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Abstract: This paper analyzes the asymptotic capacity of Hamming Neural Networks [8,

9, 13] and Matcher Neural Networks [18, 19] in the case of unidirectional errors. It is shown

that for any omission error rate, the asymptotic capacity of Matcher Neural Networks is

much greater than that of Hamming Neural Networks.

1 Introduction

In many applications binary patterns may suffer omission errors (corruption of 1’s to 0’s)

and commission errors (corruption of 0’s to 1’s) with different probabilities. The figure

below shows the various probabilities of bit corruption. In the symmetric case δ = ξ, in the

asymmetric case δ 6= ξ, and in the unidirectional case ξ = 0.
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Unidirectional errors occur for example in magnetic and optical storage media, in fiber

∗An abstract of this paper appeared in [14]. This work was supported in part by NSF grant IRI-9632871.
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optical transmission, and in sign language communication [11, 12, 21, 20, 23]. Despite

this range of applications, few papers consider the performance of neural networks in the

unidirectional case. Among the few exceptions is the Matcher Neural Network (MNN) which

was specifically designed for the unidirectional case [18, 19]. Among the more popular neural

networks MNNs are closest to the Hamming Neural Networks (HNNs) [8, 9, 13].

The present paper proves that unidirectional applications are more suitable for matcher

neural networks than for Hamming neural networks. The proof relies on arguments from

information theory to show that in the unidirectional case for any δ MNN can store and

recall correctly more random vectors than HNN can.

This result explains previous computer experiments that compared MNN, HNN and other

neural networks in the nearly unidirectional environment of the CyberGlove system [22] when

it was used for hand sign recognition [20].1 There MNNs were used to recognize hand signs

from a dictionary of 395 root signs with 96% accuracy while HNNs performed much poorer

with about 33% accuracy.

Our study complements various capacity analyses for other neural networks. Hopfield [7]

suggested by simulation that the relative capacity in Hopfield associative memory is m =

0.15n where m is the number of patterns learned correctly and n is the size of the memory.

McEliece et al. [16] proved that the absolute capacity in Hopfield associative memory is

m = n
4 log(n)

. Amit et al. [2] proved that for the spin-glass model m = 0.14n. Amari and

Yanai [1] present a unified approach to the analysis of various architectures of associative

memory models: the cascade model, the cyclic model, BAM, and the autocorrelation model.

Chou [?] analyzed the capacity of Sparse Distributed Memories which were introduced in

Kanerva [10].

This paper is organized as follows. Section 2 lists basic definitions. Section 3 presents

the main statistical analysis for MNNs. Section 4 generalizes the analysis in Section 3 for

the case when each vector has several parts that have different omission error probabilities.

Section 5 compares the capacity of MNNs with that of HNNs. Finally, Section 6 lists some

open problems.

1The CyberGlove system is nearly unidirectional because various muscle movements or elementary fea-

tures of signs are more likely to be omitted than extra ones introduced.

2



2 Basic Definitions

Let Vn denote the binary n-cube {0, 1}n. We may think that each vector X in Vn is a feature

list. That is it describes an object by its features with the ith feature being present in the

object if and only if the ith bit in X is a 1.

The neural networks considered in this paper memorize a subset X1, . . . , XM of Vn in

an autoassociative way. By autoassociative we mean that if a corrupted version of any Xi

is input to the network, then the network should give as output Xi. Of course, how well a

network performs depends to a large extent on the degree of corruption in the input.

There are several ways to measure the difference between two feature lists. Below we

define formally both the Hamming distance and the asymmetric distance.

Definition 2.1 Let Vn denote the binary n-cube {0, 1}n, and let X, Y ∈ Vn. We call the

Asymmetric Distance of X and Y

h(X, Y )
def
= card({i : (xi = 1) ∧ (yi = 0), 1 ≤ i ≤ n}).

the Hamming Distance

dh(X, Y )
def
= h(X, Y ) + h(Y, X)

✷

We say that Y matches X if h(X, Y ) = 0. In that case whenever a feature is present in

X then it is also present in Y .

Remark: The Hamming distance is the square of the Euclidean distance, which is used in

nearest neighbor pattern classification [4]. Hence a HNN corresponds to a nearest neighbor

classifier where each category contains only one pattern.

