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Abstract. Decision theory includes arbitration, bargaining and game the-
ory, whose relationships to each other are not well-understood. This paper
introduces a particular weighted arbitration operator and applies it to King
Solomon’s dilemma and Nash’s original bargaining problem. These appli-
cations allow a more meaningful comparison of the three theories and show
that arbitration provides a more natural, simpler and flexible solution than
the previously proposed bargaining and game theory solutions.

1. Introduction

Axiomatic arbitration theory originated when the late Prof. Alberto Mendel-
zon (1951–2005) introduced me to the axiomatic theory of belief revision [1]
and database update [8, 5], while I was a postdoctoral student at the Univer-
sity of Toronto. In the otherwise beautiful descriptions he presented, it was
disappointing to learn that the axioms of belief revision and database update
operators both assume that the new information is more accurate than the
old information. Realizing that information often needs to be combined from
sources that have equivalent reliability, I developed an axiomatic description of
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operators, named arbitration operators, that treat the old and the new informa-
tion in a more symmetric way [17, 18]. Some arbitration operators, often called
consensus, combination, fusion, merging etc. operators, were already proposed
by other researchers, but nobody gave before an axiomatic description of ar-
bitration similar to the axiomatic descriptions of belief revision and database
updates.

Prof. András Benczur, to whom this paper is dedicated on his seventieth
birthday, and his students at ELTE University were early enthusiasts of arbitra-
tion theory. It is a pleasure to think back to my first visit to ELTE University
in 1994 at the invitation of Prof. Benczur. A fruitful collaboration ensued
that extended arbitration theory in new directions, including important cases
of weighted arbitration [2, 3, 4]. This paper develops further the theme of ar-
bitration by introducing a weight function for atomic propositions and giving
based on that weight function a new arbitration operator in Section 3.3.

Arbitration theory belongs to the rich nexus of decision theory, which also
includes game theory and bargaining theory. The exact relationship among
these axiomatic theories is hard to understand not only because these theories
have numerous variants but also because theories usually allow many partic-
ular operators that satisfy their axioms. However, the particular weighted
arbitration operator introduced in this paper can be applied to some problems
already considered in game theory and bargaining theory. The new arbitration
application examples, including King Solomon’s dilemma and Nash’s original
bargaining problem, allows a meaningful comparison of the three theories in
practice. At least in the given examples, arbitration provides a more natural,
simpler and flexible solution than either game theory or bargaining theory does.

This paper is organized as follows. Section 2 presents some basic definitions.
Section 3 reviews propositional arbitration, which is also called model-fitting.
Section 4 compares arbitration and game theory solutions to the problem of
King Solomon’s dilemma. Section 5 compares arbitration and bargaining so-
lutions to a problem of bargaining presented in Nash [13]. Finally, Section 6
presents some conclusions and further work.

2. Basic definitions

Let T be a finite set of propositional terms. We build propositional formulas
from terms using the unary connective ¬ denoting boolean negation, and the
binary connectives ∧ and ∨ denoting boolean and and boolean or. We call each
I ⊆ T an interpretation. LetM be the set of interpretations {I : I ⊆ T }. The
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set of models of a formula φ denoted by Mod(φ) is defined as follows:

Mod(t) = {I ∈M : t ∈ I},
Mod(¬φ1) = M\Mod(φ1),

Mod(φ1 ∨ φ2) = Mod(φ1) ∪Mod(φ2),

Mod(φ1 ∧ φ2) = Mod(φ1) ∩Mod(φ2).

In this paper we will use the expression form(I1, . . . , Ik) to denote the formula
that has exactly the models I1, . . . , Ik.

A knowledge base K is a set of formulas {ψ1, . . . , ψn}. A theory is a de-
ductively closed set of formulas. If we have a consequence relation cn and K
is any knowledge base, then cn(K) is a theory. Let ⊥ denote falsity, that is
the formula with no models. We say that a theory T is consistent if and only
if ⊥ 6∈ T . A knowledge base K is consistent if and only if the theory cn(K) is
consistent.

