
Comparison of Sequence Similarity Measures for Distant
Evolutionary Relationships

Abhishek Majumdar, Peter Z. Revesz
Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE. USA

Abstract— Sequence similarity algorithms are used to re-
construct increasing large evolutionary trees involving in-
creasingly distant evolutionary relationships. This paper
proposes two sequence similarity algorithms, called the
Greedy Tiling and the Random Tiling algorithms, that are
both based on the idea of tiling one sequence by parts of
another sequence. Experimental comparisons show that the
new algorithms are better at detecting distant evolutionary
relationships than the Needleman-Wunsch sequence similar-
ity algorithm.

Keywords: bioinformatics; Needleman-Wunsch; protein; se-
quence; similarity.

1. Introduction
Sequence similarity in genetics is often used to identify

homologous genes, that is, genes which have evolved from
a common ancestry. Similarly, sequence similarity of pro-
teins allows identification of homologous proteins whose
encoding genes evolved from a common ancestor. Therefore,
similarly to the case of genes, biologists can describe an
evolutionary hierarchy of proteins.

There are several ways of measuring the similarity be-
tween pairs of proteins [1]. Most protein similarity algo-
rithms are based on the alignment of the sequences of
the amino sequences. Such sequence similarity algorithms
include Needleman-Wunsch [4], Smith-Waterman [9], and
its extension by Gotoh [2]. Other protein similarity measures
consider the 3-D structure of the proteins, especially the
binding sites of the proteins, to determine their similarity
[5,8]. In this paper we are only interested in sequence sim-
ilarities because while sequence information is commonly
available in databases because the 3-D structure of most
proteins is still unknown [10].

Although sequence similarity plays a major role in genet-
ics, there is little information about the relative reliability
of various similarity measures, which is a general problem
in data integration [7]. This project proposes two novel
sequence similarity algorithms, called the Greedy Tiling
and the Random Tiling algorithms, and compares their
effectiveness with older similarity measures in recreating the
evolutionary hierarchy of related proteins. Both of the tiling
algorithms implement the tiling similarity measure that was
non-algorithmically defined by Revesz [6] based on the idea
of tiling one sequence by parts of another sequence.

This paper is organized as follows. Section 2 describes
two new algorithms for finding the tiling similarity of
two sequences. Section 3 describes experimental results.
Section 4 analyses the results. Finally, Section 5 concludes
the paper.

2. Implementations of Tiling Similarity
Revesz [6] introduced the tiling similarity measure, which

is based on the idea of tiling one sequence with parts of
the other sequence. The tiling similarity value depends on
finding the optimal tiling and is an intractable problem for
large sequences. Nevertheless, we give below two algorithms
that in many cases give a good approximation of the optimal
tiling. Our approximation algorithms, called Greedy Tiling
and Random Tiling, both run efficiently even on large
sequences.

2.1 Greedy tiling
Given as input two protein sequences X and Y with

length(Y) ≤ length(X), GreedyT iling tries to reconstruct
Y using segments, called tiles, from X. This is done using
the algorithm with the following pseudocode:

Greedy Tiling GreedyT iling(X,Y, T iling)
1. X ′ = X
2. Y ′ = Y
3. Tiling = ∅
4. i = 0
5. while Y ′ is not empty do
6. i = i+ 1
7. Smith-Waterman(X ′, Y ′, xi, yi)
8. X ′ = X ′ − xi

9. Y ′ = Y ′ − yi
10. if xi and yi are subsequences of X and Y then
11. Tiling = Tiling ∪ {(xi, yi)}
12. else split xi and yi into proper subsequences
13. xi = x′i | x′′i | . . .
14. yi = y′i | y′′i | . . .
15. Tiling = Tiling ∪ {(x′i, y′i), (x′′i , y′′i), . . .}
16. end-if
17.end-while

The above algorithm assumes that we have the func-
tion Smith-Waterman(X,Y, x, y) that finds the best locally
matched segments x in X and y in Y , when given as

input the sequences X and Y . LCS∗ repeatedly calls the
Smith-Waterman algorithm to find the longest common
subsequences between X ′, the remaining X , and Y ′, the
remaining Y . In each iteration, the pair of longest common
subsequences xi of X ′ and yi of Y ′ are added to the set of
tiles and deleted from X ′ and Y ′. Each segment xi and yi
is inspected whether it is a proper subsequence of X and
Y , respectively, or a concatenation of two or more parts of
X and Y . Accordingly xi and yi are broken up into its
constituent components as necessary and added to the tiles
as a set of pairs. This process is repeated iteratively until Y ′

is empty.

