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Abstract. In many problems the raw data is already classified according
to a variety of features using some linear classification algorithm but
needs to be reclassified. We introduce a novel reclassification method that
creates new classes by combining in a flexible way the existing classes
without requiring access to the raw data. The flexibility is achieved by
representing the results of the linear classifications in a linear constraint
database and using the full query capabilities of a constraint database
system. We implemented this method based on the MLPQ constraint
database system. We also tested the method on a data that was already
classified using a decision tree algorithm.

1 Introduction

Semantics in data and knowledge bases is tied to classifications of the data.
Classifications are usually done by classifiers such as decision trees [7], support
vector machines [10], or other machine learning algorithms. After being trained
on some sample data, these classifiers can be used to classify even new data.

The reclassification problem is the problem of how to reuse the old classifiers
to derive a new classifier. For example, if one has a classifier for disease A and
another classifier for disease B, then we may need a classifier for patients who
(1) have both diseases, (2) have only disease A, (3) have only disease B, and
(4) have neither disease. In general, when combining n classifiers, there are 2n

combinations to consider. Hence many applications would be simplified if we
could use a single combined classifier.

There are several natural questions about the semantics of the resultant
reclassification. For example, how many of the combination classes are really
possible? Even if in theory we can have 2n combination classes, in practice the
number may be much smaller. Another question is to estimate the percent of
the patients who fall within each combination class, assuming some statistical
distribution on the measured features of the patients.

For example, Figures 1 and 2 present two different ID3 decision tree classifiers
for the country of origin and the miles per gallon fuel efficiency of cars. For
simplicity, the country of origin is classified as Europe, Japan, or USA, and the
fuel efficiency is classified as low, medium, and high. Analysis of such decision
trees is difficult. For instance, it is hard to tell by just looking at these decision
trees whether there are any cars from Europe with a low fuel efficiency.



II

Fig. 1. Decision tree for the country of origin of cars. The tree is drawn using
Graphviz [2].

Fig. 2. Decision tree for the miles per gallon fuel efficiency of cars. The tree is drawn
using Graphviz [2].
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When a decision tree contains all the attributes mentioned in a query, then
the decision tree can be used to efficiently answer the query. Here the problem is
that the attributes mentioned in the query, that is, country/region of origin and
MPG (miles per gallon) fuel efficiency, are not both contained in either decision
tree. Reducing this situation to the case of a single decision tree that contains
both attributes would provide a convenient solution to the query.

We propose in this paper a novel approach to reclassification that results in
a single classifier and enables to answer several semantic questions. Reusability
and flexibility are achieved by representing the original classifications in linear
constraint databases [6, 8] and using constraint database queries.

Background and Contribution: Earlier papers by Geist [4] and Johnson
et al. [5] talked about the representation of decision trees in constraint databases.
However, they did not consider support vector machines (SVMs) or the reclassifi-
cation problem. The reclassification problem is a special problem, and its detailed
consideration and explanation of the semantic issues regarding reclassifications
are important contributions of this paper. In particular, we point out that the
reclassification problem is solved nicely with the use of constraint databases. Fur-
thermore, our experiments compare several different possible approaches to the
reclassification problem. The experiments support the idea that the constraint
database approach to reclassification is an accurate and flexible method.

The rest of the paper is organized as follows. Section 2 presents a review of lin-
ear classifiers. Section 3 presents the reclassification problem. Section 4 describes
two novel approaches to the reclassification problem. The first approach is called
Reclassification with an oracle, and the second approach is called Reclassification
with constraint databases. Section 5 describes some computer experiments and
discusses their significance. Finally, Section 6 gives some concluding remarks and
open problems.

2 Review of Linear Classifiers

The problem is the following: we want to classify items, which means we want to
predict a characteristic of an item based on several parameters of the item. Each
parameter is represented by a variable which can take a finite number of values.
The set of those variables is called feature space. The actual characteristic of
the item we want to predict is called the label or class of the item. To make the
predictions, we use a machine learning technique called classifier. A classifier
maps a feature space X to a set of labels Y . A linear classifier maps X to Y by
a linear function.