We say that a knowledge base K is satisfiable (or consistent) if and only
if the conjunction of all propositional formulas in K is satisfiable. The set
Mod(K) is the set of models of the conjunction of all the propositional formulas
in K. We say that K ∧ µ is satisfiable if and only if there is an interpretation
that satisfies all the formulas in K and also satisfies µ.

A pre-order ≤ over M is a reflexive and transitive relation on M. A pre-
order is total if for every pair I, J ∈M, either I ≤ J or J ≤ I holds. We define
the relation < as I < J if and only if I ≤ J and J 6≤ I.

The set of minimal models of a subset S of M with respect to a pre-order
≤ is defined as

Min(S,≤) = {I ∈ S :6 ∃I ′ ∈ S where I ′ < I}.

2.1. Weighted knowledge bases

A weighted knowledge base is a function K̃ from model sets to nonnegative
real numbers. We denote the weight of a model set M in weighted knowledge
base K̃ as K̃(M). The real numbers are intended to describe the relative degree
of importance of the model sets within the weighted knowledge base.

If K̃1 and K̃2 are two weighted knowledge bases, we take their weighted
union, denoted as K̃1 ∪+ K̃2, to be the weighted knowledge base K̃ such that for
each model set M , K̃(M) = K̃1(M) + K̃2(M).

Let the function Form map each model set S to a propositional formula
that has S as its set of models. Further, if S1, . . . Sn are model sets with
nonzero weights in a weighted knowledge base K̃, then let Form(K̃) denote
the conjunction of the set of formulas Form(Si) for each 1 ≤ i ≤ n.
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We say that a weighted knowledge base K̃ is satisfiable if and only if the in-
tersection of all model sets with nonzero weights in K̃ is nonempty. A weighted
knowledge base is unsatisfiable if and only if it is not satisfiable. We say that
an interpretation I is a model of a weighted knowledge base K̃, written as
I ∈ Mod(K̃), if and only if I is an element of each model set with nonzero
weight in K̃.

3. Arbitration

Several sets of axioms for different cases of arbitration were presented in the
original paper [17] and its journal version [18], which both considered regular
and weighted knowledge bases. Below we present the axioms of arbitration in
only one case, which is called weighted model-fitting.

Intuitively, a weighted model fitting operator . takes as input a weighted
knowledge base K̃ and an integrity constraint µ and returns those models of µ
that are overall closest to K̃. If there is no integrity constraint, then µ is by
default the set of all possible models. We make the notion of overall closest
more precise after presenting the axioms.

We say that a knowledge base operator . is a weighted model-fitting opera-
tor if and only if it satisfies the following axioms for all weighted propositional
knowledge bases K̃, K̃1, K̃2 and propositional formulas µ and φ:

(W1) K̃ . µ implies µ.

(W2) If Form(K̃) ∧ µ is satisfiable then K̃ . µ↔ Form(K̃) ∧ µ.

(W3) If µ is satisfiable then K̃ . µ is also satisfiable.

(W4) If µ↔ φ then K̃ . µ↔ K̃ . φ.

(W5) (K̃ . µ) ∧ φ implies K̃ .(µ ∧ φ).

(W6) If (K̃ . µ) ∧ φ is satisfiable then K̃ .(µ ∧ φ) implies (K̃ . µ) ∧ φ.

(W7) (K̃1 . µ) ∧ (K̃2 . µ) implies (K̃1 ∪+ K̃2) . µ.

(W8) If (K̃1 . µ)∧ (K̃2 . µ) is satisfiable then (K̃1 ∪+ K̃2) . µ implies (K̃1 . µ)∧
(K̃2 . µ).
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3.1. Restriction to multisets

A multiset knowledge base K = {ψ1, . . . , ψn} is a multiset of propositional
formulas. Note that the propositional formulas of K can be logically equivalent,
that is, Mod(ψi) = Mod(ψj) may be true for some 1 ≤ i, j ≤ n. If K1 and K2

are multiset knowledge bases, then K1 ↔ K2 means that there is a bijection of
propositional formulas in K1 and K2 that maps logically equivalent formulas
to each other. Let t be the multiset union operator.

A natural weighted knowledge base is a weighted knowledge base with only
non-negative integer weights.