Example 1: Suppose we have the following two sequences:
X = WARICDFLRE and Y = FIREICEWAR.

In the first iteration, the Smith-Waterman algorithm finds
between X ′ = X and Y ′ = Y the best local alignment
to be x1 = WAR and y1 = WAR, which are proper
subsequences of X ′ and Y ′. Hence x1 and y1 are added
as a pair to Tiling and deleted from X ′ and Y ′ to yield
X ′ = ICDFLRE and Y ′ = FIREICE, respectively.

In the second iteration, the best matching segments are
x2 = FLRE and y2 = FIRE, which are also proper
subsequences of X ′ and Y ′. Deleting those yields X ′ =
ICD and Y ′ = ICE.

In the third iteration, the best matching segments are x3 =
ICD and y3 = ICE, which are also proper subsequences
of X ′ and Y ′. Deleting y3 from Y ′ will make it empty.
Hence the algorithm terminates. Hence in this case, LCS∗

will return the following:

Tiling = {(WAR,WAR), (FLRE,FIRE), (ICD, ICE)}

As a measure of the similarity between X and Y , we use
the tiling similarity, or TS, measure of Revesz [6], which is
defined as follows:

TS(X,Y) =

∑i=n
i=1 si
n

where n is the number of segments used for reconstruction
and si is the similarity score between tiles xi and yi. For
example, if we use the BLOSUM62 similarity matrix, then:

s1 = simBLOSUM62(WAR,WAR) = 20

s2 = simBLOSUM62(FLRE,FIRE) = 18

s3 = simBLOSUM62(ICD, ICE) = 15

Hence the tiling similarity will be:

TS(X,Y) = 20+18+15
3 = 53

3 = 17.66

2.2 Random tiling
The second algorithm uses a randomized approach to find

the different segments/tiles required for the reconstruction
of sequence Y. It randomly breaks up sequence X into tiles
of different lengths. Then filters out a select few using a
constraint for a valid range of tile-length. Finally it uses
this selected set of tiles (say x1, x2, x3.....xn) to match the
different portions of Y. Since this approach is randomized
the entire process needs to be iterated an arbitrary number of
times, each time with a set of randomly generated tiles, and
the tiling with the highest tiling similarity score selected.
Below we give only the pseudocode of the basic algorithm
that needs to be repeated.

Random Tiling RandomTiling(X,Y, T iling)
1. Split X into a random set of tiles T (X)
2. YU = Y
3. Tiling = ∅
4. while YU is not empty and longer than the shortest tile
do
5. BestScore = −100
6. for each tile xi ∈ T (X) do
7. ym = prefix of YU with length(xi)
8. if BestScore < sim(xi, ym) then
9. BestScore = sim(xi, ym)
10. BestPair = (xi, ym)
11. end-if
12. Tiling = Tiling ∪BestPair
13.end-while

In each iteration we begin the tile-matching from the
leftmost end of Y. Let YU denote unmatched section of Y.
Clearly, initially YU = Y. For each tile xi from the tile set
we match it with left most segment ym of YU which is of
same length as xi. We always select the tile which gives the
highest matching score. In the next iteration we update YU

by deleting from it the initial segment ym. Then we continue
the tile-matching process with the updated YU . This iteration
is carried out from left to right until Y is fully matched. In
the last iteration, if there is a case that the length of the
current YU is less than the length of smallest tile then that
remaining YU is matched with gaps.