Example 1. Suppose that a disease is conditioned by two antibodies A and B.
The feature space X is X = {Antibody A,Antibody B} and the set of labels is
Y = {Disease, no Disease}. Then, a linear classifier is:

y = w1.Antibody A+ w2.Antibody B + c
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where w1, w2 ∈ R are constant weights and c ∈ R is a threshold constant.
The y ∈ Y value can be compared with zero to yield a classifier. That is,

– If y ≤ 0 then the patient has no Disease.
– If y > 0 then the patient has Disease.

In general, assuming that each parameter can be assigned a numerical value
xi, a linear classifier is a linear combination of the parameters:

y = f(
∑

j

wjxj) (1)

where f is a linear function. wi ∈ R are the weights of the classifiers and
entirely define it. y ∈ Y is the predicted label of the instance.

Decision trees: the ID3 algorithm Decision trees, also called active classifier
were particularly used in the nineties by artificial intelligence experts. The main
reasons are that they can be easily implemented (using ID3 for instance) and
that they give an explanation of the result.

Algorithmically speaking, a decision tree is a tree:

– An internal node tests an attribute,
– A branch corresponds to the value of the attribute,
– A leaf assigns a classification.

The output of decision trees is a set of logical rules (disjunction of conjunc-
tions). To train the decision tree, we can use the ID3 algorithm, proposed by
J.R. Quinlan et al. [7] in 1979 in the following three steps:

1. First, the best attribute, A, is chosen for the next node. The best attribute
maximizes the information gain.

2. Then, we create a descendant for each possible value of the attribute A.
3. This procedure is eventually applied to non-perfectly classified children.

This best attribute is the one, which maximizes the information gain. The
information gain is defined as follows:

Gain(S,A) = entropy(S)−
∑

v∈values(A)

|Sv|
|S|

.entropy(Sv)

S is a sample of the training examples and A is a partition of the parameters.
Like in thermodynamics, the entropy measures the impurity of S, purer subsets
having a lower entropy:

entropy(S) = −
n∑

i=0

pi.log2(pi)
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S is a sample of the training examples, pi is the proportion of i-valued ex-
amples in S and n is the number of attributes.

ID3 is a greedy algorithm, without backtracking. This means that this al-
gorithm is sensible to local optima. Furthermore, ID3 is inductively biased: the
algorithm favors short trees and high information gain attributes near the root.
At the end of the procedure, the decision tree perfectly suits the training data
including noisy data. This leads to complex trees, which usually lead prob-
lems to generalize new data (classify unseen data). According to Occams razor,
shortest explanations should be preferred. In order to avoid over-fitting, deci-
sion trees are therefore usually pruned after the training stage by minimizing
size(tree) + error rate, with size(tree) the number is leaves in the tree and
errorrate the ratio of the number of misclassified instances by the total number
of instances (also equal to 1− accuracy).

Note: The ID3 decision tree and the support vector machine are linear clas-
sifiers because their effects can be represented mathematically in the form of
Equation (1).

3 The Reclassification Problem

The need for reclassification arises in many situations. Consider the following.

Example 2. One study found a classifier for the origin of cars using

X1 = {acceleration, cylinders, displacement, horsepower}

and
Y1 = {Europe, Japan, USA}

where acceleration from 0 to 60 mph is measured in seconds (between 8 and
24.8 seconds), cylinders the number of cylinders of the engine (between 3 and 8
cylinders), displacement in cubic inches (between 68 and 455 cubic inches) and
horsepower the standard measure of the power of the engine (between 46 and
230 horsepower).

A sample training data is shown in the table below.

