
A Comparison of Abstract Data Type and Constraint
Database Approaches to GIS Query Languages

Peter Revesz
Department of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, Nebraska 68588, USA

revesz@cse.unl.edu

ABSTRACT
Designing query languages for geographic information sys-
tems using the traditional approach of constantly adding
new data types and operations on the new data types has
reached a limit beyond which the query language is no longer
easy to understand or convenient to use. We advocate in-
stead the design of query languages based on constraint
databases. We show that many formerly difficult-looking
queries, such as the shortest path query, can be expressed
using simple SQL-like queries of constraint databases.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

Keywords
abstract data types, constraint databases, query language

1. INTRODUCTION
Most current work on designing query languages for GISs

tries to extend relational database query languages with new
operators [5, 17, 18]. At first sight the additional operators
look attractive, but the problem is that they are inflexible.
The additional operators often provide simple solutions to
toy problems presented in many research articles and text-
books. However, when a more complex real-life problem
arises, then the problem is often inconvenient or impossible
to express.

The typical solution to the inherent inflexibility is to intro-
duce more operators. Unfortunately, carrying this process
too far results in rather difficult-to-understand and unwieldy
query languages. For example, the International Committee
for Information Technology Standards described a 166 pages
long standard for spatial data operators (ISO # 19107) and
49 pages for a limited set of moving objects (ISO #19141).

A fundamental problem is that current GIS users are not
given direct access to the defined spatial and spatio-temporal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS’09, November 4-6, 2009. Seattle, WA USA
Copyright 2009 ACM 978-1-60558-649-6/09/11 ...$10.00.

data types as a set of points {(x, y)} in the real plane R2

or {(x, y, t)} in real space R3. In contrast, constraint query
languages (Revesz [13], Rigaux et al. [15] Chap. 4, and Güt-
ing and Schneider [8] Chap. 6), although implemented only
in prototype systems, such as MLPQ [14], allow the users
access to the x and y coordinates of the objects. As we de-
scribe below, this enables expressing shortest path and other
complex queries in a much simpler, SQL-like way without
the need for additional abstract data types and operators.

2. GEOGRAPHIC DATA MODELS
We review some geographic data models from [2, 3, 8, 10,

13, 15] without trying to be comprehensive.

Vector Data Model [1, 4, 16], used in the ARC/INFO
system [11, 12], can describe streets and towns as follows.

Street

Id Type List

Bear polyline [(2, 11), (17, 16)]
Hare polyline [(4.5, 20), (9, 11)]
Maple polyline [(7, 5), (20, 5)]
Oak polyline [(11, 2), (11, 12)]
Vine polyline [(5, 2), (5, 14)]
Willow polyline [(4, 19), (20, 19)]

Town

Id Type List

Lincoln polygon [(2, 18), (6, 18), (8, 16), (12, 18),
(14, 18), (14, 8), (8, 8), (6, 14),
(2, 14)]

Worboys’ Data Model [19] can describe a park [13].

Park

Id Ax Ay Bx By Cx Cy From To

Fount 10 4 10 4 10 4 1980 1986
Road 5 10 9 6 9 6 1995 1996
Road 9 6 9 3 9 3 1995 1996
Tulip 2 3 2 7 6 3 1975 1990
Park 1 2 1 11 12 11 1974 1996
Park 12 11 12 2 1 2 1974 1996
Pond 3 5 3 8 4 9 1991 1996
Pond 4 9 7 6 3 5 1991 1996
Pond 3 5 7 6 6 5 1991 1996

Topological Data Models, for example [6, 7], describe
relations of spatial objects, such as a distance graph [13]:

Edge

City1 City2 Miles

Chicago Des Moines 600
Chicago Kansas City 800
Chicago Minneapolis 370
Des Moines Chicago 600
Des Moines Kansas City 180
Des Moines Omaha 400
Kansas City Chicago 800
Kansas City Des Moines 180
Kansas City Lincoln 150
Lincoln Kansas City 150
Lincoln Omaha 60
Minneapolis Chicago 370
Minneapolis Omaha 650
Omaha Des Moines 400
Omaha Minneapolis 650
Omaha Lincoln 60

Constraint Data Model [9] finitely represents infinite ge-
ographic relations. Below Travel contains tuples such that
if we reach City1 when the odometer shows Mile1, then we
can reach also City2 when the odometer shows Mile2 [13].

