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Abstract. Constraint query languages with Boolean algebra linear car-
dinality constraints were introduced recently and shown to be evaluable
using a quantifier elimination method in [22]. However, the expressive
power of constraint query languages with linear cardinality constraints
is still poorly understood in comparison with other cases of constraint
query languages. This paper makes several contributions to the anal-
ysis of their expressive power. Several problems that were previously
provably impossible to express even in FO + POLY are shown to be
expressible using first-order query languages with linear cardinality con-
straints FO + BALC. We also show that all monadic Datalog queries
are expressible in FO + BALC. Finally, we also show a new results for
FO+LINEAR by expressing in it the problem of finding the time when
two linearly moving point objects are closest to each other.

1 Introduction

An important question for constraint databases [13] is their expressive power,
that is, to know what problems they can or cannot express [17, 20]. Since con-
straint databases generalize relational databases with the extension of a tuple to
constraint tuples, which are conjunctions of constraints, it seems intuitive that
constraint databases can express more types of problems. However, the fact is
that most results regarding the expressive power of constraint query languages
are negative. Consider the following problems:

Definition 1. [MAJORITY] The input has two unary relations R1 and R2. The
output is true if and only if R1 ⊆ R2 and |R2| ≤ 2|R1|.

Definition 2. [TRANSITIVE CLOSURE] The input is a binary relation R. The
output is a binary relation that is the transitive closure of R, that is, all pairs
(a0, an) such that there are elements (a0, a1),. . . ,(an−1, an) in R.
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One very powerful-looking first-order query language is Relational Calculus
with polynomial constraints over the real numbers. We call this language FO+
POLY . The following is a surprising theorem:

Theorem 1 (Benedikt et al. [3]). MAJORITY and TRANSITIVE CLOSURE are
not expressible in FO + POLY .

Recently, Revesz [22] presented a first-order language with Boolean algebras
and linear cardinality constraints. We call this language FO + BALC. In this
paper we show the following:

Theorem 2. MAJORITY and TRANSITIVE CLOSURE are expressible in FO+BALC.

There are some known expressibility results also for first-order queries with
linear constraints over the rational numbers, which we denote as FO+LINEAR.
Afrati et al. [1] show that FO+LINEAR can express a query that returns true if
and only if the database consists of exactly c parallel lines where c is a constant.
Similarly, they show that FO+LINEAR can also express the query that returns
true if and only if the database consists of two lines intersecting at a point.

In this paper we move beyond just static spatial objects and consider moving
point objects. There is a growing interest in representing moving objects. For
example, Cai et al. [4, 23], Chomicki et al. [6–8], Güting et al. [11], Kollios et
al. [14], Saltenis et al. [24], and Wolfson et al. [26] describe moving object data
models and techniques to query moving objects. Constraint databases are a
natural representation of moving objects. A natural query on moving objects is
the following.

Definition 3. [TIME CLOSEST] Given two moving points that move along two
different lines with uniform speed, find the time when they are closest to each
other.

In this paper we show the following:

Theorem 3. TIME CLOSEST is expressible in FO + LINEAR.

While in this paper we focus on first-order query languages, there are also
some interesting expressibility results for recursive query languages. For exam-
ple, Kuijpers and Smits [15] show that if the constraint database input is a
binary relation R(x, y) that describes a polynomial spatial relation, i.e., rela-
tions expressible using quantifier-free real polynomial constraints, then there is
no Datalog query with linear constraints that returns true if and only if R is
topologically connected.

We only consider in this paper the class of monadic Datalog queries, i.e.,
those queries in which each defined relation (in the head of the rules) is a unary
relation. We show the following theorem for monadic Datalog queries:

Theorem 4. Any monadic Datalog query is expressible in FO +BALC.



The rest of the paper is organized as follows. Section 2 is a brief review
of basic concepts. Section 3 proves Theorem 2. This section also shows that
several other graph problems, such as SAME COLOR and MAXIMAL CLIQUE as well
as the N-QUEENS problem are also expressible in FO +BALC. Section 4 proves
Theorem 4. Section 5 proves Theorem 3. Section 6 discusses related work. Finally,
Section 7 gives some conclusions.