Proposition 3.1. Every natural weighted knowledge base K̃ is equivalent
to a multiset knowledge base K such that for each model set M the following
holds

K̃(M) =
∑
ψi∈K

(Mod(ψi) ≡M).

We define the function Multiset from natural weighted knowledge bases to
multiset knowledge bases such that if Multiset(K̃) = K, then K̃ and K are
equivalent as described in Proposition 3.1. Similarly, we define the function
Weigh from multiset knowledge bases to natural weighted knowledge bases
such that if Weigh(K) = K̃, then K̃ and K are equivalent as described in
Proposition 3.1.

Proposition 3.2. For each pair of natural weighted knowledge bases K̃1

and K̃2 and multiset knowledge bases K1 = Multiset(K̃1) and K2 = Multiset(K̃2)
the following holds

K̃1 ∪+ K̃2 = K1 tK2.

Konieczny and Pino Pérez [9] say that for each propositional formula µ
a knowledge base operator 4µ is an integrity constraint merging operator if
and only if it satisfies the following axioms for all multiset knowledge bases
K,K1,K2 and propositional formulas φ, φ′:

(IC0) 4µ(K) implies µ.

(IC1) If µ is satisfiable then 4µ(K) is also satisfiable.

(IC2) If
∧
K ∧ µ is satisfiable then 4µ(K)↔

∧
K ∧ µ.

(IC3) If K1 ↔ K2 and µ↔ φ then 4µ(K1)↔4φ(K2).

(IC4) If φ implies µ and φ′ implies µ, then
if 4µ(φ t φ′) ∧ φ is satisfiable, then 4µ(φ t φ′) ∧ φ′ is satisfiable.
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(IC5) 4µ(K1) ∧4µ(K2) implies 4µ(K1 tK2).

(IC6) If 4µ(K1)∧4µ(K2) is satisfiable then 4µ(K1 tK2) implies 4µ(K1)∧
4µ(K2).

(IC7) 4µ(K) ∧ φ implies 4µ∧φ(K).

(IC8) If 4µ(K) ∧ φ is satisfiable then 4µ∧φ(K) implies 4µ(K) ∧ φ.

The next theorem shows that integrity constraint merging operators are a
subclass of weighted model-fitting operators.

Theorem 3.3. Let µ be any propositional formula. Then every integrity
constraint merging operator 4µ is equivalent to a weighted model-fitting oper-
ator . such that the following holds for any multiset knowledge base K

4µ(K) ≡Weigh(K) . µ.

Proof. The weighted model-fitting axioms can be mapped into the integrity
constraint merging axioms as follows: (W1) to (IC0), (W2) to (IC2), (W3) to
(IC1), (W4) to (IC3), (W5) to (IC7), (W6) to (IC8), (W7) to (IC5), and (W8)
to (IC6). �

Remark 3.1. (IC4) is the only axiom that is not derived from (W1-W8).
Hence any integrity constraint merging operator is a weighted model-fitting
operator restricted to natural weighted knowledge bases and satisfying (IC4).

Lin and Mendelzon [11] say that a particular operator, denoted here as ◦, is a
majority merging operator if for any multiset knowledge base K = {ψ1, . . . , ψn}
and literal, or atomic proposition or its negation, l, it satisfies the following
axioms.

(MM1) ◦(K) is satisfiable.

(MM2) If
∧
K is satisfiable, then ◦(K)↔

∧
K.

(MM3) If K1 ↔ K2, then ◦(K1)↔ ◦(K2).

(MM4) ∀l if |ψi |= l| > |ψi |= ¬l|+ |ψi |≈ l|, then ◦(K) |= l.

where | | means cardinality and ψi |≈ l means partially satisfies, that is, ψ is
consistent and ψ1 6|= l and ψ1 6|= ¬l.

