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ON WEIGHTED KNOWLEDGEBASE
TRANSFORMATIONS

A. Benczir, A.B. Novak (Budapest, Hungary)
P.Z. Revesz (Lincoln, USA)

Abstract. Revision and update operators add new information to some
old information represented by a logical theory. Katzuno and Mendelzon
show that both revision and update operators can be characterized as
accomplishing a minimal change in the old information to accommodate
the new one. In this paper we generalize the result for the revision by
considering weighted knowledgebases, where weights indicate the relative
importance of the information. Furthermore we give a modified version of
weighted model-fitting based on the model-fitting introduced by Revesz.

1. Introduction

Generally knowledgebases may be treated as some logical theory. For
simplicity we suppose that knowledgebases are represented by a propositional
well-formed formuli, and they are denoted by Greek letters.

The problem is the following: given knowledgebases ¢ (describing the
originally stored information) and p (the new knowledge), what should be the
result of modification of ¢ by u?

There are several theory change operators (see a review in [3] ) which give
different answers for the question. In this paper we deal with the generalization
for weighted knowledgebases of the revision and the model-fitting operators
characterized in an axiomatic way by Katzuno, Mendelzon in [2], [3], and
Revesz in [4].
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It turns out, that these axioms imply a special minimality property: each
operator picks up exactly those interpretations, which are minimal with respect
to a previously defined pre-order among the interpretations. This paper shows
that the weighted revision and weighted model-fitting operators can be also
characterized as accomplishing a minimal change. In this case a pre-order is
defined among the weighted interpretations.

Section 2 is on the propositional knowledgebase change operators. After
a brief overview in 2.1, in 2.2 we give the basic notions and notations for
propositional case. Sections 2.3 and 2.4 describe the propositional revision and
model-fitting operators respectively. In Section 3 we deal with the weighted
knowledgebases. We modify the original idea of weighted knowledgebase in [4]
in Section 3.1. The revision operator is defined for weighted knowledgebases
and a minimality theorem is proved in 3.2. A special solution is given for the
model-fitting for weighted knowledgebases in 3.3. Finally, Section 4 concludes
with some open problems.

2. Propositional knowledgebase change operators

2.1. Overview

This section is a brief survey on the background of the propositional knowl-
edgebase change operators, namely the update, revision, and (symmetrical)
model-fitting.

The propositional formulas ¢ and u represent two knowledgebases. Let ¢
be the original knowledgebase which will be modified by p. p represents the
new informatiou about the world initially described by ‘w. This modification
1s carried out by a theory change operator denoted by ¢. The resulting knowl-
edgebase ¢ o u can be defined in several ways depending on our expectations
fixed in advance.

In 2], [3] and [4] the authors gave a system of axioms for the following
operators: update, revision and the model-fitting, respectively. These systems
express the following ideas about the particular operators.

The update operator will be applied for 2, if the world - described correctly
by ¢ - changes and we have some partial information about the new state of
the world.
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For the situation in which the world given by ¢ is static, but there is some
new information about this static world represented by g, the revision operator
should be applied.

The aim of applying the model-fitting operator is finding the best fit models
to .

In these cases the knowledgebase p is supposed to be ”truer” than the
original knowledgebase ¢ in the sense that after performing the operation the
resulting formula ¢ o p implies g

For the completeness we should mention, that the symmetrical model-
fitting. which is an application of model-fitting, differs from the two above at
this point. It handles the knowledgebases ¢ and p in an equivalent way.

In this paper we deal only with the revision and model-fitting operators.
2.2. Basic notions and notations

Let Ly be a propositional language. The finite set of propositional terms
is 1", The subset of T 1s an interpretation. The set of all interpretations is .
The well-formed formulas (in the following briefly formulas) can be constructed
in the usual way. 'The models of a formula ¢ are denoted by C'_Mod(p) (this
notation is used because of the distinction from the weighted models, which will
be denoted by Mod(gp). The notation comes from the words Classical Model).
If © is a propositional term ¢, then C"_Mod(t) := {I | I € S, t € I}. For the
composed formula ¢, C_Mod(p) is the following:

C_Mod(—p) =3\ C_Mod(p),

C_ Mod(pVp)=C_Mod(p) UC_Mod(p),
C_Mod(p Ap) = C_Mod(p) NC_Mod(p).

