 
handle a couple of thousand base pairs at a time. So the long DNA 
sequences have to be cut into smaller subsequences using 
restriction enzymes. After cutting the DNA, small fragments just 
float randomly in the solution, losing all the information about the 
original order of the sequence. After the subsequences are 
sequenced and analyzed, they have to be arranged and assembled 
to obtain the original sequence. This process is called genome 
map assembly and the problem of fully executing the genome map 
assembly process to recover the original sequence is called the 
Genome Map Assembly Problem (GMAP). The common 
solutions to the genome map assembly problem are based on 

using restriction enzyme fingerprints [1,2,4,5,6,14,17,18]. Revesz 
proposed an extension of this approach based on constraint 
automata [9,7,10] that derive from constraint databases [3]. This 
paper improves on the existing constraint automata solution for 
both precise and error-prone data. The latter is a practical problem 
because error may be introduced by imprecise measurements of 
the lengths of genome fragments as measured by number of base 
pairs.  

This paper is organized as follows. Section 2 describes basic 
concepts of constraint automata the genome map assembly 
problem and constraint automata solutions to the genome map 
assembly problem. Section 3 presents new methods that extend 
the constraint automata solutions. Section 4 describes experiments 
and analyzes the results. Section 5 presents some conclusions and 
future work.   

2. BASIC CONCEPTS 
2.1 Constraint Automata 
Based on conditions that are described using constraints on 
variables, constraint automata, are used to control the operation of 
a system. It has to find the set of reachable configurations, which 
is the set of states and state values that the constraint automaton 
can enter. This is one of the important problems in constraint 
automata. Each constraint automaton consists of set of states, a set 
of state variables, transitions between states, an initial state, and 
the domain and initial values of the state variable. Each transition 
consists of guard constraints (set of constraints) followed by 
assignment statements. In constraint automata, the assignment 
statements are shown using the symbol ‘=’ and guards are 
followed by questions marks, e.g. a>=100?   

If there is a transition whose guard constraints are satisfied by the 
current values of the state variables, a constraint automaton can 
move from one state to another. In addition to the state variables, 
the transitions of a constraint automaton may contain variables. 
Some of the values for these variables must be found such that the 
guard constrains are satisfied and the transition can be applied. 
For this reason, these variables are said to be existentially 
quantified variables. By sensing the current value of a variable, a 
constraint automaton can interact with its environment. This is 
expressed by read(x) command on a transition between states, 
where x is any variable. This command can appear either before 
or after the guard constraints, which updates the value of x.  

2.2 Genome Map Assembly Problem 
Currently available sequencing machines can only handle DNA 
fragments of a couple of thousand base pairs. The long DNA 
sequences have to be cut into small fragments using restriction 
enzymes. This cutting results in the loss of information about the 
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original order of the fragments. After these fragments are 
sequenced and analyzed, they have to be arranged and assembled 
to obtain the original sequence. This process is called Genome 
Map Assembly. The problem of reassembling these fragments 
from data that is incomplete, imprecise, ambiguous and often 
contradictory is known as the Genome Map Assembly Problem 
(GMAP) [10]. 

Genome sequencing is the process of finding the precise order of 
DNA nucleotides in a genome; the exact order of adenine, 
cytosine, guanine, and thymine that make up an organism’s DNA. 
Genome sequencing allows scientists to sequence genes and 
genomes. Due to the limitation of how many bases can be 
sequenced in one experiment, DNA has to be broken into smaller 
fragments before they can be sequenced and reassembled. 

Genome mapping is the process of finding the approximate 
position of genes in a genome without getting into the details of 
the actual sequence. It is a graphical representation that helps to 
find out where you are and how to get to where you want to go. It 
identifies the order of the specified subsequences in the genome. 
The genome map contains various landmarks identified with a 
series of letters and numbers, which help the researchers, find 
where specific pieces of DNA belong in the overall genomic 
jigsaw puzzle.  