Definition 2.2 Let v(X) be the number of 1’s in the vector X ∈ Vn. ✷

Example 2.1 Let X = (0, 0, 1, 1, 1) and Y = (0, 1, 0, 1, 0). Then h(X, Y ) = card({3, 5}) =

2 because the third and the fifth digits are 1s in X and 0s in Y . Also, h(Y, X) = card({2}) =

1 because only the second digit is 1 in Y and 0 in X. We also have dh(X, Y ) = h(X, Y ) +

h(Y, X) = 3. Finally, v(X) = 3 and v(Y ) = 2. ✷
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This paper analyzes the capacity of Matcher Neural Networks [18, 19]. The recall algo-

rithm of MNN is the following:2

(1) Find those memorized vectors that match the input.

(2) Select from the matching vectors those with the smallest asymmetric distance from the

input.

(3) If several vectors remain, then select randomly any one of them.

For example, suppose that the vector X1 = (1, 0, 0, 0, 0) and X2 = (1, 0, 1, 1, 1) are the

stored vectors in a MNN and the input vector is X0 = (1, 0, 0, 1, 0). Then the output vector

is X2 because in step (1) out of the two stored vectors only X2 will be found to match all

the 1s in X0, because h(X0, X1) = 1 but h(X0, X2) = 0.

The recall algorithm of HNN is similar to that of MNN but step (1) is skipped and in

step (2) the Hamming distance measure is used.

For example, suppose now that we have the same situation as in the previous example but

we use a HNN instead of a MNN. Then the output vector will be X1 because dh(X0, X1) = 1

while dh(X0, X2) = 2.

The capacity of a neural network is intuitively the number of vectors in Vn that it can

correctly memorize. We define the capacity formally as follows.

Definition 2.3 Let ǫ be any fixed number between 0 and 1 and let N be any autoassociative

neural network that memorizes vectors of length n that have been generated at random. The

capacity of N with respect to ǫ, n, δ and ξ is the maximum number of memorized vectors

X1, . . . , XM such that for any Xi for 1 ≤ i ≤ M if vector X is within a fraction of δ omission

and ξ commission error from Xi, and the output of the network is Y , then the probability

that Xi 6= Y is less than ǫ. ✷

Definition 2.4 Let δ be the fraction omission and ξ be the fraction commission error allowed

during recall. Let for each integer n ≥ 1 Nn be the set of neural networks that memorize

vectors of length n. Let {ǫn, n ≥ 1} be a sequence of positive numbers with limn→∞
ǫn = 0

and {Mn, n ≥ 1} a sequence of integers. If for each n, Mn is the maximum capacity of a

network in Nn with respect to ǫn and n and δ and ξ, then we define the asymptotic capacity

with respect to δ, ξ, {ǫn, n ≥ 1} to be {Mn, n ≥ 1}. ✷

2In this paper we omit describing the architecture of the MNN and the adaptive learning procedure

(see [15]) because these are not needed for the main proof of the paper.
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Absolute capacity is asymptotic capacity with ǫn = 0 for each n ≥ 1. Relative capacity is

asymptotic capacity with δ = ξ = 0. Symmetric capacity is asymptotic capacity with δ = ξ.

Unidirectional capacity is asymptotic capacity with ξ = 0.

It is intuitive that the asymptotic capacity is a monotone increasing sequence for all

reasonable sets of neural networks. Therefore, what we will be interested in seeing is how

fast this sequence increases. The faster the rate of increase the better the memory of a set

of neural networks. This rate of increase is sometimes called the exponential rate and is

defined as follows.

Definition 2.5 For any fixed set of neural networks and {ǫn, n ≥ 1} we define the exponen-

tial rate function to be

γ(δ)
def
= lim sup

n→∞

1

n
log2(Mn)

where {Mn, n ≥ 1} is the asymptotic capacity with respect to δ, ξ = 0 and {ǫn, n ≥ 1}. ✷

We will see in this paper that the exponential rate for Matcher Neural Networks is

much higher than for Hamming neural networks. Hence for sufficiently large vectors to be

memorized the former provides a more efficient memory than the latter.