Travel

City1 Mile1 City2 Mile2

Chicago d1 Des Moines d2 d2 − d1 ≥ 600
Chicago d1 Kansas City d2 d2 − d1 ≥ 800
Chicago d1 Minneapolis d2 d2 − d1 ≥ 370
Des Moines d1 Chicago d2 d2 − d1 ≥ 600
Des Moines d1 Kansas City d2 d2 − d1 ≥ 180
Des Moines d1 Omaha d2 d2 − d1 ≥ 400
Kansas City d1 Chicago d2 d2 − d1 ≥ 800
Kansas City d1 Des Moines d2 d2 − d1 ≥ 180
Kansas City d1 Lincoln d2 d2 − d1 ≥ 150
Lincoln d1 Kansas City d2 d2 − d1 ≥ 150
Lincoln d1 Omaha d2 d2 − d1 ≥ 60
Minneapolis d1 Chicago d2 d2 − d1 ≥ 370
Minneapolis d1 Omaha d2 d2 − d1 ≥ 650
Omaha d1 Des Moines d2 d2 − d1 ≥ 400
Omaha d1 Minneapolis d2 d2 − d1 ≥ 650
Omaha d1 Lincoln d2 d2 − d1 ≥ 60

3. QUERIES

Example 3.1 Find areas where three park objects intersect.

SQL and ADT: Add the operators:

intersect ∆∆(triangle, triangle) → 2triangle: This operator
returns the intersection of two triangle ADTs of the Wor-
boys’ data model. Note that the intersection of two triangles
is in general not a single triangle but a set of triangles.

intersect ∆2∆(triangle, 2triangle) → 2triangle: This opera-
tor returns the intersection of a triangle ADT of the Wor-
boys’ data model with a set of triangle ADTs of the Wor-
boys’ data model.

Let Pi = Pi.Ax, P i.Ay, P i.Bx, P i.By, P i.Cx, P i.Cy
for 1 ≤ i ≤ 3. Then the query is:

SELECT intersect ∆2∆(P1,intersect ∆∆(P2,P3))
FROM Park AS P1, Park AS P2, Park AS P3

SQL and Constraint Database: Allows a simpler query:

SELECT P1.X, P1.Y
FROM Park AS P1, Park AS P2, Park AS P3
WHERE P1.X = P2.X AND P2.X = P3.X AND

P1.Y = P2.Y AND P2.Y = P3.Y

Example 3.2 Find intersections of the streets and the town.

SQL and ADT: Since the streets and the town maps have
different units and origins, we need the following operators:

inter |3(polyline, region)→ 2polyline: This operator returns
the intersection of a vector data model polyline and region
ADT.

scale |(polyline,c1,c2) → polyline: This operator scales a
polyline ADT of the vector data model by a factor of c1

units in the x and c2 units in the y direction.

shift |(polyline,b1,b2)→ polyline: This operator shifts a poly-
line ADT of the vector data model by b1 units in the x and
b2 units in the y direction.

Using these operators with the proper values of c1, c2, b1,
and b2, the query can be now correctly expressed as follows:

SELECT inter |3(shift(scale(S.List,c1,c2),b1,b2), T.List)
FROM Street AS S, Town AS T

SQL and Constraint Database: Assume (x, y) in Street
corresponds to (x2, y2) in Town where x2 = c1x + b1 and
y2 = c2y + b2. Then the query can be expressed as follows:

SELECT T.X, T.Y
FROM Street AS S, Town AS T
WHERE S.X = c1 T.X + b1 AND

S.Y = c2 T.Y + b2

Example 3.3 Projected on a table, the shadow of a book
is enlarged by 10 centimeters on all sides when the book is
raised up towards the ceiling. Find the enlarged shadow.

SQL and ADT: We introduce the following operator.

buffer 2(rectangle,rational)→ rectangle: This operator takes
in a rectangle and a rational number d and finds a rectan-
gle that contains the points (x, y) such that |x′ − x| ≤ d or
|y′ − y| ≤ d from some point (x′, y′) of the rectangle.

SELECT buffer 2(x1, y1, x2, y2, 10)
FROM Book

SQL and Constraint Database: Let Plane be the re-
lation that contains the entire Eucledian plane. Then the
shadow of the book can be found as follows.

SELECT P.X, P.Y, B.T
FROM Book AS B, Plane AS P
WHERE ((B.X - P.X ≤ 10) OR (P.X - B.X ≤ 10)) AND

((B.Y - P.Y ≤ 10) OR (P.Y - B.Y ≤ 10))

Example 3.4 Find (the length of) the shortest path from
Lincoln to Chicago using the Edge relation.

SQL and ADT: We introduce the following operator.

shortest distance(graph,vertex,vertex) → number: This op-
erator takes in a distance graph with positive distances and
two vertices and returns the shortest distance from the first
vertex to the second vertex.

shortest path(graph,vertex,vertex)→ number: This operator
takes in a distance graph with positive distances and two
vertices and returns the shortest path from the first vertex
to the second vertex.

The respective queries can be expressed similarly to the
shadow query replacing buffer with the above operators.

SQL and Constraint Database: First we calculate the
possible distances from Lincoln to the other cities.