Remark 3.2. Lin and Mendelzon gave only one example majority merging
operator, denoted 4

∑
µ , which is the same as one of the example operators of

Revesz [17]. However, there are other operators that satisfy axioms (MM1-
MM4).
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Example 3.4. If
∧
K is consistent, then ◦K =

∧
K as required by axiom

(MM2). Identify all the literals l that satisfy the condition in axiom (MM4).
These literals are restricted because ◦(K) |= l must hold. Let us call unre-
stricted those atoms a which do not satisfy the condition of axiom (MM4). For
unrestricted atoms, neither a nor ¬a must occur in the models of ◦(K). Now
consider a majority merging operator that for all unrestricted atoms a makes
◦(K) |= a if the number of propositional formulas is odd and ◦(K) |= ¬a if the
number of propositional formulas is even.

Let knowledgebases K1 = K2 each contain the following three propositional
formulas: ψ1 = (a∧¬b∧¬c)∨ (¬a∧ b∧¬c)∨ (¬a∧¬b∧ c), ψ2 = a∧ b∧ c and
ψ = a ∧ ¬b ∧ c. It can be calculated that in K1 and in K2 no literal satisfies
the condition of axiom (MM4). Hence the ◦(K1) = ◦(K2) = a ∧ b ∧ c.

Let knowledgebase K = K1 t K2. Clearly, in K no literal satisfies the
condition of axiom (MM4). Since K has an even number of propositional
formulas, ◦(K) = ¬a ∧ ¬b ∧ ¬c. This shows that this new majority merging
operator does not satify conditions (W7) and (W8).

Theorem 3.5. 4Max
µ does not satisfy (W8), (IC6).

Proof. Let ψ1 = a ∧ ¬b ∧ ¬c, ψ2 = ¬a ∧ b ∧ ¬c, K1 = {ψ1}, K2 = {ψ2}
and µ = ψ2 ∨ (¬a ∧ ¬b ∧ c). Then Mod(ψ1) = {{a}}, Mod(ψ2) = {{b}}
and Mod(µ) = {{b}, {c}}. Hence 4Max

µ (K1) = µ and 4Max
µ (K2) = ψ2 and

4Max
µ (K1tK2) = µ. Hence 4Max

µ (K1)∧4Max
µ (K2) = ψ2, which is satisfiable,

but 4Max
µ (K1 tK2) = µ does not imply ψ. �

3.2. Restriction to unweighted knowledge bases

An unweighted knowledge base, denoted K, is a weighted knowledge base
K̃ where the weight of each model set is either zero or one. Since each model
set M can be mapped into some propositional formula ψ such that Mod(ψ) =
M , an unweighted knowledge base K is equivalent to a set of propositional
formulas {ψ1, . . . , ψn}. Therefore, unweighted knowledge bases form a further
restriction from multisets to sets of propositional formulas. Arbitration in the
case of unweighted knowledge bases is also called model fitting and is defined
as follows [17, 18].

Definition 3.1. We say that a knowledge base change operator . is a model
fitting operator if and only if . satisfies the following axioms for each (not
necessarily consistent) propositional knowledge base K, and formulas µ and φ:

(M1) K .µ implies µ.

(M2) If K ∧ µ is satisfiable then K .µ↔ K ∧ µ.
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(M3) If µ is satisfiable then K .µ is also satisfiable.

(M4) If K1 ↔ K2 and µ↔ φ then K1 . µ↔ K2 . φ.

(M5) (K .µ) ∧ φ implies K .(µ ∧ φ).

(M6) If (K .µ) ∧ φ is satisfiable then K .(µ ∧ φ) implies (K .µ) ∧ φ.

(M7) (K1 . µ) ∧ (K2 . µ) implies (K1 ∪K2) . µ.

Remark 3.3. Note that there is no axiom (M8) similar to (W8). The
reason is the incompatibility of the 4Max

µ operator and (W8). The definition

of model fitting operators allows 4Max
µ on unweighted knowledge bases.

3.3. Example arbitration operator

We give below as an example an arbitration operator. Let A be the set of
all possible atomic propositions and R+ be the set of positive real numbers.
Let ω be a weight function from A to R+. For any set S, let |S| denote its
cardinality.

Definition 3.2. The unweighted distance between interpretations I and J ,
denoted dist(I, J), is

dist(I, J) = |(I \ J) ∪ (J \ I)| =
∑

t∈(I\J)∪(J\I)

1.