Restriction endonucleases, commonly called restriction enzymes, 
are nucleases that are made by bacteria to protect themselves from 
a virus by cutting their genomes at sites that have a specific 
pattern [3]. Restriction site analysis and hybridization are the two 
most popular method of getting fingerprints.  In restriction site 
analysis, one or more restriction enzymes are applied to the DNA 
sequence and the lengths of the resulting fragments are measured, 
these lengths thus serve as the “fingerprint” of each subsequence. 
In hybridization fingerprinting, certain small sequences are 
checked to see if it binds to fragments, the subset of such small 
sequences that binds to the fragment serves as its fingerprint.  

2.3 The Constraint Automata for GMAP  
The algorithm of the constraint automata for GMAP can be 
described easily, if we define GMAP as a Big-Bag Matching 
Problem [10]. The Constraint Automata Solution proposed by 
Ramanathan and Revesz [7] has been modified to deal with both 
error prone and error free sub fragments of DNA. 

A bag is a multiset, a generalization of a set in which each 
element can occur multiple times. A big-bag is a multiset whose 
elements are bags that can occur multiple times. [10]. 

Each permutation of the bags and permutation of the elements of 
each bag within a big-bag is called a presentation [9,10] There are 
several different presentations of a single big-bag. The big-bag 
matching decision problem (BBMD) is the problem of deciding 
whether two big-bags match. The big-bag matching problem 
(BBM) is the problem of finding matching presentations for two 
given big-bags if they match [24][25]. We use the concept of 
BBM to solve the GMAP.  A modified version of Revesz’s 
Fingerprint [10] data has been used to collect fingerprints of input 
data. Instead of using three restriction enzymes only two enzymes 
have been used. The fingerprints collected will later be used as an 
input for Constraint Automata Solution for GMAP. The 
methodology was as follows:   

1. An original DNA sequence was copied.  

2. Restriction enzyme “a” was applied to the copied 
sequence which created several fragments of varying 
lengths depending on the restriction site.  

3. Individual fragments were separated.  

4. Restriction enzyme “b” was applied to the separated 
fragments from step 3, producing sub-fragments.  

5. 5.The length of individual sub-fragments was measured.  

6. Steps 1-5 were repeated, but restriction enzyme “b” was 
applied first and restriction enzyme “a” was applied 
consequently.  

All the elements from first copy of DNA are stored in Big-bag-A 
and elements from the second copy of DNA are stored in Big-bag-
B. For the GMAP, we use a constraint automaton (see Figure 1) 
that is a modified version of the ones proposed by Revesz and 
Ramanathan [9,7,10]. The automaton has the following states: 

• INIT – this is where the automaton begins 

• A-ahead  – if A bag is ahead  

• B-ahead  – if B bag is ahead  

• HALT – if the solution is found 

 

The automaton has the following state variables: 

• UA:  set of A bags which has not been used yet 

• UB: set of B bags which has not been used yet 

• S: set of elements by which either A or B bag is 
currently ahead 

The automaton starts in the INIT state and tries to reach the 
HALT state. The automaton moves from left to right by adding 
either an A bag or a B bag. If A bag is greater than B bag, it goes 
to A-ahead state. Else, it goes to B-ahead state. If they are equal, it 
goes to INIT state and starts the automaton with remaining UA 
and UB.  When UA, UB, and S are empty and all the bags are 
used, automaton goes into HALT state and stops. 

This algorithm does not use backtracking. If it does not find the 
elements in S in both A-bag and B-bag it goes back to INIT state 
and starts the automaton all over again. This makes it very 
inefficient.  We further improved the efficiency by making a 
deterministic, backtracking automaton and also extended it to be 
able to handle errors. Our new constraint automaton (see Figure 2) 
adds new state and state variables to the existing constraint 
automaton. Following are the states:  

• Error-Check – check to see if input data has any errors 

• Replace-Error- – if there is an error, replace it with the 
mean of two mismatched data elements from both A 
and B bags 

• INIT – this is where the automaton begins 

• A-ahead  – if A bag is ahead  

• B-ahead  – if B bag is ahead  

• Backtrack – if solution is not yet found but the S is 
empty  



• HALT – if the solution is found or if the error is greater 
than error tolerance value 

 

The automaton has the following state variables: 

• Error: difference between mismatched values from A 
and B bags 

• ErrorTolerance: the specified error tolerance  

• Length-A : all the elements of S that belongs to Big-
Bag-A  

• Length-B : all of the elements of S that belong to Big-
Bag-B  

• UA:   set of A bags which has not been used yet 

• UB:   set of B bags which has not been used yet 

• CurrBag : current bag, which is the SelBag from 
previous state 

• S: set of elements by which either the A or the B bag is 
currently ahead 

• Options: the set of bags from which the next bag can be 
chosen 

• SelBag: the bag that as selected from the Option as the 
next bag 

• Choices: set of remaining bags that were not picked 
from Options besides the SelBag. 