For the technical analysis in the paper we will also need to define various information

rate functions usually used for channel models [17]. The information rate functions provide

approximations for the exponential rate function and vice versa.

If ξ = δ we talk about a binary symmetric channel (BSC). The information rate of BSCs

is

Ih(δ)
def
= 1 − h2(δ)

where

h2(δ)
def
= −δ log2(δ) − (1 − δ) log2(1 − δ)

is Shannon’s entropy function. If ξ = 0 we talk about an ideal binary asymmetric channel

(IBAC or Z-channel). The information rate of IBAC is

Ia(δ)
def
= 1 +

δ

2
log2(δ) −

1 + δ

2
log2(1 + δ).

Note that by Shannon’s Information Theorem, Ia is an upper bound of the exponential

rate of the MNN when the input vectors have only omission errors.
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Furthermore, we define two additional information rates Im and Ir. For the first Im(δ) =

1−2δ. This is the theoretical maximum information rate that can be achieved. This follows

from [5].

For the second let β(δ)
def
= max{δ, (3 + δ −

√
δ2 + 6δ + 1 )/4}. Then

Ir(δ)
def
= Ih(β(δ)) + 1 − (1 − β(δ) + δ)h2

(

δ

1 − β(δ) + δ

)

.

3 A Capacity Analysis of Matcher Neural Networks

Suppose that the stored patterns are selected at random and that the input patterns are

different from the stored patterns only with d omission bits when the stored pattern has at

least d number of 1’s and with k omission bits when the stored pattern has k (k < d) number

of 1’s. Under the above assumption, we say that the input pattern has at most d omission

bits.

Lemma 3.1 For MNN, let Mn be the number of stored patterns selected at random. With-

out loss of generality, we assume that X1 is the pattern to be retrieved. Then the probability

of retrieving a wrong pattern Y given an input with at most d bit omissions is bounded by

P (Y 6= X1) ≤
(Mn − 1)

22n

n
∑

k=0

(

n

k

)min(d,k)
∑

i=0

(

n − k + d

i

)

.

Proof. When a wrong pattern Y = Xj (j 6= 1) is retrieved, this pattern Xj is at least as

close to the input pattern X0 as X1 is, where the input pattern X0 is a vector satisfying the

conditions of h(X0, X1) = 0 and h(X1, X0) = min(d, v(X1)). If v(X1) = k ≥ d and the input

X0 has d omission errors, then v(X0) = k − d. In this case the vector Xj has a bit 1 if the

corresponding bit vector X0 is 1, and Xj has at most d more 1’s among the n− (k−d) other

bits. (If there were more than d such 1’s in Xj then Xj would be more than d distance from

X0. Hence X1 would be closer to X0 than Xj .) Similarly, if v(X1) = k < d then Xj has at

most k more 1’s than X0 has. The probability P (Y 6= X1) is bounded by the sum of the

probabilities for 2 ≤ j ≤ Mn

P (Y = Xj) ≤
n
∑

k=0

P (v(X1) = k) · P (h(Xj, X0) ≤ h(X1, X0) and h(X0, Xj) = 0|v(X1) = k),
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hence by the foregoing argument,

P (Y = Xj) ≤
n
∑

k=0

P (v(X1) = k) · P (h(Xj, X0) ≤ min(d, k) and h(X0, Xj) = 0|v(X1) = k),

which implies the inequality in the Lemma. ✷

Theorem 3.1 For MNN, let Mn be the number of stored patterns selected at random.

Without loss of generality, we assume that X1 is the pattern to be retrieved. If δ is any

number such that

lim sup
n→∞

1

n
log2(Mn) < Ir(δ),

then for all ǫ > 0, there exists an n0 such that for all n ≥ n0, and for all input X with

h(X1, X) = min(δn, v(X1)) and h(X, X1) = 0,

P (Y 6= X1) < ǫ,

where Y is the retrieved pattern for input X from {X1, · · · , XMn}.

Proof. See Appendix. ✷

Theorem 3.2 For MNN, let Mn be the number of stored patterns selected at random.