2 Constraint Databases

Constraint databases [13] and constraint logic programming [12] both represent
input information as a set of constraint tuples. For example, to describe a graph
with vertices V = {1, 2, 3, 4} and edges E = {(1, 2), (2, 3), (1, 4)}, a constraint
database over the Boolean algebras of sets of subsets of the integers could be
the following, where comma means “and”:

Edge

X Y

X Y X = {1}, Y = {2}
X Y X = {2}, Y = {3}
X Y X = {1}, Y = {4}

We will use this type of representation for several graph problems in Sec-
tion 3. The intended meaning of a constraint tuple is that any instantiation of
the variables that satisfies the constraint belongs to the relation. In the above
example the satisfying instantiations are obvious, but they are less obvious when
the constraints are more complex. In particular, we allow besides the equality
constraints above any linear cardinality constraint [22] of the form:

c1|t1|+ . . .+ ck|tk| θ b

where each ti for 1 ≤ i ≤ k is a Boolean term –composed of set constants or
variables, and the intersection, union, and set complement with respect to the
whole set of integers–, each ci for 1 ≤ i ≤ k and b are integer constants and θ is:

= for the equality relation,
≥ for the greater than or equal comparison operator,
≤ for the less than or equal comparison operator, or
≡n for the congruence relation modulus some positive integer constant n.

Note: Boolean cardinality constraints can express other common constraints
over sets. For example, the constraint that t1 is a subset of t2, denoted

t1 ⊆ t2 is equivalent to |t1 ∧ t2| = 0

where t1 and t2 are Boolean terms and t2 is the complement of t2. For the sake
of greater readability, in the following we will use ⊆ constraints, because readers
are more familiar with it.



In this paper we consider first-order languages FO with existential ∃ and
universal ∀ quantifiers, and the connectives logical and ∧, or ∨, and not ¬, and
variables and constants with the usual composition.

We also consider Datalog, which is a rule-based language that is related to
Prolog. Each Datalog query contains a Datalog program and an input database.
We divide the set of relation names R into defined relation names and input
relation names. Each Datalog query consists of a finite set of rules of the form:

R0(x1, . . . , xk) :— R1(x1,1, . . . , x1,k1
), . . . Rn(xn,1, . . . , xn,kn

), C1, . . . , Cm.

where each Ri is either an input relation name or a defined relation name, and
the xs are either variables or constants, and each Ci is a constraint. The relation
names R0, . . . , Rn are not necessarily distinct. For a good introduction of Datalog
queries and examples see [17, 20].

3 Problems Expressible in FO + BALC

In this section, we study the expressive power of FO + BALC. This language
seems to be a natural language to express a variety of problems. including
MAJORITY, several graph problems, and the N-QUEENS problem, which is a fa-
miliar search problem in AI.

3.1 The MAJORITY problem

To express the MAJORITY query in FO + BALC we assume that the two input
relations R1(X) and R2(Y ) each contain one equality constraint that sets the
value of X and Y equal to a set of numbers. Then the FO +BALC query:

∃X,Y R1(X) ∧ R2(Y ) ∧ X ⊆ Y ∧ 2|X| − |Y | ≥ 0.

correctly expresses MAJORITY. The simplicity of the above formula suggests
that FO +BALC is a natural language to express this and similar queries.

3.2 The TRANSITIVE CLOSURE problem

To express transitive closure, we at first introduce the following definition.

Definition 4. Let S and X be any two set variables. Then,

S[X] =def |X| = 1 ∧ X ⊆ S.

The above definition says that S[X] is true if and only if X is a singleton
set, which is a subset of S. Using this definition, it becomes easier to express
transitive closure. We express it as follows:

φTC(Z1, Z2) = ∀S (S[Z1] ∧ ∀X,Y S[X] ∧R(X,Y )→ S[Y ])→ S[Z2].



The φTC(Z1, Z2) is a formula with two free variables, namely Z1 and Z2.
Let us consider any substitution for these two variables. Suppose that Z1 is
substituted by a0 and Z2 is substituted by an, such that, there are elements
(a0, a1),. . . ,(an−1, an) in R.