• Cflag: 0 if Choices is empty and 1 if Choices is not 
empty. 

 

The automaton goes through the following steps to solve the 
GMAP. The input to the constraint automaton is the fingerprints 
of DNA fragments. Bags of big-bag A and big-bag B are fed to 
the constraint automaton. The automaton starts with Error-Check 
state where input data are checked for any errors. An error may 
occur when the length of sub-fragments of DNA is measured, 
which results in two different sets of elements in big-bags A and 
B. To check for any errors, each element of bags within big-bag-A 
is compared with the elements of bags within big-bag-B. If the 
elements do not match, then the input data has some error. 
Otherwise the input data is error free.  

If there is no error in the data it goes to INIT state. If the error is 
more than specified error tolerance value, then it goes to HALT 
state.  

If the error is less than or equal to the specified error tolerance 
value, it goes to Replace-Error state.  

If the data has some error, it goes to the Replace-Error state. The 
idea is to replace the wrong data with the mean of two 
mismatched data, so that it will have the same set of data in both 
big-bag A and big-bag B. 

Let’s consider the sequence of plasmid puc57. If we use the 
procedure discussed earlier to collect fingerprints of the sequence, 
we will get the following fingerprint data: 

 

Big-Bag A Big-Bag B 

355 355, 19 

19, 196 196, 288, 121, 13, 541 

288 416 

121 373 

13 320 

541, 416, 373, 320, 68 68 

 

While measuring the length of each sub-fragment, if we get “17” 
instead of “13” in Big-Bag-A and “418” instead of “416” in Big-
Bag-B. Then we will have the following as the input data. 

 

Big-Bag A Big-Bag B 

355 355, 19 

19, 196 196, 288, 121, 13, 541 

288 418 

121 373 

17 320 

541, 416, 373, 320, 68 68 

 

The automaton compares each element of both bags and finds that 
17 and 13, and 416 and 418 do not match. It takes the mean of 
each pair of mismatched elements and replaces them with their 
mean in both Big-Bag-A and Big-Bag-B.  

 

Big-Bag A Big-Bag B 

355 355, 19 

19, 196 196, 288, 121, 15, 541 

288 417 

121 373 

15 320 

541, 417, 373, 320, 68 68 

 

After replacing the wrong data, both bags contain the same set of 
elements and they move to INIT state.  

The automaton comes to INIT state, if either the data has no error 
or if all the errors have been replaced by the means of two 
mismatched data. All the A bags are stored in UA and all B bags 
are stored in UB. Since this is the first state where it actually starts 
processing data for solving GMAP, it can pick any bag from 
either the big bag A or B. So Options is set to all the bags from A 
and B. The leftmost bag is selected from Options and set to 
SelBag and remaining bag is set to Choices. The elements of 
SelBag are set to S.  Since Choices is not empty, Cflag is set to 1. 
The bag that is just selected is removed from either UA or UB, 



from where ever it belongs The elements of the bag in SelBag are 
set to either Length-A or Length-B. If the Length-A is greater than 
Length-B, the automaton goes to A-ahead state, if not then it 
moves to the B-ahead state. 

Using figure 2.5, if A1 is picked as the SelBag, then, UA=A2, A3, 
A4, A5; S = 355 and Length-A = 355. The automaton goes to the 
A-ahead state.  

If the automaton is in A-ahead state, the next bag to be picked is 
selected from UB.  The automaton tries to match the elements of 
S and SelBag as far as possible.  

If S is a subset of SelBag, then the automaton moves to B-ahead 
state and S is set to the difference between S and the elements of 
SelBag. 