Without loss of generality, we assume that X1 is the pattern to be retrieved. If δ is any

number such that

lim sup
n→∞

1

n
log2(Mn) > Ir(δ)

then for all ǫ > 0, there exists an n0 depending on ǫ such that for all n ≥ n0 and for the

input X with h(X1, X) = min(δn, v(X1)) and h(X, X1) = 0,

P (Y 6= X1) > 1 − ǫ,

where Y is a retrieved pattern from {X1, · · · , Xn}.

Proof. See Appendix. ✷

Theorems 3.1 and 3.2 together imply that for MNN the exponential rate is equivalent to

the information rate for large n. This can be seen as follows.

Assume that there is some δ such that γ(δ) > Ir(δ). Therefore for the capacity sequence

{Mn, n ≥ 1} the supper limit is larger than Ir(δ). Therefore by Theorem 3.2 we cannot

retrieve correctly, which is a contradiction because by Definition 2.4 for the capacity sequence

we can retrieve correctly.
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Now assume that there is some δ such that γ(δ) < Ir(δ). Let {Mn, n ≥ 1} be the

capacity sequence. Then define a new sequence each of whose elements is 2n
Ir(δ)+γ(δ)

2 . For

this new sequence the supper limit is also less than Ir(δ). Therefore, by Theorem 3.1 we

can retrieve correctly as many vectors as the new sequence shows. This contradicts the

maximum assumption within Definition 2.4.

4 Multiple Omission Errors

In many practical applications the probability of making an omission error in the input will

be slightly different for different bits of a large pattern. For example, Revesz & Veera [20]

used MNN for sign language translation where the input binary pattern was generated by

a CyberGlove device. The CyberGlove gave a one-bit output with “1” for each bent and

“0” for each straight joint in the hand. The experiments show that the omission errors are

much more frequent for the bits describing the thumb finger joints than for the other bits.

Some other applications may also use simultaneously several different types of sensors, for

example tactile, visual, auditory sensors with potentially large differences in reliabilities. In

this section, we analyze the capacity of MNN considering two different groups of bits within

the input pattern, with each group having a different omission error.

Suppose that the input vector X ∈ Vn can be broken down into 2 subvectors

X = (X(1), X(2))

where the length of X(i) is ni, for i = 1, 2 and n = n1 + n2. Let λi = ni/n denote the

proportional length of the two subvectors. (Here each subvector X(i) describes a group of bits

as explained earlier.) We assume that the different subvectors have different probabilities of

omission errors. Let δi be the probability of omission error for the subvector i where i = 1, 2.

Definition 4.1 The multiple information rate IR is defined by

IR(δ1, δ2) = λ1Ir(δ1) + λ2Ir(δ2)

Lemma 4.1 Let Mn be the number of stored patterns selected at random and learned by

a MNN. Without loss of generality, we assume that X1 is a learned pattern to be retrieved.

Then the probability of retrieving a wrong pattern given an input with at most di = niδi bit
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omissions distance from X(i) is bounded by

P (Y 6= X1) ≤
(Mn − 1)

22n

n1
∑

k1=0

n2
∑

k2=0







2
∏

i=1

(

ni

ki

)





min(di,ki)
∑

j=0

(

ni − ki + di

j

)











✷

Theorem 4.1 For MNN, let Mn, n ≥ 1 be the number of stored patterns selected at random.

Without loss of generality, we assume that X1 is the pattern to be retrieved. If δ1 and δ2 are

any numbers such that

lim sup
n→∞

1

n
log2(Mn) < IR(δ1, δ2),

then for all ǫ > 0, there exists an n0 such that for all n ≥ n0, and for all input X with

h(X1, X) = min(δ̄n, v(X1)) and h(X, X1) = 0,

P (Y 6= X1) < ǫ,

where δ̄ = λ1δ1 + λ2δ2 and Y is the retrieved pattern for input X from {X1, · · · , XMn}.

Proof. Similar to the proof of Theorem 3.1. ✷

Theorem 4.2 For MNN, let Mn, n ≥ 1 be the number of stored patterns selected at random.