The substituted formula φTC(a0, an) says that for all S if (a0 ∈ S, and if
every time the first argument of R is in S, then the second argument of R is
also in S), then an ∈ S. Since we assumed that there is a sequence of elements
(a0, a1),. . . ,(an−1, an) in R, the condition of the main implication within φ is true
if and only if a0, . . . , an ∈ S. Then clearly an ∈ S, hence the then clause is also
true. Therefore, the main implication of φ is true, and (a0, an) is a substitution
into φTC that makes it true.

Conversely, if there is no sequence of elements of the form (a0, a1), . . . ,
(an−1, an) in R, then there must exist an S which has in it a0 and only those
which are “reachable” by a sequence of elements from a0. Then the condition
of the main implication in φTC is true, but since an is not “reachable” from a0
the then clause is false. That makes the main implication false, showing that
(a0, an) is not a satisfying substitution in this case. This shows that Theorem 2
holds.

3.3 The SAME COLOR problem

Given an undirected graph that is 2-colorable, we would like to know which pairs
of vertices can be colored the same color. Suppose that the colors we consider
are blue and red. The following expresses that Z1 and Z2 can be both colored
blue.

φB = ∃B B[Z1] ∧ B[Z2]

where each vertex which is in set B is assumed to be colored blue, and each
vertex not in B is assumed to be colored red. The following formula expresses
that the vertices that are connected to a blue vertex are red.

φB−Neighbor = ∀X,Y B[X] ∧ Edge(X,Y ) → ¬B[Y ].

Similarly, the following asserts that the vertices connected to a red vertex
are blue.

φR−Neighbor = ∀X,Y ¬B[X] ∧ Edge(X,Y ) → B[Y ].

Then the formula:

φSC = φB ∧ φB−Neighbor ∧ φR−Neighbor

expresses the SAME COLOR problem.



3.4 The MAXIMAL CLIQUE problem

In an undirected graph, a clique is a subgraph in which every vertex is connected
with every other vertex. The size of a clique is the number of vertices it contains.
We represent an undirected graph by a binary relation Edge where Edge is sym-
metric, that is, it represents an undirected edge between X and Y by containing
both (X,Y ) and (Y,X) as two elements.

Given an undirected graph and an integer constant k, the MAXIMAL CLIQUE

problem asks whether the size of the maximum clique in the graph is k. To
express MAXIMAL CLIQUE, at first we express that a graph has a clique with k
vertices as follows:

φk = ∃S |S| = k ∧ ∀X,Y (S[X] ∧ S[Y ] ∧X 6= Y ) → Edge(X,Y ).

In the above, S contains the vertices that belong to a clique. Clearly, if the
maximal clique has size k, then the graph has a clique of size k but does not
have a clique of size k + 1. That is,

φMC = φk ∧ ¬φk+1.

3.5 The N-QUEENS problem

Given a chess-board of size n × n for some integer n, the N-QUEENS problem
asks to place n queens on the chess-board so that no two queens are in the same
row, column, or diagonal. The N-QUEENS problem is a quite challenging search
problem that is not easy to implement in a procedural language like C++. We
give a high-level declarative solution to this problem.

While the following solution can be generalized to any n, let us assume for
the sake of simplicity that n = 5. Then let’s count the squares on the chess-board
in the usual way, that is, from left to right in each row, and from the top row to
the bottom row, as shown below.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Then let variables Ri for 1 ≤ i ≤ 5 be those locations in the ith row that
contain a queen. We know the following:

φR = R1 ⊆ {1, 2, 3, 4, 5} ∧ . . . ∧ R5 ⊆ {21, 22, 23, 24, 25}.

Similarly, let variables Ci for 1 ≤ i ≤ 5 be those locations in the ith column
that contain a queen. We know that:

φC = C1 ⊆ {1, 6, 11, 16, 21} ∧ . . . ∧ C5 ⊆ {5, 10, 15, 20, 25}.



Further, let variables Di for 1 ≤ i ≤ 7 be the set of locations of queens on the
diagonals that run downwards from left to right and have at least two squares.
We know that:

φD = D1 ⊆ {4, 10} ∧ . . . ∧ D7 ⊆ {16, 22}.

The symmetric case is the variables Li for 1 ≤ i ≤ 7 that contain the set of
locations of queens on the diagonals that run downwards from right to left and
have at least two squares. For those we have:

φL = L1 ⊆ {2, 6} ∧ . . . ∧ L7 ⊆ {20, 24}.