The ω-weighted distance between interpretations I and J , denoted distω(I, J),
is

distω(I, J) =
∑

t∈(I\J)∪(J\I)

ω(t).

Example 3.6. Assume that I = {A,B,C} and J = {C,D,E}. Sup-
pose that ω is a weight function that assigns ω(A) = 1, ω(B) = 2, ω(C) =
3, ω(D) = 4 and ω(E) = 5. Then dist(I, J) = 4 and distω(I, J), is 1+2+4+5 =
12.

Definition 3.3. Let K = {ψ1, . . . , ψn} be an unweighted knowledge base,
and let ω be a weight function from A to R+. The overall distance between a
propositional formula ψ and an interpretation I, denoted odist(ψ, I), is

odist(ψ, I) = min
J∈Mod(ψ)

distω(I, J).
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The overall distance between K and an interpretation I, denoted odist(K, I),
is

odist(K, I) = max
ψ∈K

odist(ψ, I).

Then we assign to each unweighted knowledge base K the total pre-order
≤K defined by I ≤K J if and only if odist(K, I) ≤ odist(K,J). We define the
model fitting operator 4Max

ω,µ as the set of minimal models of µ with respect to

the pre-order ≤K . The 4Max
ω,µ operator extends the 4Max

µ operator by using a
weight function on atomic propositions.

A more complex extension of 4Max
µ is when we use a different weight func-

tion ωi for each propositional formula ψi in K. The more complex operator,
denoted 4Max

ω1,...,ωn,µ is useful in modeling the preferences of several people.

Definition 3.4. Let K = {ψ1, . . . , ψn} be an unweighted knowledge base,
and let ωi be the weight function from A to R+ that is associated with ψi. The
overall distance between a propositional formula ψi and an interpretation I,
denoted odist(ψi, I), is

odist(ψi, I) = min
J∈Mod(ψi)

distωi
(I, J).

The overall distance between K and an interpretation I, denoted odist(K, I),
is

odist(K, I) = max
ψi∈K

odist(ψi, I).

As shown in the following sections, the above extension is useful in modeling
game theory and bargaining problems where the preferences of several players
need to be considered.

4. Game theory

Game theory, originated by von Neumann, is an extremely successful and
broad subject. Nevertheless, it seems an overreach to try to apply game theory
to arbitration problems. Some authors recently tried to solve ”King Solomon’s
dilemma”–presumably named after the well-known ”Prisoner’s dilemma” prob-
lem–using game theory. At first, we present a simple solution to this problem
using arbitration. Then we discuss game theoretic proposals for this problem
and make some comparisons.

Example 4.1. According to a story in the Bible, King Solomon had to
make a judgement between two women who both claimed to have given birth
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to the same baby. One women had a stillbirth and switched her stillborn baby
with the live baby while its mother was asleep. When the two women appeared
before him, King Solomon threatened to cut the baby in half if both women
continue to claim the baby as theirs.

Let the propositions L, M and T represent, respectively, that the baby is
kept alive, that the mother gets custody, and the thief gets custody. Let us
assume that King Solomon considers four possible outcomes: (1) the baby is
cut in half, that is, nobody gets the baby, (2) the mother gets the baby, (3)
the thief gets the baby, and (4) neither woman gets the baby, but it is given
to some other person. King Solomon’s four options can be represented as a
formula µ that has the following models:

Mod(µ) = {{}, {L,M}, {L, T}, {L}}.

The mother wants the baby to be kept alive and gain custody. Hence

Mod(ψm) = {{L,M}}.

Assume that the mother’s preferences are expressed by the weight function
ωm, which gives ωm(L) = 8, ωm(M) = 6, ωm(T ) = 1. Hence, we calculate that

odist(ψm, {}) = 14,

odist(ψm, {L,M}) = 0,

odist(ψm, {L, T}) = 7,

odist(ψm, {L}) = 6.

The thief also wants the baby and keep its custody. Hence

Mod(ψt) = {{L, T}}.