Example 2: Consider the following two sequences:
X = ABCDEFGHIJKLOIY ITB and
Y = WUFGDJVMBKUG.
We will reconstruct Y using tiles from X. Let the tiles
obtained from X be x1 = BCDE, x2 = IJKL, x3 = DEFGHI,
x4 = LOIYITB, and x5 = AB. Initially YU = WUFGDJVM-
BKUG. We start by matching each tile xi with left-most
portions of YU which is of same length as xi. That is we
match x1 with WUFG, x2 with WUFG, x3 with WUFGDJ,
x4 with WUFGDJV and x5 with WU. Say x1 gives the best

matching. So now YU becomes DJVMBKUG. The above
process is repeated again. That is x1 matched with DJVM,
x2 with DJVM, x3 with DJVMBK, x4 with DJVMBKU and
x5 with DJ. Let the best tile be x4. So now YU = G. This
is matched with a gap as its length is less than that of x5.
So the reconstructed Y looks like:

Y = WUFG | DJVMBKU | G
X = BCDE | LOIY ITB | −
We can repeat the above process an arbitrary number of

times and select the tiling which gives the highest tiling
similarity score. Obviously, the more the basic algorithm
is repeated, the higher tiling similarity is found. However,
there is a trade-off between repetitions and increased tiling
similarity values. There is a point where the increase in
execution time may not be worth the diminishing chance
of an increase in the tiling similarity score.

3. Experimental Results
In the experiments we focused on the Type III Pyridoxal

5-phosphate(PLP) dependent enzymes subfamily. This is
important and well-studied subfamily is composed mainly
of proteobacterial alanine racemases that help in the inter-
conversion between L- and D-alanine, which is an essential
component of the peptidoglycan layer of bacterial cell walls.
Figure 1 shows a small portion of this subfamily hierarchy
as described in the National Center for Biotechnology Infor-
mation (NCBI) Conserved Domain Database [3].

Fig. 1: Hierarchy tree.

Each node in Figure 1 is a also cluster of subsequences.
That is, each node is composed of closely related bacterial
genome sequences, which have a hierarchical relation among
themselves as well. For instance, the node cd06825 is
actually composed of nine sequences shown in Figure 2.

Figure 2 shows the gi version numbers (164602518,
44805037, etc.) which uniquely identify each sequence. The

Fig. 2: cd06825 cluster

FASTA sequence description was also obtained from the
NCBI website and used as input to our similarity algorithms
and to the Needleman-Wunsch algorithm.

Both our algorithms take all possible combinations of
two subsequences from the clusters to measure their tiling
similarity scores (TSs). For example, the cd06825 cluster
contains 36 pairs of sequences and yields as many similarity
scores. Because of the large set of data, our experiments
focused on the following five randomly selected clusters:
cd06815, cd06817, cd06822, cd06825 and cd06826. The size
of each cluster (in terms of number of constituent sequences)
and the number of associated tiling similarity TS score
combinations obtained is shown below in Table 1.

Table 1: Cluster details.
Cluster Size Score Combinations

cd06825 9 36
cd06826 11 55
cd06817 15 105
cd06822 36 630
cd06815 39 741

We define below the following relationship terminologies
that are used in comparison of the similarity measures:

Siblings are sequences that are separated by only one
evolutionary branching from a common ancestor in
the evolutionary family tree. For instance, in Figure 2
sequences 44805037 and 160915859 are separated by a
single evolutionary step from their common ancestor, hence
they are siblings.

First cousins are sequences that are separated by at most
two branching from a common ancestor in the evolutionary
family tree. For instance, in Figure 2 sequences 164602518
and 44805037 are both at most two evolutionary steps
distant from the common ancestor, which makes them first
cousins.

Second cousins are sequences that are separated by at most
three branching from a common ancestor in the evolutionary
family tree. Again in Figure 2 sequences 164602518 and

20140922 are second cousins.

ith cousins are sequences that are separated by at most
(i+1) branching from the closest common ancestor.

In our experiments, we compared the Needleman-Wunsch
algorithm [4], the greedy tiling, and the random tiling
algorithms. We ran for each of the five above listed clusters
each of the three algorithms. We calculate the similarity
scores between siblings, first cousins and second cousins. For
the calculation of the similarity scores, we used the common
PAM250 substitution matrix [1] and a constant value of -8 as
the gap-penalty. In addition, for the random tiling algorithm,
the larger sequence X is always divided into 70 segments
randomly to generate the available tiles T (X). In the case of
the random tiling algorithm, we ran the basic algorithm 1000
iterations before selecting the tiling that gave the highest
score. The scores Needleman-Wunsch, the greedy tiling, and
the random tiling are shown in Tables 2, 3, and 4.