If Iy.1o,..., Iy are interpretations. form(ly, I, ...Iy) means those formulas
whose models are exactly Iy, 5. ..., . The set of all propositional formulas
is denoted by F.

We say that ¢ implies g if and only if ¢"_Mod(¢) C C_Mod(u).

In the following we will need the notion of a pre-order among the inter-
pretations. A pre-order < over $ is a reflexive and transitive relation on S It
is total, if for every pair [,J € S either [ < J or J < I holds. [ < J if and
only if I < J, but J > I does not hold.

The set of minimal interpretations in a subset S C 3 with respect to the
pre-order < is denoted by Min{S, <} and defined as follows:
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Min{S,<}:={I|I € S, and there does not exist J € S for which J < I}.
2.3. Propositional revision operators

Based on the AGM-postulates (see in [1]) Katzuno and Mendelzon gave a
set of axioms for propositional revision operators. That is, the knowledgebase
changes operator ° : F' x F' — F'is called a revision operator, if it satisfies the
following axioms:

(R1) ¢°p implies p.
(R2) If ¢ A p 1s satisfiable then ¢°p — @ A p.
(R3) If p is satisfiable, then ¢°p is also satisfiable.
(R4) If 1 & @3 and py — py then p1°p1 — 2°ps.
(R5) (¢°u) A v implies p°(p Av).
(R6) If (¢°u) A v is satisfiable then ¢°(u A v) implies (9°u) A v.
In order to show a model-theoretic characterization of propositional re-

vision operators we have to introduce first the concept of faithful functions,
which are defined as follows:

Definition 2.1. The function f is said to be faithful if the following

properties hold:

(1) If M, M' € C_Mod(p) then M <, M’ does not hold.

(i1) f M € C_Mod(p), and I ¢ C_Mod(p) then M <, I holds.
(iii) If  « p, then f(p) = f(p).

By the help of the faithfulness, the following theorem expresses the
minimality property of the revision [2], (3].

Theorem 2.1. The knowledgebase change operator ° : F x F — F
satisfies the azioms (R1)-(R6) if and only if there is a faithful function f
mapping each knowledgebases ¢ to a total pre-order <, for which Mod(p°p) =
= Min{Mod(p), <,}.

“As we will see in Section 3.2 this theorem holds also for weighted knowl-
edgebases.

2.4. Propositional model-fitting operators

The model-fitting operators were originally introduced in [4]. Here we give
a restricted set of axioms for model-fitting.

The knowledgebase change operator 57 : F' x F — F is a model-fitting
operator if 1t satisfies the following axioms:
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(M1) ¢ v p implies p.
(M2) If ¢ is unsatisfiable then ¢ 7 1 1s unsatisfiable.
(M3) If both ¢ and p are satisfiable then ¢ 7 i is also satisfiable.
(M4) If o1 & @2 and py < po then @1 T 1 = 2 7 p2.
(M5) (¢ v ) Av implies o 7 (p A v).
(M6) If (¢ 7 1) A v satisfiable then ¢ 7 (¢ A v) implies (¢ 7 ) A v.
(M7) (91 V 1) A(p2 v p) implies (91 V p2) 7 4.
The minimality theorem holds in this case, too. To declare the theorem
we need the concept of loyal functions.
Definition 2.2. The function f is said to be loyal, if
(1) 1<, Jand I <, J then I <,y J,
(i) if @ < p, then f(p) = f(n).
Theorem 2.2.The knowledgebase change operator 7 : F x F — F
satisfies the azioms (M1)-(M7) if and only if there is a loyal function which

maps each knowledgebase ¢ to a total pre-order <, such that C_Mod(p_p) =
= Min{C_Mod(p), <,}.