If SelBag is a subset of S, then the automaton moves to A-ahead 
state and S is set to the difference between S and the elements of 
SelBag 

The elements of S are now compared with the elements of all the 
bags of UB. All the bags that are either a subset or a superset of S 
are set to Options. If it doesn’t find any bags that meet these 
criteria, the automaton goes to Backtrack state. Using Figure 2, if 
S = “541, 288, 121, 373, 68, 416, 320” and Options = “B3, B4, 
B6, B5”. Again, the leftmost bag is picked and set to SelBag.  

If the automaton is in B-ahead state, the next bag is selected from 
UA. Similar procedure as in step 4 is followed to select the next 
SelBag. Again, if SelBag is empty, it goes to backtrack.  

If the automaton is in the backtrack state, it goes back to the last 
node of which Cflag is set to 1.  The idea is to select some other 
bags from Options besides the one picked initially, which might 
have led to the backtrack state. So it tries to go to a node where 
there are some other Choices. For this reason Cflag was used 
initially to help keep track of Choices, if we need to come back 
and look for other options. 

It retrieves the values of all state variables from that particular 
node and resets the current values of state variables with the one 
from that node. It either goes to A-ahead or B-ahead state, 
depending on the current value of Length-A or Length-B. No 
matter which state it goes to, it picks the next bag from Options, 
discarding the ones that it has already tried and has failed. 

If Length-A is greater than Length-B, automaton goes to A-ahead 
state; if Length-B is greater it goes to B-ahead state. But 
sometimes, both Length-A and Length-B can be equal. In this 
case, the automaton selects one random bag from UA and 
continues the automaton.  

If all the bags in UA and UB are used and if S is empty, the 
solution has been found and it goes to the HALT state. 

3. METHODOLOGY  
The constraint automaton was implemented using Perl (Practical 
Extraction and Report Language) v5.12.2 downloaded from 
<http://www.activestate.com/activeperl/downloads>. Perl is 
commonly used in bioinformatics [17]. 

In addition, the program was compiled in Eclipse SDK v3.5.2 
(http://www.eclipse.org/downloads/) using EPIC (Eclipse Perl 
Integration). Eclipse is a multi-language software development 
environment. EPIC is an open source Perl Integrated 
Development Environment is based on the Eclipse platform.  

3.1 Data Sources and Data Collection 
To implement and test any algorithm we need to have data sets. 
The data for the implemented algorithm are the sequences of 
DNA of plasmids and phage. The sequence of DNA is often 
stored in a flat text file called FASTA file. It is a text-based 
format for representing nucleotide sequence or peptide sequence. 
“A sequence in FASTA format begins with a single-line 
description, followed by lines of sequence data. The description 
line is distinguished from the sequence data by a greater than 
(“>”) symbol in the first column.” The FASTA files for the 
plasmids and phage were downloaded from New England 
BioLabs. (http://www.neb.com). 

One way of making copies of a DNA is to insert a DNA piece into 
the genome of an organism, a host or vector and let the organism 
multiply itself. The inserted piece (the insert) gets multiplied 
along with the original DNA of the host upon host multiplication.  
“A plasmid is a piece of circular DNA that exists in bacteria.” 
[13]. It replicates itself when the cell divides and each copy of a 
daughter cell keeps one copy of the plasmid.  Plasmids make good 
vectors but can only handle inserts up to 15kbp [13]. 
Bacteriophages or just phages are viruses that infect bacteria. 
They are often used as vectors. Inserts in phage DNA get 
replicated when the virus infects a host bacterium.  To observe the 
variation in computational complexity with respect to different 
length sequences, plasmid and phage ranging from 2710 to 35937 
bp were chosen. The following plasmids and phage are used to 
test the purposed algorithm.  

• pUC57:  2710 base pairs 

• pTXB1:  6706 base pair  

• pKLAC-malE – 10153 base pairs 

• pB85766 – 14875 base pairs 

• Adenovirus-2 – 35937 base pairs 

To collect fingerprints of sequences, restriction enzymes MvaI 
and MaeII were used. MvaI is an isolate from Micrococcus 
varians RFL19 and has restriction site at CC^WGG. “W” can be 
either A or T.  MaeII is isolated from Methanococcus aeolicus and 
has restriction site at A^TCG. 