Since no row or column can have more than one queen, there must be exactly
one queen in each row and in each column. Further, on each diagonal there may
be at most one queen. Therefore, the formula:

φR ∧ φC ∧ φD ∧ φL ∧ (
∧
i

|Ri| = 1) ∧ (
∧
i

|Ci| = 1) ∧ (
∧
i

|Di| ≤ 1) ∧ (
∧
i

|Li| ≤ 1)

correctly expresses the N-QUEENS problem.

4 Monadic Datalog is Expressible in FO + BALC

The problems expressed in Section 3 give interesting examples that can be ex-
pressed in FO+BALC. In this section, instead of giving just examples, we show
that an entire class of Datalog programs, namely the class of monadic Datalog
programs, is expressible in FO +BALC.

In a monadic Datalog program P the defined relations are monadic, that is,
have arity one. Without loss of generality we assume that the variables range
over the integers and the defined (or intensional) relations are S1, . . . , Sm and
the input (or extensional) relations are R1, . . . , Rn.

For each rule rj of P with the form:

A0 :— A1, . . . , Ak.

where each Ai for 1 ≤ i ≤ k is an atom (i.e., a relation name with variables from
the set X1, . . . , Xl), we write the following expression:

φj = ∀X1, . . . , Xl B1 ∧ . . . ∧Bk → B0.

where Bi is Ai if Ai contains an input relation name, and Bi is Sj [X] if Ai is
Sj(X) for some defined relation name Sj and X is either one of the variables
X1, . . . , Xl or a concrete set of integer constants. Note that φj may contain only
S1, . . . , Sm as free variables ranging over the subsets of the integers. Clearly, the
essential difference between the monadic Datalog program and the conjunction:∧

j

φj



is that for the monadic Datalog program the least model is returned while the
conjunction can have many models. The intersection of all the models of the
conjunction is the least model of the monadic Datalog program. To select the
least model, we have to add an assertion that the model returned must be the
minimal model. We can do that by writing the following expression:

φMoD =

∧
j

φj

 ∧

∀S+
1 . . . , S

+
k

∧
j

φ+j

 →

(∧
i

Si ⊆ S+
i

)
where φ+j is like φj with Si replaced by S+

i . Then φMoD expresses what we
need. Each monadic Datalog program has a least model S1, . . . , Sk, which is the
output database, i.e., the assignment to S1, . . . , Sk returned by an evaluation of
the program on an input database. Clearly, φMoD enforces that S1, . . . , Sk is a
minimal model by constraining all other models S+

1 . . . , S
+
k to be bigger or equal

to it. Let us see a concrete example.

Example 1. Consider the following monadic Datalog program P .

S(X) :— Start(X).
S(Y ) :— S(X), Edge(X,Y ).

Here program P finds the vertices that are reachable from the start vertices
contained in the input relation Start. The first rule can be expressed by:

φ1 = ∀X Start(X)→ S[X].

The second rule can be expressed by:

φ2 = ∀X,Y S[X] ∧ Edge(X,Y )→ S[Y ].

Then P can be expressed in FO +BALC as:

φP = (φ1 ∧ φ2) ∧
(
∀S+ (φ+1 ∧ φ

+
2 ) → S ⊆ S+

)
.

Since S is a model of the rules of P , and for any other model S+ of the rules
of P we have S ⊆ S+, it follows that S must be the least model.

5 The TIME CLOSEST problem in FO + LINEAR

Suppose that two cars, which both move linearly in the plane, want to radio-
communicate with each other. What is the best time to attempt the radio com-
munication? Intuitively, the best time would be when the two cars are closest
to each other, hence that time instance needs to be found. We show that it
can be found using only linear constraints, which is surprising, because at first
glance the problem seems to require the Euclidean distance function, which is a
quadratic polynomial constraint.
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Fig. 1. Two cars moving in the plane.

The two cars can be represented by two constraint database relations P1(x, y, t)
and P2(x, y, t). For example, an input database instance could be the following
(see also Figure 1):

P1(x, y, t) :— x = t, y = 2t+ 4.
P2(x, y, t) :— x = 3t, y = 4t.