In Section 3.3 (Theorem 3.2) the ”if” direction is proved also for weighted
knowledgebases.

3. Weighted knowledgebase transformations

3.1. Basic notions and notations

In this section we modify the notion of the weighted knowledgebases
introduced in [4].

Definition 3.1.

A weighted knowledgebase is the function p : S — [0, 1].

A weighted interpretation is the ordered pair (I,a) € S x [0,1].

The model of a weighted knowledgebase ¢ is that interpretation, for which

#(I) > @ > 0, so the modelset of  is the following:

Mod(p) = {(l,a) | I €S, ¢ > a >0}

It follows from this definition that the weighted knowledgebase ¢ is
unsatisfiable iff p(I) =0 for all I € S.
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The set of interpretations for which ¢(I) > 0 is denoted by C_Mod(p).
Clearly, I € C_Mod(p), \ff (I,a) € Mod(yp) for some a > 0.

We say that the weighted knowledgebase ¢ implies the weighted knowl-
edgebase y, iff for all 1 € S @(I) < p(I). This fact is denoted by ¢ — p. The
definition of equivalence follows from the foregoing: (¢ — p)A (g — @) = ¢ <

« p, that is the knowledgebases ¢ and p are equivalent iff p(I) = p(1) for all
I €S. The set of all weighted knowledgebases is denoted by F. We can define
the disjunction, conjuntion and negation as follows:

Definition 3.2.

@V u(l) = Maz{p(I), n(I)},
@ Ap(l) = Min{p(I), p(I)},
~p(I) =1=¢(I).

In [4] the weights are positive numbers. That is why there the negation is
not defined. The disjunction of two weighted knowledgebases in [4] is defined
as the sum of the corresponding weights.

In the following we deal with the weighted knowledgebase transformations.
3.2. Revision for weighted knowledgebases

In this section we define the revision operation for weighted knowledge-
bases. The axioms (R1)-(R6) should be valid for weighted knowledgebases as
well. But because of the definition of the equivalence, we do not need the axiom
(R4). So we say, that the operator ° : F x F — F is a weighted revision
operator iff it satisfies the following axiorns:

(WRI1) ¢ ° pimplies p;
(WR2) if p A p is satisfiable, then ¢ % p — p A y;

(WR3) if p is satisfiable, then ¢ ° p is satisfiable as well;
(WR4) (¢ ° p) Avimplies p ° (pAv);
(WRS) if (p°p) A v satisfiable then ¢ ° (p A v) implies (¢ ° p) Av.

To get the similar result to the Theorem 2.1 we need a pre-ordering among
the weighted interpretations. Let us denote the set of the pre-orders over the
set § x [0,1] by PO.

Definition 3.3. The function f : F — PQ is said to be faithful if it
satisfies the following properties:

(1) The pre-order is total with respect to the first element of the pairs.
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(n) If I € C_Mod(p) and J & C_Mod(p), then (I,a) <, (J,B).

(i) 16 (1, ), (J, 8) € Mod(p), then (I, ) <, (J, ) and—(,l, B) <y (1, ).

(iv) For all weighted knowledgebase ¢ and interpretation I there exists the
constant, aﬁ(l) €]0, 1] depending on ¢, for which (I, Min{aﬁ([),ﬂ}) <¢
<y (I,8) and oy (1) = @(I). whenever I € Mod(yp).