DNA sequences were cleaved into fragments and sub-fragments 
by using Webcutter 2.0 [35].  Each DNA sequence is first cleaved 
by MvaI and each individual fragement was again cleaved by 
MaeII to obtain sub-fragments. This is the data for Big-Bag-A.  

 

No Fragments Sub-Fragments 

1 355 355 

2 215 19, 196 

3 288 288 

4 121 121 

5 13 13 

6 1709 541, 416, 373, 320, 68 

 

Again, each DNA sequence is cleaved by MaeII and then by MvaI 
to obtain Big-Bag-B. 

 



No Fragments Sub-Fragments 

1 374 355, 19 

2 1159 196, 288, 121, 13, 541 

3 416 416 

4 373 373 

5 320 320 

6 68 68 

 

4. EXPERIMENTAL RESULTS AND 
ANALYSIS 
Input data of all five DNA sequences were fed to the implemented 
application and the results were analyzed separately and also 
compared with one another. The results were compared by the 
time it takes to assemble each subsequence for both erroneous and 
error free data. To better analyze the results we considered input 
data both without measurement errors and with error. For space 
limitations, we describe only the latter case. 

We set the error tolerance to 5, that is, we allowed a percent of the 
original data values to deviate by at most 5 units from the precise 
measurements. Table 1 illustrates the process of adding random 
errors within the threshold to mimic measurement errors. Below is 
a summary of the same input data.  

A1 A2 A3 A4 A5 A6 
355 19, 196 288 121 541, 416, 

373, 320, 
68 

13 

355,  
19 

196, 13, 
288, 121, 
541 

416 373 320 68 

B1 B6 B2 B3 B4 B5 

 

The execution steps of the constraint automaton are shown in 
Table 1. The average execution time for the erroneous input data 
for each DNA sequences is as follows: 

 

Sequence Base Pairs Bags Time (s) 

pUC57 2710 10 0.32 

pTXB1 6706 44 0.88 

pKLAC-malE 10153 46 1.04 

pB85766 14875 84 19 

Adenovirus 35937 221 76 

 

The execution time data for error-free and erroneous data are 
visualized in Figures 3 and 4.  

With errorenous input data, the R-square value for linear equation 
is 0.96 and P-value is 0.003. This concludes that the linear 
function better fits (R-square value approximately equal to 1 and 

P-value <0.01) the execution time and the length of DNA 
sequence than the cubic, quadratic and exponential functions.  

 

Functions P-Value R2- Value 
Linear 0.96 0.003 
Quadratic  0.987 0.013 
Cubic 0.997 0.071 
Exponential 0.845 0.027 

 

The execution times for different sets of input were analyzed to 
predict the pattern of output and use the results to help reduce the 
execution time to find the solution for GMAP. 

 

Sequence A 
Bags 

B 
Bags 

Difference Time 

pUC57 5 5 0 0.31 

pTXB1 20 24 4 0.84 

pKLAC-malE 21 25 4 1.01 

pB85766 51 33 18 18.1 

Adenovirus 137 84 53 74.6 

 

From the above table, the difference between number of bags in 
Big-Bag-A and Big-Bag-B for pB85766 is 18. The higher the 
difference between numbers of bags, there is a high chance that 
there will be more bags with just one element in which ever big 
bag has higher number of bags.  

If the numbers of bags with only a single element is high, there is 
less likelihood of finding the overlapping fragments in the 
opposite Big-Bag without backtracking multiple times. The output 
file in Appendix BA shows the stepwise fragment assembly for 
pB85766. The program backtracks several times and ultimately 
finds the solution at an average execution time of 18.1 seconds.  

To investigate whether or not difference in numbers of bags with 
two big bags effect the execution time, another pair of restriction 
enzymes; MaeI(C^TAG) and Hinfl(G^ANTC) were applied to the 
DNA sequence of pB85766. In this case, the number of A and B 
bags changed and the execution time improved as follows. 