Origin

Acceleration Cylinders Displacement Horsepower Country
12 4 304 150 USA
9 3 454 220 Europe

Another study found another classifier for the fuel efficiency of cars using

X2 = {acceleration, displacement, horsepower, weight}

and
Y2 = {low,medium, high}

where the weight of the car is measured in pounds (between 732 and 5140 lbs.).
A sample training data for the second study is shown in the table below.
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Efficiency

Acceleration Displacement Horsepower Weight MPG
20 120 87 2634 medium
15 130 97 2234 high

Suppose we need to find a classifier for

X = X1 ∪X2 = {acceleration, cylinders, displacement, horsepower, weight}

and

Y = Y1 × Y2 = {Europe− low,Europe−medium,Europe− high,
Japan− low, Japan−medium, Japan− high,
USA− low, USA−medium,USA− high}

Building a new classfier for (X,Y ) seems easy, but the problem is that there
is no database for (X,Y ). Finding such a database would require a new study
with more data collection, which would take a considerable time. That motivates
the need for reclassification. As Section 4.1 shows, a classifier for (X,Y ) can be
built by an efficient reclassification algorithm that uses only the already existing
classifiers for (X1, Y1) and (X2, Y2).

4 Novel Reclassification Methods

We introduce now several new reclassification methods. Section 4.1 describes
two variants of the Reclassification with an oracle method. While oracle-based
methods do not exist in practice, these methods give a limit to the best possible
practical methods. Section 4.2 describes the practical Reclassification with con-
straint databases method. A comparison of these two methods is given later in
Section 5.

4.1 Reclassification with an Oracle

In theoretical computer science, researchers study the computational complexity
of algorithms in the presence of an oracle that tells some extra information that
can be used by the algorithm. The computational complexity results derived
this way can be useful in establishing theoretical limits to the computational
complexity of the studied algorithms.

Similarly, in this section we study the reclassification problem with a special
type of oracle. The oracle we allow can tell the value of a missing attribute of
each record. This allows us to derive essentially a theoretical upper bound on
the best reclassification that can be achieved. The reclassification with oracle
method extends each of the original relations with the attributes that occur
only in the other relation. Then one can take a union of the extended relations
and apply any of the classification algorithms one chooses. We illustrate the idea
behind the Reclassification with an oracle using an extension of Example 2 and
ID3.
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Example 3. First, we add a weight and an MPG attribute to each record in the
Origin relation using an oracle. Suppose we get the following:

Origin

Acceleration Cylinders Displacement Horsepower Weight Country MPG
12 4 304 150 4354 USA low
9 3 454 220 3086 Japan medium

Second, we add a cylinders and a country attribute to each record in the
Efficiency relation using an oracle. Suppose we get the following:

Efficiency

Acceleration Cylinders Displacement Horsepower Weight Country MPG
20 6 120 87 2634 USA medium
15 4 130 97 2234 Europe high

After the union of these two relations, we can train an ID3 decision tree to
yield a reclassification as required in Example 2.

A slight variation of the Reclassification with an oracle method is the Reclas-
sification with an X-oracle. That means that we only use the oracle to extend
the original relations with the missing X attributes. For example, in the car ex-
ample, we use the oracle to extend the Origin relation by only weight, and the
Efficiency relation by only cylinders.

When we do that, then the original classification for MPG (derived from the
second study) can be applied to the records in the extended Origin relation.
Note that this avoids using an oracle to fill in the MPG values, which is a Y or
target value. Similarly, the original classification for country (derived from the
first study) can be applied to the records in the extended Efficiency relation.

The Reclassification with an X-oracle also is not a practical method except
if the two original studies have exactly the same set of X attributes because
oracles do not exist and therefore can not be used in practice.

4.2 Reclassification with Constraint Databases

The Reclassification with Constraint Databases method has two main steps:

Translation to Constraint Relations: We translate the original linear clas-
sifiers to a constraint database representation. Our method does not depend
on any particular linear classification method. It can be an ID3 decision
tree method [7] or a support vector machine classification [10] or some other
linear classification method.

Join: The linear constraint relations are joined together using a constraint join
operator [6, 8].



VIII

Example 4. Figure 1, which we saw earlier, shows an ID3 decision tree for the
country of origin of the cars obtained after training by 50 random samples from
a cars database [1]. A straightforward translation from the original decision tree
to a linear constraint database does not yield a good result for problems where
the attributes can have real number values instead of only discrete values. Real
number values are often used when we measure some attribute like weight in
pounds or volume in centiliters.

Hence we improve the naive translation by introducing comparison con-
straints >,<,≥,≤ to allow continuous values for some attributes.