Using this definition the following theorem holds:

0

Theorem 3.1. The operalor  F x F — F satisfies the azioms
(WRI)-(WR3) ff there exrists a faithful function f, which maps each weighted
knowledgebase ¢ to the pre-order <,. and

Mod(p ° p) = Min{Mod(u), <o}

Proof.
I.
° satisfies the axioms (WR1)-(WR5). The

Suppose that the operator  _©
function f maps the weighted knowledgebase ¢ to the following relation <:

(1) (I,«) < (J, ) ff (I.a) € C_Mod(e 2 ((I,1)V (J, 1)), and I # J.
(i) (1, Min{aﬁ(l),ﬁ}) <p (1,1), where ay(I) = (¢ 2 (1, 1))(I).
We have to show that

(1) the function fis faithful,
(i) Mod(p 2 p = Min{Mod(p), <,}.

(1)

First we prove, that the relation <., is a pre-order satisfying the require-
ment of totality with respect to the first elements of the pairs (the property (1)
of the faithfulness).

The relation is total with respect to the first element of the pairs, since by
the axioms (WR1) and (WR3) Mod(e ° ((I,1)V(J,1))) is a nonempty subsect
of Mod((1,1)V (J.1)), so any pair of__interpretations are comparable.

The relation is reflexive by the definition of the relation <, itself.
The transitivity occurs only in case of different first elements. So the proof

can be restricted for the unweighted case, see the detailed proof e.g. in [4] page
80.

Now we prove the property (ii) of faithfulness: If I € C_Mod(y) and
J ¢ C_Mod(p), then ([,a) <, (J,B8). Because of the axiom (WR2)
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C_ Mod(p ° ((1,1) Vv (J,1)) = C_Mod(p A ((I,1) V (J,1))) = C_Mod{I,1},
hence I € C_Mod(p _° ((I,1)V(J,1))), but J cannot be in C_Mod(p ° ((1,1)V
V(J,1))), that is - by the definition of <, - (I,@) <, (J,8).

The property (I, ), (J,8) € Mod(yp) then (I,a) <, (J,8) and (J,8) <,
(I, a) will be showed (property (iii)). Applying the axiom (WR2) Mod(p o
2 (LY V(1) = Mod({1,13 v (J,1)) = {(L,e), (J.6) | 1> a>0,1>
> > 0}, hence (I,a), (J,8) € Mod(po((I,1)V(J,1)), thatis (I, a) <, (J,5)
and (J, 8) <y (I, @).

For the property (iv) of the faithfulness the constant a,(I) has been
already given in the definition of the relation <, so (I, Min{c;p(l), B}) <,
<y (I, B) follows directly from this definition. We have to prove ‘that ay(I) =
:—<p(1), whenever I € Mod(p). It follows from the axiom (WR2), because - as
we will prove it for the point (i) - @ % p(I) = Min{ay(I), p(1)} always holds.
If I € Mod(p) and I € Mod(p) (which is the case), then e op(l)=pAp(l) =
= Min{p, p(I)}, hence Min{a,(I), p(I)} = Min{p(I), p(I)}. But u(I) can
be any number in )0, 1], so the e?:luality holds only in case a,(I) = p(I).

(i)

First we prove that C_Mod(p ° p) = C_Min{Mod(u, <,}. We need to
show both the C and the D directions. If either por pu are uns_atisﬁable, then
CMod(p ° p) =0 =C_Min{Mod(p), <,}. Hence assume that both are

satisfiable, and prove that C_Mod(p ° p) C C_Min{Mod((y), <,} holds.

Assume that [ € C_Mod(p ° p) and I ¢ C_Min{Mod(p), <,}. Since
I 1s not a minimal model, according to the definition of minimal, there must
be another model (J,8) € Mod(p) such that (J,8) <, (I,a), ie. (J,8) <,
<y (I,@) and (I,a) <, (J,8). It means that (I,a) ¢ Mod(ep ° ((I,a)V
V(_J, B)). Since both I and J are in C_Mod(p), C_Mod(p)n{l,J} ={I,J}. By
the axiom (WR5) C_Mod(p ° p)N{I,J} C C_Mod(p ° (uA((I,x)V(J,B))) =
= C_Mod(p ° ((I,a) Vv (J,8))) = {J}, hence I cannot be in C_Mod(p ° p),
which is a contradiction.