Assume that the thief’s preferences are expressed by the weight function
ωt, which gives ωt(L) = 2, ωt(M) = 1, ωt(T ) = 4. Hence

odist(ψt, {}) = 6,

odist(ψt, {L,M}) = 5,

odist(ψt, {L, T}) = 0,

odist(ψt, {L}) = 4.

Our knowledge base K = {ψm, ψt}. Hence we find that

odist(K, {}) = max(14, 6) = 14,
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odist(K, {L,M}) = max(0, 5) = 5,

odist(K, {L, T}) = max(7, 0) = 7,

odist(K, {L}) = max(6, 4) = 6.

Since the minimum value is five, we find that

4Max
ωm,ωt,µ(K) = {{L,M}}.

Hence King Solomon’s best choice is to give the live baby to its mother.

Game theory would represent the situation by a payoff matrix [19] as shown
in Figure 1. In each entry of the payoff matrix, the top row shows a pair of
numbers, where the first number is mother’s payoff and the second number is
the thief’s payoff, and the bottom row shows one of the four outcomes. For
arbitration, we calculated the distances from the desires of the mother and
the thief to the outcomes. For game theory, we calculate the payoffs as the
distance from the complement of the desires to the outcomes. For example,
the mother’s desire is {L,M}, its complement is {T}. This can be taken as the
mother’s worst fear. Any improvement from that is a payoff. For example, the
weighted distance from {T} to {L} is 1 + 8 = 9. The mother gets a payoff of
eight because the baby’s life is spared and a payoff of one because the baby is
not given to the thief. Therefore, the mother gets a total of nine payoff.

For the mother, we calculate the payoffs

odist({T}, {}) = 1,

odist({T}, {L,M}) = 15,

odist({T}, {L, T}) = 8,

odist({T}, {L}) = 9.

For the thief, whose worst fear is {M}, the complement of {L, T}, we cal-
culate the payoffs

odist({M}, {}) = 1,

odist({M}, {L,M}) = 2,

odist({M}, {L, T}) = 7,

odist({M}, {L}) = 3.

The above calculations are used to fill in the payoff matrix in Figure 1.



32 P.Z. Revesz

thief: mine thief: not mine

mother: mine 1, 1 15, 2
{} {L,M}

mother: not mine 8, 7 9, 3
{L, T} {L}

Figure 1. The payoff matrix for the baby custody dispute.

Game theory searches for the best strategies of the players. A Nash equi-
librium point [14] is when none of the players has an incentive to change if the
others also do not change. In this case, if we do not allow mixed (stochastic)
strategies, then there are two Nash equilibria, namely, outcomes (2) and (3).
In mixed strategies, the players choose between the two options that they have
with a certain frequency. If the women do not coordinate their choices, then
the baby may get killed.

To avoid the above outcome, Mihara [12], Olszewski [15], and Qin and
Yang [16] proposed several more complicated solutions. These solutions have
in common a two part process. At first, the two women are asked to bid in
order for the game to take place. The second part, is the game itself with
the condition that the looser has to pay the winner what she bade. Instead of
having a game actually take place, the aim of these strategies is to make the
bidding so high that the less eager participant, the thief, will back off from the
whole process. The complexity of such a solution suggests that game theory is
not the right approach to arbitration problems like King Solomon’s dilemma.

Remark 4.1. In game theory, the players can eliminate some possible out-
comes that are undesirable to them. In arbitration, the players cannot eliminate
possible outcomes. The players may say that they prefer some outcomes, but
an arbitrator is not bound to follow what they say. In the baby custody dis-
pute example, King Solomon, the arbitrator, can see that the mother is only
playing a strategy when she says that the baby is not hers. From the responses
of the two women, King Solomon can guess the cost matrix of this game and
then identify that the best solution is to give the baby back to its mother. In
arbitration, the arbitrator can eliminate some possible outcomes.

5. The bargaining problem

The bargaining or negotiating problem has been also considered by many
authors. In this section we focus on Nash bargaining [13] and show that it can
be also represented by propositional arbitration.
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Let I = {I1, . . . , In} be a set of n ≥ 2 items and P = {P1, . . . , Pm} be a
set of m ≥ 2 persons. Let the proposition ij represent that item Ii is given to
person Pj . Assume also that each person Pj ’s weight (or utility) function, ωj ,
assigns to each item Ii and corresponding proposition ij a positive real number,
which reflects Pj ’s desire of owning Ii.