Suppose that we would like to find the time instance t when the two cars are
closest to each other. We can define first the difference between the two cars at
any time t as follows:

∆P (x, y, t) = ∃x1, x2, y1, y2 P1(x1, y1, t) ∧ P2(x2, y2, t) ∧ x = x2 − x1 ∧ y = y2 − y1.

∆P is also a moving point in the plane as shown in Figure 2. The difference
between the two cars is exactly the difference between ∆P and the origin at any
time t. Therefore, the two cars are closest to each other when ∆P is closest to
the origin. Now the projection of ∆P onto the plane is a line, which is the path
along which ∆P travels. We can find this by:

∆Pline(x, y) = ∃t ∆P (x, y, t).

Let us now take the line which goes through the origin and is perpendicular
to ∆Pline. If (x1, y1) and (x2, y2) are two points on ∆Pline, then the slope of
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Fig. 2. The ∆P moving point.

∆Pline is:
y2 − y1
x2 − x1

.

The perpendicular line will have a negative reciprocal slope and will go through
the origin. Hence its line equation is:

y = −x2 − x1
y2 − y1

x (1)

Now we can chose any two distinct points on the line ∆Pline for expressing
the line equation. Let us choose (x1, y1) to be the intersection point of ∆Pline
and the line perpendicular to it and going through the origin. Further, let us
chose the second point (x2, y2) such that

y2 = x1 + y1. (2)

Clearly, this is always possible to do when the line is not vertical. Now what
is the intersection point? It will satisfy Equations (1) and (2), that is:

y1 = −x2 − x1
y2 − y1

x1

x1 = y2 − y1. (3)



The above can be simplified to:

y1 = x1 − x2
x1 = y2 − y1. (4)

Therefore, if ∆Pline is not vertical, that is, x1 6= x2, then the point of
∆Pline that is closest to the origin is exactly the intersection point, hence:

Closest Point(x1, y1) = ∃x2, y2 ∆Pline(x1, y1) ∧ ∆Pline(x2, y2) ∧
y1 = x1 − x2 ∧ x1 = y2 − y1 ∧ x1 6= x2.

Otherwise, if ∆Pline is vertical, that is, for any two different points x1 = x2,
then the closest point is:

Closest Point(x1, y1) = ∃x2, y2 ∆Pline(x1, y1) ∧ ∆Pline(x2, y2) ∧
y1 = 0 ∧ x1 = x2 ∧ y2 6= 0.

Hence putting the above two cases together, we have:

Closest Point(x1, y1) = ∃x2, y2 ∆Pline(x1, y1) ∧ ∆Pline(x2, y2) ∧
((y1 = x1 − x2 ∧ x1 = y2 − y1 ∧ x1 6= x2) ∨
(y1 = 0 ∧ x1 = x2 ∧ y2 6= 0)).

The time when the two cars are closest to each other is:

Closest T ime(t) = ∃x, y ∆P (x, y, t) ∧ Closest Point(x, y).

Clearly, the above formula is in FO + LINEAR, which shows Theorem 3.

Example 2. Let us look at what will happen when we have the input database
instance P1 and P2 as given above. In that case, we obtain:

∆P (x, y, t) :— x = 2t, y = 2t− 4.

∆P line(x, y) :— x = y + 4.

For Closest Point, we get after simplifications:

Closest Point(x1, y1) = ∃x2, y2 x1 = y1 + 4 ∧ x2 = y2 + 4 ∧
y1 = x1 − x2 ∧ x1 = y2 − y1 ∧ x1 6= x2.

Eliminating x2 and y2 we get:

Closest Point(x1, y1) = x1 = 2 ∧ y1 = −2.

Finally, the closest time is calculated as:

Closest T ime(t) = ∃x, y x = 2t ∧ y = 2t− 4 ∧ x = 2 ∧ y = −2.

Eliminating x and y we get:

Closest T ime(1).

Therefore, the two cars are closest at time 1. It is at that time that the two cars
should attempt to radio-communicate with each other.



6 Related Work

The present work extends the author’s earlier work that presented a quantifier
elimination for the first-order theory of atomic Boolean algebras of sets with
linear cardinality constraints [21, 22] but did not examine its expressive power.