 

Sequence A 
Bags 

B 
Bags 

Difference Time 

pB85766 44 40 4 3.5 

 

Even though the total number of bags are almost the same, the 
difference between numbers of bags is significantly reduced.  This 
resulted in many overlapping fragments in the opposite big-bags 
and led to finding the solution within only 3.5 seconds by 
eliminating many backtrackings.  

 



5. CONCLUSIONS AND FUTURE WORK 
 

The Genome Map Assembly Problem was solved using an 
abstraction of the GMAP that allows error tolerance unlike the 
original proposal by Revesz [10]. During fragment assembly the 
algorithm does not distinguish between these two sub-fragments 
and may result in wrong assembly of original DNA In the future, 
this application can be modified to create unique fingerprint for 
each sub-fragment, so that the fragment assembly is more precise 
even in the presence of duplicate length sub-fragments. 

Future research may also take advantage of more general methods 
of combining information that may be slightly contradictory, like 
in the case of measurement errors for the number of base pairs. 

For example, contradictory infromation can be combined using 
arbitration operators [8] and classification integration techniques 
[12]. Trying to reconstruct an phylogenetic tree of evolutionarily 
related species also needs the combination of the divergent 
genomes of existing species into a hypothetical common ancestor 
genome. Although in this case the differences are not due to 
measurement errors but to ecolutionary drift [15], the combination 
needs a similar approach. A recent proposal that emphasises 
commonalities insteaad of differences while reconstructing a 
hypothetical evolutionary tree is [11]. 

 

 

 

 

 
 

Figure 1. The original non-deterministic constraint automaton for the genome map assembly problem.  

 

 

 

 

 

 



 

 

 
 

Figure 2. The new deterministic constraint automaton for the genome map assembly problem. 



 

Table 1. This table shows the process of taking the original input data and randomly applying changes that mimic measurement 
errors. The individual bags are also randomly reordered. All the introduced errors are less than or equal to the threshold value. 

Original Input Data Randomized Input Data with Error Bags 

<BAG> <BAG> Big-Bag-A 

355 355 A1 

19 196 19 196 A2 

288 288 A3 

121 121 A4 

13 541 416 373 320 68 A5 

541 416 373 320 68 13 A6 

<BAG> <BAG> Big-Bag-B 

355 19 359 19 B1 

196 288 121 13 541 416 B2 

416 373 B3 

373 325 B4 

320 68 B5 

68 196 285 121 13 541 B6 

 

 

Table 2. Stepwise fragment assembly of pUC57 with error. 

Node 

No 
CurrBag S UA UB Options SelBag Choices Cflag 

1 A1 {357} 
A2 A3 A4 

A5 A6 

B1 B2 B3 B4 

B5 B6 
{B1} {B1} {} 0 

2 B1 {19} 
A2 A3 A4 

A5 A6 

B2 B3 B4 B5 

B6 
{A2} {A2} {} 0 

3 A2 {196} 
A3 A4 A5 

A6 

B2 B3 B4 B5 

B6 
{B6} {B6} {} 0 

4 B6 
{286 13 541 

121} 

A3 A4 A5 

A6 
B2 B3 B4 B5 

{A3 A6 A5 

A4} 
{A3} 

{A6 A5 

A4} 
1 

5 A3 {13 541 121} A4 A5 A6 B2 B3 B4 B5 
{A6 A5 

A4} 
{A6} {A5 A4} 1 

6 A6 {541 121} A4 A5 B2 B3 B4 B5 {A5 A4} {A5} {A4} 1 

7 A5 
{373 68 322 121 

416} 
A4 B2 B3 B4 B5 

{B3 B5 B4 

B2} 
{B3} 

{B5 B4 

B2} 
1 

8 B3 
{68 322 121 

416} 
A4 B2 B4 B5 {B5 B4 B2} {B5} {B4 B2} 1 

9 B5 {322 121 416} A4 B2 B4 {B4 B2} {B4} {B2} 1 

10 B4 {121 416} A4 B2 {B4 B2} {A4} {B2} 1 

11 A4 {416}   B2 {B2} {B2} {} 0 



 

 

Figure 3. Regression model for error free data, using execution time as dependent variable and length of sequence as predictor 

 
Figure 4. Regression model for erroneous data, using execution time as dependent variable and length of sequence as predictor. 
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