Without loss of generality, we assume that X1 is the pattern to be retrieved. If δ1 and δ2 are

any number such that

lim sup
n→∞

1

n
log2(Mn) > IR(δ1, δ2)

then for all ǫ > 0, there exists an n0 depending on ǫ such that for all n ≥ n0 and for the

input X with h(X1, X) = min(δ̄n, v(X1)) and h(X, X1) = 0,

P (Y 6= X1) > 1 − ǫ,

where δ̄ = λ1δ1 + λ2δ2 and Y is a retrieved pattern from {X1, · · · , Xn}.

Proof. Similar to the proof of Theorem 3.2. ✷

Consider the special case in which there are multiple omission errors. Suppose that the

two subvectors have equal length n1 = n2 = n/2, and δ1 = 0 and δ2 = 2δ, where δ is

the percent omission of the single omission error case discussed in Section 3. To compare

the single omission case and the multiple omission case, we assume that δ̄ = δ. The two

information rates are shown in the Figure 1. The information rate in the multiple omission

case is higher then that in the single omission case.
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Figure 1: The information rates for multiple omission errors

As a more concrete example, lets assume that n = 100 and δ = 0.1. Then in both the

single and the multiple omission case we expect 10 bits to be in error. But, whereas in the

single omission case the errors can occur anywhere, in the multiple omission case they can

occur only among the last 50 bits. Figure 1 reveals that despite some superficial similarity,

the second case is really better.

5 Comparison with Hamming Neural Networks

The Hamming Neural Network (HNN) was proposed by Jackel et al. [8, 9]. It consists of two

parts. The first part calculates matching scores, and the second part is the MAXNET, which

picks the maximum of all the matching scores. The matching score computed by HNNs is

the Hamming distance between the input vector and the stored vectors. The capacity of the

Hamming networks can be defined in the same way as for MNNs.

Lemma 5.1 For HNN, let Mn be the number of stored patterns selected at random. With-

out loss of generality, we assume that X1 is the pattern to be retrieved. Then the probability

of retrieving a wrong pattern Y given an input with at most d bit errors is bounded by

P (Y 6= X1) ≤
(Mn − 1)

2n

d
∑

k=0

(

n

k

)
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Proof. When a wrong pattern Y = Xj (j 6= 1) is retrieved, this pattern Xj is at least as

close to the input pattern X0 as X1 is, Then dh(Xj, X0) ≤ dh(X1, X0) ≤ d. The probability

P (Y 6= X1) is bounded by the sum of the probabilities for 2 ≤ j ≤ Mn

P (Y = Xj |X0, X1) = P (dh(Xj , X0) ≤ dh(X1, X0)|X0, X1)

≤ P (dh(Xj , X0) ≤ d|X0, X1)

=
1

2n

d
∑

k=0

(

n

k

)

.

then P (Y = Xj) ≤ 1
2n

∑d
k=0

(

n

k

)

. Thus,

P (Y 6= X1) ≤
Mn
∑

j=2

P (Y = Xj) ≤
(Mn − 1)

2n

d
∑

k=0

(

n

k

)

which implies the inequality in the Lemma. ✷

Theorem 5.1 For HNNs, let Mn be the number of stored patterns selected at random.

Without loss of generality, we assume that X1 is the pattern to be retrieved. If δ is any

number such that d = δn is an integer and

lim sup
n→∞

1

n
log2(Mn) < Ih(δ),

then for all ǫ > 0, there exists an n0 such that for all n ≥ n0, and for all input X0 with

dh(X1, X0) = d,

P (Y 6= X1) < ǫ,

where d = δn is an integer and Y is the retrieved pattern for input X0 from {X1, · · · , XMn}.
✷

Proof. Definition 2.5 implies that Mn ≈ 2nγ(δ) for large n. We have γ(δ) < Ih(δ) by the

condition of the theorem. Hence, for large n

Mn < 2
n

[

γ(δ)+
Ih(δ)−γ(δ)

2

]

By the bound of the binomial coefficient (see [6], page 530),

d
∑

k=0

(

n

k

)

2−n ≤ 2−nIh(δ). (1)
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By the Lemma 5.1,

P (Y 6= X1) ≤
(Mn − 1)

2n

d
∑

k=0

(

n

k

)

≤ 2
n

[

γ(δ)+
Ih(δ)−γ(δ)

2

]

2−nIh(δ) = 2−n
Ih(δ)−γ(δ)

2 . (2)

Thus, for large n > n0, P (Y 6= X1) < ǫ. ✷

Theorem 5.2 For HNNs, let Mn be the number of stored patterns selected at random.