Feferman and Vaught (see Theorem 8.1 in [10]) proved the decidability of
the first-order theory of atomic Boolean algebras of sets with set-theoretical
equivalence which are also commonly called today equicardinality constraints.
Let us denote this logic by FO + EC. An equicardinality constraint between
sets A and B, denoted A ∼ B, simply means that sets A and B have the
same cardinality and can be easily expressed by the linear cardinality constraint
|A| − |B| = 0. Hence obviously FO + BALC includes FO + EC. Interestingly,
however, the two logics have the same expressive power, because FO +EC can
express any linear cardinality constraint. For example, the FO+BALC formula:

∃X 2|X| − |Y | = 0

can be expressed by the FO + EC formula:

∃X,Z X ∩ Z ∼ ∅ ∧ X ∼ Z ∧ X ∪ Z ∼ Y

where ∅ is the symbol for the empty set. The formula says that there exist sets
X and Z that do not intersect, have an equal cardinality, and whose union has
an equal cardinality with Y .

Although equal in expressive power, FO+EC has some limitations, because
while we can eliminate the variable from the first formula and obtain:

|Y | ≡2 0

we cannot eliminate the variables from the second formula and get a quantifier-
free formula with only equicardinality constraints. This shows that:

Theorem 5. FO + EC does not admit quantifier elimination.

Now let’s try to consider a multi-sorted logic, that is, one where each of the
variables and quantifiers ranges either over the integers (this is not allowed in
FO+BALC) or the subsets of the integers. This kind of multi-sorted logic was
first considered by Zarba [27], who gave a quantifier elimination method for the
fragment that contains only quantifiers ranging over the integers and conjectured
the whole logic to be undecidable. Kuncak et al. [16] showed this logic, which
they called Boolean algebra with Presburger arithmetic and can be denoted by
FO +BAPA, to be decidable and admitting quantifier elimination.

Obviously FO + BAPA includes FO + BALC. However, in this case too,
it can be shown that FO +BAPA and FO +BALC have the same expressive
power. The proof reduces any FO + BAPA formula to a logically equivalent
FO +BALC formula as follows.

An integer variable can occur in a FO + BAPA formula only within the
Presburger arithmetic constraints of addition of the form x+ y = z, comparison



of the form x ≥ y, and congruence of the form x ≡n b, where x, y and z are integer
variables and b is an integer constant. For every integer variable x introduce a
new set variable X. Then translate every addition constraint of the above form
into:

|X|+ |Y | − |Z| = 0 (5)

every comparison constraint of the above form into:

|X| − |Y | ≥ 0 (6)

and every congruence constraint of the above form into:

|X| ≡n b. (7)

Clearly, the Presburger addition (comparison and congruence) constraint is true
for some assignment of integer constants c1, c2, and c3 to x, y, and z if and
only if Equation (5) (respectively, Equation (6) and Equation (7)) is true for
any arbitrary assignment of set constants C1, C2, and C3 for X, Y , and Z with
the only restriction that |C1| = c1, |C2| = c2, and |C3| = c3.

The above gives a reduction of FO+BAPA formulas to FO+BALC formu-
las. Further, it is obvious that from any solution of the FO+BALC formula, it
is easy to generate a solution of the FO +BAPA formula by simply taking the
cardinalities of those set variables that were introduced in the reduction from
FO +BAPA to FO +BALC. (Remember that the set variables introduced in
the conversion into FO +BALC are simply integer variables in FO +BAPA.)
Hence we have:

Theorem 6. FO + BALC and FO + BAPA and FO + EC have the same
expressive power.

Besides expressive power another important consideration for the above re-
lated logics is their computational complexities which turns out to be reducible
to cases of Presburger arithmetic. Recall that any formula can be easily put into
a prenex normal form where all the quantifiers precede the rest of the formula.

When read left to right, the quantifiers at the beginning of the prenex for-
mula show a certain pattern of alternations between sequences of existential and
sequences of universal quantifiers. The number of alternations turns out to be
complexity-wise important as shown by the following theorem.

Theorem 7 (Reddy and Loveland [18]). The validity of a Presburger arith-
metic sentence with n quantifiers, length O(n), and m quantifier alternations

can be decided in 2n
O(m)

space.

Revesz [21, 22] noted the following.