To prove the other direction assume that I € C_Min{Mod(y), <,}
and I ¢ C_Mod(p ° p). By the axiom (WR3) there is a model (J,5) of
¢ 2 p. (J,8) is also in Mod(p) by the axiom (WRI1). Since both I and
J are in C_Mod(p), C_Mod(p) N {I,J} = {I,J}. Applying the axioms
(WR4), (WRS) C_Mod((¢ ° w)A((L, @)V (J. §)) € C_Mod(p ° (uA((I, a)V
V(J,B8))) = C_Mod(p ° ((I,a)V (J,B))) and by the axioms (WR1), (WR3)
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C Mod(p ° ((I,a) V (J,B))) C {I,J}. Since I is not in C_Mod(p ° p),
I ¢ CMod(p ° ((I,a)V (J,B))) as well. That is (J,8) <, (I,a), hence
1 ¢ C_Min{Mod(p), <,}, which is a contradiction.

Furthermore we have to prove that ¢ ° p(I) = Min{ay(I), p(I)}.

By the axioms (WR1) and (WR3) 0 < ay(I) < (¢ 2 (1,1)({). Let
(I,1(1)) a model of the weighted knowledgebase p. In this case p(I) > 0,
so (p ° (I,1)) A p is satisfiable, and by the axioms (WR4) and (WRS5)
((p (L) AR = (¢ 2 ((1, 1) Ap)).

Supposing that a,(I) > p(I) we get (¢ ° (1,1)) A p)(I) = p(I) =
= 2 (LA =¢ 2 p(l).

Now suppose that pu(I) > ay(I), then ((¢ ° (1,1)) A p)(I) = ap(l). On
the other hand ¢ ° ((I,1) Ap)(I) = ¢ 2 p(I), hence p ° p(I) = ay(I).

So the equality p°u(I) = Min{ay(I), p(I)} has been proved, which means
that the operator ° determines really the minimal elements of Mod(u).

II1.

Now the faithful function f is supposed. This function assigns to the
weighted knowledgebase ¢ the pre-order <, and the operator _° is defined

by the equality Mod(p ° p = Min{Mod(p), §£}~ We have to prove that _°
satisfies the axioms (WR1)-(WRS5).

Axiom (WR1) holds, since the result is a subset of Mod(u).

We prove the axiom (WR2) in two steps. In the first the equality
C_Mod(p A p) = C_Min{Mod(p), <,} will be proved. The satisfiability
of ¢ A p 1s supposed. First we prove_the C direction: C_Mod(p A p) C
C C_Min{Mod(y), <,}. The faithfulness of the function f ensures that if
I € C_Mod(p), then I Qw J for all interpretations J, such that J ¢ C_Mod(yp).
The interpretation I is ‘in C_Mod(p) because I € C_Mod(p A p). Hence
I € Min{Mod(y), <,}. B -

The other direction is C_Min{Mod(y), <,} C C_Mod(p A p). Suppose
that there exists an interpretation I, such that I € C_Min{Mod(p), <,}
and I ¢ C_Mod(p A p). Because p A p is satisfiable, there is a model J in
C_Mod(pAp). The faithful function f ensures that (J,8) < (I, ) since J is in
C_Mod(g) and I is not in it. Then I cannot be a minimal element of Mod ().
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In the second step we need to show that the weights are also correct with
respect to the definitions. It is a straightforward corollary of the following
identity

Min{a,(I), p()} = Min{e(I), p(1)} = (¢ A p)(I).

Axiom (WR3) clearly holds because of the definition of the operator _°

Similarly to the proof of the axiom (WR2), the axioms (WR4) and (WRS5)
will be proved in two steps.