Table 2: Needleman-Wunsch similarity scores.
Sequence Siblings First Cousin Second Cousin

cd06815 860.20 704.88 653.56
cd06817 672.00 333.17 76.96
cd06822 496.50 115.25 143.17
cd06825 2050.33 -199.14 -1593.89
cd06826 987.75 985.43 815.75

Table 3: Greedy Tiling similarity scores.
Sequence Siblings First Cousin Second Cousin

cd06815 472.87 353.09 321.17
cd06817 391.52 313.01 190.65
cd06822 357.96 236.28 175.46
cd06825 1499.11 327.42 128.24
cd06826 325.48 387.07 289.09

Table 4: Random Tiling similarity scores.
Sequence Siblings First Cousin Second Cousin

cd06815 37.07 23.90 20.93
cd06817 56.23 44.63 42.90
cd06822 22.88 25.82 27.36
cd06825 68.57 49.08 83.88
cd06826 39.55 33.65 23.44

We also show the same results as a set of graphs in
Figures 3, 4, and 5.

4. Discussion of the Results
The essential difference between the Needleman-Wunsch

and the tiling similarity measures is that the Needleman-
Wunsch method is good for random mutations, insertions

Fig. 3: Needleman-Wunsch similarity scores.

Fig. 4: Greedy Tiling similarity scores.

and deletions but is not good for reordering of parts of
the sequences. In contrast, the tiling similarity measures
are designed to be able to detect similarities in case of
reordering. For example, recall that for the sequences X =
WARICDFLRE and Y = FIREICEWAR a high tiling
similarity was found in Example 1. In this case, it is possible
to imagine a common ancestor A = FLREICDWAR that
branches and develops first as

FLREICDWAR→mutate L/I, D/E FIREICEWAR

and second as

FLREICDWAR→switch WAR/FLRE WARICDFLRE

yielding, therefore, Y and X , respectively.

Transpositions of parts of the genome are known to occur
and would be reflected also in the amino acid sequences of
the corresponding proteins. While mutations are expected
to be much more frequent than such transpositions, they
may not be enough to explain very distant evolutionary
relationships because over large evolutionary distances some
transpositions may also occur. The proteins we studied are
considered ancient proteins because they help build the
bacterial cell wall, which is an essential part of bacteria.
Hence some transpositions may have occurred in various
branches of this ancient evolutionary tree.

Fig. 5: Random Tiling similarity scores.

The natural expectation for all the similarity measures
was the following:

1. All the similarity values were positive.

2. The average similarity among siblings was higher than
among first cousins which was higher than among second
cousins.

The Needleman-Wunsch algorithm, as shown in
Figure 3, did not fulfil these expectations in three instances.
In two instances, it gave a negative similarity value, namely
for first and second cousins for cluster cd06825. In addition,
for cluster cd06822 the similarity for first cousins was
significantly less (115.25) than the similarity for second
cousins (143.17).

The greedy tiling method gave only positive scores. The
average scores for first cousins were always larger than the
average scores for second cousins. The only anomaly was
in cluster cd06826 where the average sibling similarity was
slightly less (325.48) than the average first cousin similarity
(387.07).

The random tiling method also gave only positive
scores. The average scores for first cousins were less than
the average scores for second cousins in the case of two
clusters, namely, cd06822 and cd06825. In the case of
cd6822, the average sibling similarity was also slightly
less than the average first cousin similarity. Hence the
random tiling method did not fulfil the expectations in three
instances.

Therefore, our experiments suggest that the greedy tiling
method is the most robust method, especially comparing
larger evolutionary distances (first cousins versus second
cousins). The random tiling method seems intermediate in
performance. Probably it can be improved to be as good
as the greedy tiling method by increasing the number of
times its basic algorithm is repeated. Finally, the Needleman-

Wunsch algorithm was good in comparing shorter evolution-
ary distances (siblings versus first cousins) but deteriorated
considerably in comparing longer evolutionary distances
(first cousins versus second cousins).