Remark 5.1. The weight function ωj also could assign some positive real
number to the other propositions ik where k 6= j. For example, if Pk is a friend
of Pj , then ωj(ik) could be some positive real number because Pj could find
some utility in Pk’s ownership of Ii as Pj can now easier borrow item Ii from
Pk than from the former owner. Arbitration can handle this friendship effect
that most other models of bargaining ignore. To ignore friendship effects in
arbitration modeling, let ωj assign some small ε > 0 to all ik where k 6= j.

Arbitration assumes for each person Pj a propositional formula ψj that
describes the exchanges desired by Pj . For example, if Pj is a completely
selfish individual, then Pj would desire to get all the items owned by others.
In this case, Pj ’s desire can be described by ψj with

Mod(ψj) = {ij : Pj does not own Ii}.

All of the desiresK = {ψ1, . . . , ψm} need arbitration by selecting the models
of µ that are overall closest to K, where each model of µ describes a set of
possible and allowed exchanges of items.

Remark 5.2. In a two-person bargaining the subscript of the ij can be
omitted because it is obvious who gets an item if the item is exchanged.

The next example gives an arbitration solution to Nash’s original bargaining
problem [13].

Example 5.1. Suppose that Bill and Jack own a set of items and weigh
each item as shown in Figure 2, which lists the items in the same order as
in [13]. In this case, Bill desires to exchange the following set of items

Mod(ψB) = {{pen, toy, knife, hat}},

while Jack desires to exchange the following set of items

Mod(ψJ) = {{book, whip, ball, bat, box}}.

During the bargaining, any subset of the nine items could be exchanged
between Bill and Jack. That is, there are 29 different possible exchanges. Each
of these exchanges can be uniquely described as a subset of the nine items and
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Bill and Jack’s Weight (Utility) Functions

book whip ball bat box pen toy knife hat

owner Bill Bill Bill Bill Bill Jack Jack Jack Jack
ωB 2 2 2 2 4 10 4 6 2
ωJ 4 2 1 2 1 1 1 2 2

Figure 2. Bill and Jack’s ownnership and weight functions of a set of items.

a possible model of µ. Let us suppose that µ is such that it has exactly the
following three models:

M1 = {book, whip, ball, bat, pen, knife},

M2 = {book, whip, ball, bat, pen, toy, knife},

M3 = {book, whip, bat, pen, toy, knife}.

In the above M1 describes that Bill gives Jack the book, the whip, the ball
and the bat, and Jack gives Bill the pen and the knife. M2 and M3 can be
interpreted similarly. For Bill the overall distance between ψB and M1 is

odist(ψB ,M1) = distωB
({pen, toy, knife, hat}, {book, whip, ball, bat, pen, knife})

= ωB(book) + ωB(whip) + ωB(ball) + ωB(bat) + ωB(toy) + ωB(hat) = 14.

Similarly, for Jack the overall distance between ψJ and M1 is

odist(ψJ ,M1) = distωJ
({book, whip, ball, bat, box}, {book, whip, ball, bat, pen, knife})

= ωJ(box) + ωJ(pen) + ωJ(knife) = 4.

For M2 and M3 we find that

odist(ψB ,M2) = 10,

odist(ψJ ,M2) = 5,

odist(ψB ,M3) = 8,

odist(ψJ ,M3) = 6.

Let the knowledge base be K = {ψB , ψJ}. We calculate that:

odist(K,M1) = max(odist(ψB ,M1), odist(ψJ ,M1)) = max(14, 4) = 14,

odist(K,M2) = max(odist(ψB ,M2), odist(ψJ ,M2)) = max(10, 5) = 10,

odist(K,M3) = max(odist(ψB ,M3), odist(ψJ ,M3)) = max(8, 6) = 8.
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The minimal model of µ with respect to the pre-order ≤K is M3 because
odist(K,M3) < odist(K,M2) < odist(K,M1). Therefore,

4Max
ωB ,ωJ ,µ(K) = M3.