In the first step we show, that in case of the satisfiability of (¢ ° p) A v
the equality C_Mod((¢ ° p)Av) = C_Mod(p ° (pAv)) holds. (If (_<p __O_It) Av
is not satisfiable, then the axiom (WRA4) is t:ivialgl true.) -

The first direction is C_Mod((¢ ° p) Av) C C_Mod(¢ ° (u Av)). That
is, C_Min{Mod(p), <,} N C_Mod(—g) g__C_Min{Mod(E/\—g), S_‘,,}. Suppose
that I € C_Min{Mod_(E), <o} UC_Mod(v). In this case | should be in
C_Min{Mod(p A v), <,}, since if it did not hold, then there would be an
interpretation J € C_MEl{Mod(E/\g), <} for which (J,8) <, (I,«). This
contradicts the supposition I € C_Min{M;d(E), <} ®

The proof of the other direction: C_Mod(¢ ° (pAv)) C C_Mod((¢ °

Av) means, that C_Min{Mod(p A v), S;} g_ C_Min{Mod(E),_ <IN
NC_Mod(v) holds. Suppose that I € C’_M_in{Mod(&/\g), <,} and 1 ¢
¢ C_Min{Mod(p),<,} N C_Mod(v). Since I € C_Mod(g;, I is not
in C_Min{Mod(y), g‘p}. Because of the satisfiability of the weighted
knowledgebase (¢ _° p)—/\ v, there 1s an interpretation J, for which J €
€ C_Min{Mod(E_), 5;} N C_Mod(v), which means that J € C_Mod(p A v).
Because of I € C’_M;n{Mod(E/\g), <y} the expression (I,a) <, (J,B)
holds. Since J € C_Min{Mod(n), <,}, (J,8) <, (I,@). Therefore I is
C_Min{Mod(p), 52}. - -

In the second step we show, that the corresponding weights are also correct.

If the weighted knowledgebase (¢ ° u) A v is not satisfiable, then the
axiom (WR4) holds, since for all inter;retat_ions I the weight is zero, therefore
(e 2p) Ar)I) < e 2 (pAY)(I) is true.

When (p _° p) Av is satisfiable, then the axioms (WR4) and (WR5) mean,
that ((¢ 2 p)Ar)(I) = ¢ ° (pAv)(I). It is obvious, because ((p % p)Av)(I) =
= Min{ay(I), p(I), v(D)} =¢ 2 (pAv)(I).
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3.3 Weighted model-fitting

Similarly to the classical knowledgebases the operator V: ExF—Fis
a weighted model-fitting operator, iff it satisfies the following axioms (WM1)-
(WM6):
(WM1) ¢ 7 p implies p.
(WM2) If ¢ is unsatisfiable, then ¢ 7 p is unsatisfiable as well.
(WM3) If both ¢ and p are satisfiable, then ¢ ¥ p is also satisfiable.
(WM4) (¢ ¥ p) Av implies ¢ (g Av).
(WM5) If (¢ 7 p) A v is satisfiable, then ¢ (g Av) implies (¢ 7 p) Av
(WMS) (¢, v 1) A(p, T ) implies (¢, V ,) ¥ p-
We need the notion of the loyality for weighted knowledgebases.

Definition 3.4. The function w!l : I — PO is loyal, if it assigns to each
weighted knowledgebase ¢ € Dy the pre-order <,, such that

1) For all weighted knowledgebases p and interpretation I there exists the
constant a, (/) €]0, 1] depending on ¢, for which (I, Min{ay(I), B}) <y
o (1)
i) If wl(go ) =<4, wl(p,) =< e, and (/,a) <o (J B), (I, a) <y, (J,5)
then (I, @) <p ve, (J,B), where wl(p, V¢,) = S, ve,-

The following theorem ensures that by the help of a loyal function and a
special constant a,(I) a model-fitting operator can be determined.

Theorem 3.2. Let wl be a loyal function assigning to the weighted
knowledgebase ¢ the pre-order <,. The operator 7 : . x F — F defined as
v Mod(p v p) = Mm{Mod{u, <y}} satisfies the azioms (WM1)-(WM6)

if a,(I) is equal to 1 for all interpretations I.