Without loss of generality, we assume that X1 is the pattern to be retrieved. If δ is any

number such that

lim sup
n→∞

1

n
log2(Mn) > Ih(δ)

then for all ǫ > 0, there exists an n0 depending on ǫ such that for all n ≥ n0 and for the

input X0 with dh(X1, X0) = d,

P (Y 6= X1) > 1 − ǫ,

where d = δn is an integer and Y is a retrieved pattern from {X1, · · · , Xn}.

Proof. See Appendix. ✷

Theorems 5.1 and 5.2 together imply that for HNNs the exponential rate is equivalent

to the information rate for large n. This can be seen as follows.

Assume that there is some δ such that γ(δ) > Ih(δ). Therefore for the capacity sequence

{Mn, n ≥ 1} the upper limit is larger than Ih(δ). Therefore by Theorem 3.2 we cannot

retrieve correctly, which is a contradiction because by Definition 2.4 for the capacity sequence

we can retrieve correctly.

Now assume that there is some δ such that γ(δ) < Ih(δ). Let {Mn, n ≥ 1} be the

capacity sequence. Then define a new sequence each of whose elements is 2n
Ih(δ)+γ(δ)

2 . For

this new sequence the supper limit is also less than Ih(δ). Therefore, by Theorem 5.1 we

can retrieve correctly as many vectors as the new sequence shows. This contradicts the

maximum assumption within Definition 2.4.

Figure 2 summarizes the relation among the various information rate functions.

For comparison with HNNs, we have the following theorems:

Theorem 5.3 For 0 < δ < 0.5,

Ih(δ) < Ir(δ) < 2Ih(δ).
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Figure 2: The information rates

✷

Proof. It is easy to show that the function g1(δ)
def
= Ir(δ)− Ih(δ) and the function g2(δ)

def
=

2Ih(δ) − Ir(δ) are positive in the interval (0, 1). Then the theorem is proved. ✷

The above theorem shows that MNNs have smaller error probability than HNNs, when

they have the same number of stored patterns. The following plot shows a comparison of

MNN and HNN. In the plot, the x-axis is the number of bits for memories of size N = 2x

bits, i.e. x = log2(N), and the y-axis is the error rate δ, which is the percentage of the

omission bits in the vector of n-bits. From the Figure 3, it can be seen that the MNN uses

the memory more efficiently.

As an example, suppose that the length of the stored vector is n = 1000, and the

maximum percent of omission errors is 40%. The MNN can memorize M = 255 (i.e. 36 ×
1015Mb) vectors without any significant errors, while the HNNs can memorize only M = 226

(i.e. about 67Mb) vectors.
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Figure 3: The error rates when n = 1000

6 Conclusion

This paper considered the case of unidirectional errors. This case occurs in many applications

(e.g. [11, 12, 21, 20, 23]), but it is largely neglected in the neural networks literature.

This paper supports the idea that the unidirectional and the symmetric cases should

be handled by different neural networks. It remains an interesting research issue to design

more neural networks for the unidirectional case and to compare their capacity with that of

Matcher Neural Networks.

There is also work to be done on the asymmetric case. We are currently extending our

analysis to the asymmetric case. In the extension, step (1) of the MNN recall algorithm

would be modified. Instead of requiring exact matches, imperfect matches would be also

allowed. That is, if X0 is the input, then for some fixed constant c each stored vector Xi will

be selected for which h(X0, Xi) ≤ c. We also consider extending the analysis from binary to

analog data.
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A Appendix

Proof of Theorem 3.1. Let d = δn. Definition 2.5 implies that Mn ≈ 2nγ(δ) for large n.