Theorem 8 (Revesz [21, 22]). Quantifier elimination of any FO + BALC
formula with n quantifiers and length O(n) and m quantifier alternations reduces
to a quantifier elimination of a Presburger arithmetic formula with 2n quantifiers
and length 2O(n) and m or m+ 1 quantifier alternations.



The reason for the above is that the quantifier-elimination in [21, 22] is based
on a reduction of a FO + BALC formula into a Presburger arithmetic formula
by introducing into the prenex part of the formula a single sequence of 2n exis-
tentially quantified integer variables. Kuncak et al. [16] use a similar reduction
together with Theorem 7, which allows them to show that:

Theorem 9 (Kuncak et al [16]). The validity of a FO + BAPA sentence
with n quantifiers, length O(n) and m quantifier alternations can be decided in

2n
O(mn)

space.

Similarly, Theorems 7 and 8 can be combined to show that:

Theorem 10. The validity of a FO+BALC sentence with n quantifiers, length

O(n) and m quantifier alternations can be decided in 2n
O(mn)

space.

In summary, FO+BALC, FO+BAPA and FO+EC are closely related log-
ics that have the same expressive power and computational complexity. There-
fore, the choice among these three logics is only a stylistic preference as far
as decision problems are concerned. However, when considering constraint query
languages, where the constraint query evaluation requires quantifier elimination,
then only FO +BALC and FO +BAPA can be considered.

Although all three logics assume the domain of variables to be atomic Boolean
algebras (which are isomorphic to Boolean algebras of subsets of the integers),
some mention must be made of the case when the domain is an atomless Boolean
algebra. For example, consider the atomless Boolean algebra where the variables
denote areas in the real plane, and the operators are interpreted as intersection
and union of areas, and area complement with respect to the real plane. In this
logic it is possible to introduce polynomial constraints such as |A|2 > |B ∩ C|3,
which expresses that the square of the area A is greater than the cube of the
area that is the intersection of B and C. Note that here |A| is the measure of the
area of an element of the atomless Boolean algebra and not the cardinality of
an element of an atomic Boolean algebra. Formulas with polynomial constraints
over areas, abbreviated FO+POLY A, can be reduced to FO+POLY similarly
to the reduction of FO+BALC to Presburger arithmetic. In particular, a FO+
POLY A formula with n area variables will be reduced to a FO+POLY formula
with 2n real number variables. Each real number variable will represent one of
the 2n areas that are obtained by considering the intersections of the n area
variables or their complements.

For example, if we have only the three area variables A, B, and C, then we
need to consider eight areas A∩B∩C,. . . , A∩B∩C. Note that any polynomial
constraint over the measures of Boolean terms over A, B, and C is expressible
as a polynomial constraint over the measures of the eight areas. For instance,
|A|2 > |B ∩ C|3 can be expressed by:

(|A∩B∩C|+|A∩B∩C|+|A∩B∩C|+|A∩B∩C|)2 > (|A∩B∩C|+|A∩B∩C|)3.

The measures of the eight areas are independent of each other. Hence the
validity of a FO+POLY A formula can be tested by considering a FO+POLY



formula where each of the eight measures are replaced by a unique real number
variable and the three Boolean variables A, B, and C are replaced by real number
variables that are constrained to be equal to a linear combination of the eight
independent variables. Therefore, we have that:

Theorem 11. The validity of a FO + POLY A sentence with n quantifiers,
length O(n), and m quantifier alternations can be reduced to deciding the validity
of a FO+POLY sentence of length 2O(n) with m or m+1 quantifier alternations.

Since FO+POLY formulas admit quantifier elimination, we also can show:

Theorem 12. FO + POLY A admits quantifier elimination.

Tarski [25] gave the first decision procedure and quantifier elimination algorithm
for the real closed fields, but more efficient algorithms include [2, 5, 9, 19].

7 Conclusions

We gave several positive results about the expressivity of constraint queries.
There are many interesting open questions regarding expressivity. For example,
can we express some more graph problems using constraint queries, such as, the
chromatic number of a graph? Some earlier negative results gave the impression
that constraint queries are not too useful. However, it is still currently being
discovered what are the best application areas for various constraint queries.
For the problems that we considered, the solutions found are simpler than the
procedural language solutions. This suggests that by providing high-level declar-
ative query languages, constraint database systems could be beneficial for users
in practice on problems related to the ones presented in this paper.
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