The experimental results suggest that the tiling similarity
measure is better than the Needleman-Wunsch measure
for distant evolutionary relationships. Intuitively, the reason
seems to be that the tiling similarity allows transpositions
of a subsequence on the genome. These transpositions may
be only relatively rare evolutionary changes compared to
random mutations, Nevertheless, if a significant number of
transpositions accumulate in at least one branch of a large
evolutionary tree, then the Needleman-Wunsch algorithm
may be unable to detect them and give a low (even negative)
similarity score for distantly related sequences. Based on the
experimental results, we suspect that cluster cd06825 may
contain some transpositions because the Needleman-Wunsch
algorithm gave negative similarity scores for first counsins
and second cousins, but both of the Greedy Tiling and the
Random Tiling algorithms gave positive scores. Further, in
the Random Tiling method the average similarity increased
from first cousins to second cousins for the same cluster.

The above type of anomaly may be explained in an
example. Suppose that in an evolutionary tree branch A has
some transpositions that are not shared with its first cousin
branch B and also not shared by A and B’s second cousin
branch C. In this case, the similarity between A and B, which
is a first cousin similarity, could be lower than the similarity
between B and C, which is a second cousin similarity. Hence
if the evolutionary tree is extremely simple and has no other
first cousin pairs and no other second cousin pairs beside
A and C and B and C, then the average similarity among
first cousins could be less than the average similarity among
second cousins. The larger the evolutionary tree, the less
likely such anomalies could occur. It is important to note
that the cd06825 cluster is the smallest in size as shown in
Table 1.

5. Conclusion and Future Work

We need to investigate further the reasons why the tiling
similarity measure is better than the Needleman-Wunsch
similarity measure for distant evolutionary relationships. In
particular, it would be interesting to find actual examples of
transpositions of subsequences within any of the clusters.

Another direction for further experiments would be to con-
sider even larger evolutionary trees where we have enough
data for third and fourth cousins. Experiments on such a
larger data could show clearer the differences among the
similarity measures. We suspect that the Needleman-Wunsch
algorithm will perform even poorer on higher cousins but the
tiling similarity algorithms will keep detecting well the more
distant evolutionary relationships.

References
[1] R. Durbin and S. R. Eddy and A. Krogh and G. J. Mitchison, Biological

Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids,
Cambridge University Press, 1998.

[2] O. Gotoh, ”An improved algorithm for matching biological sequences,”
Journal of Molecular Biology, vol. 162, no. 3, pp. 705–708, 1982.

[3] (March 20, 2012) The National Center
for Biotechnology Information. [Online]. Available:
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=143500

[4] S. B. Needleman and C. D. Wunsch, ”A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970.

[5] R. Powers and J. Copeland and K. Germer and K. Mercier and
V. Ramanathan and P. Z. Revesz, ”Comparison of Protein Active-Site
Structures for Functional Annotation of Proteins and Drug Design,”
Proteins: Structure, Function, and Bioinformatics, vol. 65, no. 1,
pp. 124–135, 2006.

[6] P. Z. Revesz, Introduction to Databases: From Biological to Spatio-
Temporal, Springer-Verlag, 2010.

[7] P. Z. Revesz and T. Triplet, ”Classification Integration and Reclassifi-
cation using Constraint Databases,” Artificial Intelligence in Medicine,
vol. 49, no. 2, pp. 79–91, 2010.

[8] M. Shortridge and T. Triplet and P. Z. Revesz and M. Griep and
R. Powers, ”Bacterial Protein Structures Reveal Phylum Dependent
Divergence,” Computational Biology and Chemistry, vol. 35, no. 1,
pp. 24–33, 2011.

[9] T. F. Smith and M. S. Waterman, ”Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, pp. 195–197,
1981.

[10] T. Triplet and M. Shortridge and M. Griep and J. Stark and R. Powers
and P. Revesz, ”PROFESS: a PROtein Function, Evolution, Struc-
ture and Sequence database,” Database – The Journal of Biological
Databases and Curation, doi no. 10.1093/baq011, 2010.