That is, we translate each node of the decision tree by analyzing all of its
children. First, the children of each node are sorted based on the possible values
of the attribute. Then, we define an interval around each discrete value based
on the values of the previous and the following children. The lower bound of
the interval is defined as the median value between the value of the current
child and the value of the previous child. Similarly, the upper bound of the
interval is defined as the median value of the current and the following children.
For instance, assume we have the values {10, 14, 20} for an attribute for the
children. This will lead to the intervals {(−∞, 12], (12, 17], (17,+∞)}.

In the following, let a be the acceleration, c the number of cylinders, d the
displacement of the engine, h the horsepower, w the weight of the car, country
the origin of the car, and mpg the miles per gallon of the car. We use the depth-
first algorithm with the above heuristic on the cars data from [1] to generate the
following MLPQ [9] constraint database:

Origin(a,c,d,h,country) :- c = 3, country =’JAPAN’.

Origin(a,c,d,h,country) :- c = 4, d > 111, country =’USA’.

Origin(a,c,d,h,country) :- c = 4, d > 96, d <= 111, country =’EUROPE’.

Origin(a,c,d,h,country) :- c = 4, d > 87, d <= 96, h > 67, country =’USA’.

...

Similarly, we used another decision tree to classify the efficiency of the cars.
Translating the second decision tree yielded the following constraint relation:

Efficiency(a,d,h,w,mpg) :- d <= 103, mpg = ’low’.

Efficiency(a,d,h,w,mpg) :- d > 103 , d <= 112 , h < 68, mpg = ’high’.

Efficiency(a,d,h,w,mpg) :- d > 420, mpg = ’low’.

...

Now the reclassification problem can be solved by a constraint database join
of the Origin and Efficiency relations. The join is expressed by the following
Datalog query:
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Car(a,c,d,h,w,country,mpg) :- Origin(a,c,d,h,country),
Efficiency(a,d,h,w,mpg).

The reclassification can be used to predict for any particular car its country
of origin and fuel efficiency. For example, if we have a car with a = 19.5, c =
4, d = 120, h = 87, and w = 2979, then we can use the following Datalog query:

Predict(country,mpg) :- Car(a,c,d,h,w,country,mpg),
a = 19.5, c = 4, d = 120, h = 87, w = 2979.

The prediction for this car is that it is from Europe and has a low fuel
efficiency. Note that instead of Datalog queries, in the MLPQ constraint database
system one also can use logically equivalent SQL queries to express the above
problems.

Semantic Analysis of the Reclassification: Returning to the semantics
questions raised in the introduction, one can test each constraint row of the
Cars relation whether it is satisfiable or not. That allows the testing of which
combination classes (out of the nine target labels) is possible. Moreover, the size
of each region can be calculated. Assuming some simple distributions of the cars
within the feature space, one can estimate the number of cars in each region.
Hence one also can estimate the percent of cars that belong to each combination
class.

5 Experiments and Discussion

The goal of our experiments is to compare the Reclassification with constraint
databases and the Reclassification with an oracle methods. It is important to
make the experiments such that those abstract away from the side issue of which
exact classification algorithm (ID3, SVM etc.) is used for the original classifica-
tion.

In our experiments we use the ID3 method as described in Example 4. There-
fore, we compared the Reclassification with constraint databases assuming that
ID3 was the original classification method with the Reclassification with an or-
acle assuming that the same ID3 method was used within it. We also compared
Reclassification with constraint databases with the original linear classification
(decision tree) for each class. We chose the ID3 decision tree method for the
experiments because it had a non-copyrighted software. Using ID3 already gave
interesting results that helped compare the relative accuracy of the methods.
Likely a more complex decision tree method would make the accuracy of all
the practical algorithms, including the reclassification methods, proportionally
better without changing their relative order.