We have γ(δ) < Ir(δ) by the condition of the theorem. Hence, for large n

Mn < 2n[γ(δ)+
Ir (δ)−γ(δ)

2 ]

We consider the case of v(X1) ≥ d, first. For k ≥ d,
(

n

k

)(

n−k+d

d

)

is maximum when

k = k1
def
= β(δ)n. Then by the bound of the binomial coefficient (Gallager (1968), page 530),

n
∑

k=d

(

n

k

)

2−n
d
∑

i=0

(

n − k + d

i

)

2−n ≤ n(d + 1)

(

n

k1

)

2−n

(

n − k1 + d

d

)

2−n

≤ n(d + 1)2−n[Ih(β(δ))+1−(1−β(δ)+δ)h2 ( δ
1−β(δ)+δ

)]

≤ n(d + 1)2−nIr(δ).

Now, we consider the case of v(X1) < d.

d−1
∑

k=0

(

n

k

)

2−n
k
∑

i=0

(

n

i

)

2−n ≤
(

d
∑

k=0

(

n

k

)

2−n

)2

≤ 2−2nIh(δ).

By Lemma 3.1, we have from the above inequality,

P (Y 6= X1) ≤ Mn

[

n(d + 1)2−nIr(δ) + 2−2nIh(δ)
]

≤ 2n[γ(δ)+
Ir (δ)−γ(δ)

2 ]
[

n(d + 2)2−nIr(δ)
]

≤ n(d + 2)2−n
Ir(δ)−γ(δ)

2 ,

since Ir(δ) < 2Ih(δ). Thus, for large n > n0, P (Y 6= X1) < ǫ. ✷

Proof of Theorem 3.2. Let d = δn. Let the event Aj = {h(Xj , X) < d}, j = 2, · · · , Mn.

It is clear that A2, · · · , AMn are independent and have same probability, say pn. By step (2)
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of the recall algorithm for MNN, and the fact that X is d distance apart from X1, any event

Aj implies that a wrong pattern will be retrieved. Hence,

P (Y 6= X1) ≥ P (∪Mn

j=2Aj)

= 1 − P (∩Mn
j=2Āj)

= 1 −
Mn
∏

j=2

(1 − pn)

= 1 − e(Mn−1) log(1−pn)

= 1 − e−(Mn−1) log( 1
1−pn

)

≥ 1 − ǫ,

where the last inequality is given by the inequality

(Mn − 1) log(
1

1 − pn

) > − log ǫ,

which is proved as follows.

Let k1 = β(δ)n. If k1 is not a integer, let k1 be its closest integer. Then

pn ≥ 2−2n
n
∑

k=d

(

n

k

)

d−1
∑

i=0

(

n − k + d

i

)

≥ 2−2n

(

n

k1

)(

n − k1 + d

d − 1

)

≥ 1

8n2
2−nIr(δ)

Using the given condition

lim sup
n→∞

1

n
log2(Mn) > Ir(δ),

Then for sufficiently large n,

−Mn log(1 − pn) > Mnpn > − log ǫ.

✷

Proof of Theorem 5.2. Let the event Aj = {dh(Xj , X0) < d}, j = 2, · · · , Mn. It is clear

that A2, · · · , AMn are independent and have same probability, say pn. By step (2) of the

recall algorithm for HNNs, and the fact that X is d distance apart from X1, any event Aj

implies that a wrong pattern will be retrieved. Hence,

P (Y 6= X1) ≥ P (∪Mn
j=2Aj) = 1 − P (∩Mn

j=2Āj) = 1 −
Mn
∏

j=2

(1 − pn)

= 1 − e(Mn−1) log(1−pn) = 1 − e−(Mn−1) log( 1
1−pn

) ≥ 1 − ǫ,
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where the last inequality is given by the inequality

(Mn − 1) log(
1

1 − pn

) > − log ǫ,

which is proved as follows.

pn = P (Aj) = P (dh(Xj, X) < d) ≥ 2−n
d−1
∑

k=0

(

n

k

)

≥ 2−n

(

n

d − 1

)

=
n + d − 1

d
2−n

(

n

d

)

≥ 1 − δ

2δn
2−nIh(δ)

Using the given condition

lim sup
n→∞

1

n
log2(Mn) > Ih(δ),

Then for sufficiently large n,

(Mn − 1) log(
1

1 − pn

) = −(Mn − 1) log(1 − pn) > (Mn − 1)pn > − log ǫ.

✷
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