Proof. Because of ay(I) = 1, Min{a,(I), 8} = B. Hence the weight of
each weighted interpretation I in Min{Mod{p, <,}} is equal to p(I).

The proofs of the axioms (WM1)-(WMG6) consist of two steps, similarly to
proof of Theorem 3.1. In the first step the axioms should be proved for the
unweighted case. This part of the proof for the axioms (WM1)-(WMS5) - based
on the proof of Theorem 3.1 - can be easily done by the reader. In the second
step we show, that the weights are correct as well.

Because the weights of the resulting interpretations are equal to the weights
with respect to the weighted knowledgebase p, the axioms (WM1), (WM3)
hold. B
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Axiom (WM2) follows because if ¢ is unsatisfiable, then the minimal model
with respect to ¢ is the empty set. Hence 7 p is also unsatisfiable.

Axiom (WM4) follows from ay (1) = 1, since

(¢ v 1) Av)(I) = Min{u(l), u(1)} = ¢ T(pAv)(I)

Similarly to the proof of (WM4), if (p 7 p) Av is satisfiable, then p T(pA

Av)(I) = Min{u(I), v(I)} = ((¢ ¥ ) Av)(I), therefore axiom (WM5) holds.

(WMS6) follows from the following: If (/,&) € Min{Mod(p), <1}, and
(I,a) € Min{Mod(y), <,2}, then (I,a) <y (J,8) and (I,@) <42 (J,8)
for any other weighted in—terpretation (J, [3)_6 Mod(p). Because of the
loyality (I,@)p1vp2(J, ) holds, hence I € Min{Mod(u), <pivg2}. That

is, C_Mod((p,V p) A (¢, ) C C_Mod((p, V¢,)V ) holds. For the
weights applying ay(I) = 1 again, we get: (o, 7 p) A (,¥ p))I) = p(I) =

=g, vV ?,)V w)(I).
4. Discussion

It is interesting to consider extending the set of axioms for the weighted
revision by the reverse of axiom (WMS6), that is, by the following requirement:

(WM7) If (¢, p) A (9,V 1) is satisfiable, then (¢, V ¢,)¥ p implies (p, v p)A

Ne, ¥ #)-

Both of the axioms (WM6)-(WMT7) were introduced in a similar system
of axioms in [4]. It turns out, that an operator satisfies both axioms (WM6)-
(WMT) if and only if there is a strictly loyal function sl for which Mod(yp v p) =
= Min{Mod(p), sl(¢)}.

Definition 4.1. The function sl : F — PO is strictly loyal, if it assigns

to each weighted knowledgebase ¢ € Dy; the pre-order <, such that
1) For all weighted knowledgebases ¢ and interpretation I there exists the
constant ay (/) €]0, 1] depending on p, for which (I, Min{a,(I), B}) <,
<, (1,8).
) If sl(e, =<p1, sl(p,) =<2 and (I, a) <p1 (J,8), (1,a) <2 (J,B) then
(I, &) <p1vez (J,8), where sl(p, Vo,) =<yivp2.
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iii) I 3_1(21) =<1, 3_1(£2) =<y2 and (I, a) el (/,8), (I,a) <2 (J,B) then
(I,a) <£1v£2 (J» ,3)) where il-(ﬁl ng) :Sflvzl

If the function sl assigns to each knowledgebase the same pre-order, then
it is clearly strictly loyal. But unfortunately the construction of a non-trivial
strictly loyal function runs into difficulties. So the task is to construct non-
trivial strictly loyal functions.

Remark. It is shown in [4] that the set of revision, update and model-
fitting operators are pairwise disjoint in unweighted case. Since revision oper-
ators are characterized by faithful functions in [2] and model-fitting operators
are characterized by strictly loyal functions in [4], it follows that a function
cannot be both faithful and strictly loyal (in the present approach the function
characterizing the model-fitting operator is loyal). Based on the proof for the
propositional case the similar theorem holds for the weighted case.
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