5.1 Experiment with the dataset ”Primary Biliary Cirrhosis”

The Primary Biliary Cirrhosis (PBC) data set, collected between 1974 and 1984
by the Mayo Clinic about 314 patients [3], contains the following features:
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1. case number,
2. days between registration and the earliest of death, transplantion, or study

analysis time,
3. age in days,
4. sex (0=male, 1=female),
5. asictes present (0=no or 1=yes),
6. hepatomegaly present (0=no or 1=yes),
7. spiders present (0=no or 1=yes),
8. edema (0 = no edema, 0.5 = edema resolved with/without diuretics, 1 =

edema despite diuretics),
9. serum bilirubin in mg/dl,

10. serum cholesterol in mg/dl,
11. albumin in mg/dl,
12. urine copper in µg/day,
13. alkaline phosphatase in Units/liter,
14. SGOT in Units/ml,
15. triglicerides in mg/dl,
16. platelets per cubic ml/1000,
17. prothrombin time in seconds,
18. status (0=alive, 1=transplanted, or 2=dead),
19. drug (1=D-penicillamine or 2=placebo), and
20. histologic stage of disease (1, 2, 3, 4).

We generated the following three subsets from the original data set:
DISEASE with features (3, 4, 5, 7, 8, 9, 10, 13, 14, 16, 17, 20),
DRUG with features (3, 4, 6, 7, 8, 9, 10, 11, 13, 16, 17, 19), and
STATUS with features (3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18).

In each subset, we used the first eleven features to predict the the twetfth,
that is, the last feature.

The results of the experiment are shown in Figures 4, 5, 6 and 7.
It can seen from Figures 4, 5 and 6 that the accuracy of the Reclassification

with constraint databases has significantly improved compared to the original
linear classification (ID3) of a single class.

Figures 7 shows that the Reclassification with constraint databases and the
Reclassification with an oracle perform very similarly. Hence the practical Reclas-
sification with constraint databases method achieves what can be considered as
the theoretical limit represented by the Reclassification with an oracle method.
Note that by theoretical limit we mean only a maximum achievable with the
use of the ID3 linear classification algorithm. Presumably, if we use for example
support vector machines, then both methods will improve proportionally.

5.2 Experiment with the dataset ”cars”

In this experiment we used the car data set (pieces of which we used in the
examples of this paper) from [1] and the MLPQ constraint database system [9].
The results of the experiment cv are shown in Figures 8, 9 and 10.
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Fig. 3. Tree representation of the constraints using for the prediction of the status of a
patient using PBC data. Note that this tree is different from the decision tree generated
using the standard ID3 algorithm (here the values of the attributes are defined using
constraints). The tree is drawn using Graphviz [2].

Fig. 4. Comparison of the Reclassification with constraint databases (solid line) and
the original Classification with a decision tree (ID3) for the prediction of the class
DISEASE-STAGE of the patients (dashed line) methods using PBC data.
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Fig. 5. Comparison of the Reclassification with constraint databases (solid line) and the
original Classification with a decision tree (ID3) for the prediction of the class STATUS
of the patients (dashed line) methods using PBC data.

Fig. 6. Comparison of the Reclassification with constraint databases (solid line) and the
original Classification with a decision tree (ID3) for the prediction of the class DRUG
of the cars (dashed line) methods using PBC data.
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Fig. 7. Comparison of the Reclassification with constraint databases (solid line) and
the Reclassification with an oracle (dashed line) methods using PBC data.

Fig. 8. Comparison of the Reclassification with constraint databases (solid line) and the
original Classification with a decision tree (ID3) for the prediction of the class ORIGIN
of the cars (dashed line) using cars data.
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Fig. 9. Comparison of the Reclassification with constraint databases (solid line) and the
original Classification with a decision tree (ID3) for the prediction of the class MPG
efficiency of the cars (dashed line) using cars data.

Fig. 10. Comparison of the Reclassification with constraint databases (solid line) and
the Reclassification with an oracle (dashed line) using cars data.
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This second experiment agrees with the first data set in that constraint
database-based reclassification performs better than the original linear decision
tree-based classification.

6 Conclusions

The most important conclusion that can be drawn from the study and the exper-
iments is that the Reclassification with constraint databases method improves
the accuracy of linear classifier such as decision trees. The proposed method is
also close to the theoretical optimal when joining two classes and is safe to use
in practice.

There are several open problems. We plan to experiment with other data
sets and use the linear Support Vector Machine algorithm in addition to the ID3
algorithm in the future. Also, when an appropriate data can be found, we also
would like to test the Reclassification method with X-oracles.
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