This shows that the best choice for arbitration is M3. The choice of M3 leaves
each player the least disappointed. Compared to their original expectations,
Bill’s disappointment is 8 and Jack’s disappointment is 6. Hence the largest
disappointment of any player is only 8. All the other choices are more disap-
pointing to some player.

Next we solve the problem of Example 5.1 using Nash bargaining.

Example 5.2. Nash bargaining starts by calculating for the possible bargin-
ing results the gains of both Bill and Jack as shown in Figure 3. Bill’s gains
are the number of total weights of Bill’s items after the bargaining minus the
total weights of Bill’s items before the bargaining. Jack’s gains are calculated
similarly.

Possible Bargains between Bill and Jack

Case Bill gives Jack gives Bill gains Jack gains

1 book, whip, ball, bat pen, knife 8 6
2 book, whip, ball, bat pen, toy, knife 12 5
3 book, whip, bat pen, toy, knife 14 4
...

...
...

...
...

Figure 3. Possible bargains between Bill and Jack and their utility gains.

Nash’s bargaining solution optimizes the product of the two players’ gains,
which in this case happens to be largest in the second case, that is, when Bill
gains 12 and Jack gains 5.

Remark 5.3. Since cases 1, 2 and 3 in Figure 3 correspond to models
M1,M2 and M3 in Example 5.1, the arbitration and the Nash bargaining so-
lutions are different for this problem. Arbitration takes the approach that the
two sides came together to bargain and neither side should be left greatly dis-
appointed. The Nash bargaining solution leaves Bill quite disappointed. A
major disappointment of either party endangers the entire deal. If Bill would
be offered the Nash solution, then he may walk away because of feeling disap-
pointment and resentment. Perhaps people are not always as rational as Nash
assumed them to be. However, it should be also noted that they are not com-
pletely irrational either. In Example 5.1, we assumed that Bill and Jack have
the maximalist desires of getting everything given to them free. Such desires
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are appropriate only for children, which Bill and Jack presumably are given the
bargaining items in the problem. In practice, experienced negotiators always
try to offer something that at least they think the other side may like.

Example 5.3. Suppose Bill anticipates giving Jack the book, given that
Jack likes it better he does, and accepts the idea that it is unreasonable to
ask Jack to give him the hat, which they both like equally. Moreover, Bill
recognizes that exchanging one item for three items is unrealistic, hence he is
prepared to offer Jack the whip too. In other words, Bill’s desire regarding the
outcome of the bargaining changes to

Mod(ψB) = {{book, whip, pen, toy, knife}}.

This reduces by six the overall distance from ψB to each Mi for 1 ≤ i ≤ 3.
Assuming that Jack’s desire does not change, now we get

odist(K,M1) = max(odist(ψB ,M1), odist(ψJ ,M1)) = max(8, 4) = 8,

odist(K,M2) = max(odist(ψB ,M2), odist(ψJ ,M2)) = max(4, 5) = 5,

odist(K,M3) = max(odist(ψB ,M3), odist(ψJ ,M3)) = max(2, 6) = 6.

In this case, M2 has the minimum distance and would be the arbitration
solution in agreement with the Nash bargaining solution. Hence the arbitra-
tion solution is more general than the Nash bargaining solution. Arbitration
matches the human experience that the participants’ anticipations are crucial
in determining which deal takes place.

Remark 5.4. Some other solutions to the bargaining problem also start
by computing the gains of the participants but either choose the solution that
maximizes the gain of the smallest gainer or the solution that gives the same
proportion of gains to the players with respect to their maximum gains [6, 7].

6. Conclusions and further work

Axiomatic arbitration theory emerged as an alternative to belief revision
and database updates, but, as shown in this paper, it has deep connections
with bargaining and game theory, too. It would be interesting to explore
further these connections considering also first-order arbitration as described
in [18]. First-order formulas could provide more flexible and hence potentially
more realistic descriptions of the participants’ desires and the allowed arbitra-
tion outcomes. Another direction of research would be to apply arbitration to
more complex conflict resolution problems, such as arms control negotiations
or international trade disputes.
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