CREATE VIEW Possible(City,Mile)
SELECT City2, Mile2
FROM Travel
WHERE City1 = ”Lincoln” AND

Mile1 = 0
RECURSIVE
SELECT City2, Mile2
FROM Possible, Travel
WHERE City = City1 AND

Mile = Mile1

We can find now the length of the shortest path from
Lincoln to any other city as follows.

CREATE VIEW Distance(City,Mile)
SELECT City, Min(Mile)
FROM Possible
GROUP BY City

(If we only wanted the distance to Chicago we could add
a WHERE clause which selects the city to be Chicago.) We
can use the above Distance relation and the Edge relation
to find the actual shortest path. Note that an edge from
City1 to City2 is on (one of) the shortest path(s) if City1
is Mile1 from Lincoln, City2 is Mile2 from Lincoln, and the
length of the edge is exactly Mile2-Mile1 miles long. We can
express this observation and find all the edges that are on
any shortest path from Lincoln to any other city as follows.

CREATE VIEW Shortest DAG(City1,City2,Mile)
SELECT E.City1, E.City2, L2.Mile
FROM Distance D1, Distance D2, Edge E
WHERE D1.City = E.City1 AND

D2.City = E.City2 AND
D2.Mile > D1.Mile AND
D2.Mile - D1.Mile = E.Mile

Let us view the Shortest DAG relation as a directed acyclic
graph (DAG) where the edges are directed from City1 to
City2 because a shortest path always goes from City1 to
City2. Clearly, Shortest DAG is acyclic because no short-
est path can contain a cycle. There can be several incom-
ing edges to a City2 only if all of the incoming edges are
on equally short paths. Hence if City1, City2, Mile) and
(City1′, City2, Mile′), then Mile = Mile′. The DAG can
be made a tree by selecting for each City2 the alphabetically
smallest parent node City1 in the DAG.

CREATE VIEW Shortest Tree(City1,City2,Mile)
SELECT Min(City1), City2, Mile
FROM Shortest DAG
GROUP BY City2, Mile

Now we can go from Chicago back to Lincoln, which is
the root of this tree.

CREATE VIEW Shortest Path(City1,City2,Mile)
SELECT City1, City2, Mile
FROM Shortest Tree
WHERE City2 = ”Chicago”
RECURSIVE
SELECT ST.City1, ST.City2, ST.Mile
FROM Shortest Tree ST, Shortest Path SP
WHERE ST.City2 = SP.City1

Finally, we can sort on the Miles attribute the rows in the
Shortest Path relation to find the shortest path.

Example 3.5 Find whether all the streets are connected.

SQL and ADT: We introduce the following operator.

connected(street map) → Boolean: This operator takes in
a street map and tests whether each pair of streets is con-
nected by a path.

The query can be expressed similarly to the shadow query
replacing buffer with the above operators.

SQL and Constraint Database: Consider the Street re-
lation and assume that it is represented as a constraint re-
lation. If the streets are connected, then we can go from
any arbitrary street point, for example (5, 2), to any street.
At first we find each pair of streets that intersect, making it
possible to cross from one to the other:

CREATE VIEW Cross(From,To)
SELECT S1.Name, S2.Name
FROM Street AS S1, Street AS S2
WHERE S1.X = S2.X AND

S1.Y = S2.Y

Second, we find all possible ways to turn as follows:

CREATE VIEW Reach(To)
SELECT Name
FROM Street
WHERE X = 5 AND Y = 2,
RECURSIVE
SELECT C.To
FROM Reach AS R, Cross AS C
WHERE R.To = C.From

Next, we find the number of different reachable streets.

SELECT Count(DISTINCT To)
FROM Reach

The streets are connected if and only if the count is six,
the total number of streets.

Example 3.6 While making a furniture delivery, a truck
cannot use wet streets with a slope greater than 270. The
furniture store is at (5, 2) on Vine street, just opposite the

hospital. The delivery location is at (19, 19) on Willow
street. Suppose the entire town map is located on a hill-
side with the elevation z = 0.5(x + y). If it rains now, can
the truck make the delivery today?

SQL and ADT: There is no standard ADT for this query.

SQL and Constraint Database: First, find the slope of
the streets. Consider any street with points (x1, y1) and
(x2, y2) on it. Between these two points, the length of the
street projected onto the (x, y) plane is:

length =
√

(x2 − x1)2 + (y2 − y1)2

The rise in elevation is:

rise = 0.5(x2 +y2)−0.5(x1 +y1) = 0.5((x2−x1)+(y2−y1))

Hence we have the constraint: We also have:

rise

length
≤ tan(270) ≈ 0.5

or

rise ≤ 0.5 length

Since the truck has to go both up and down the street, we
can assume that the rise is positive (otherwise interchange
points (x1, y1) and (x2, y2)). Hence we can square both sides:

rise2 ≤ 0.25 length2

Substituting, we get:

((x2 − x1) + (y2 − y1))2 ≤ (x2 − x1)2 + (y2 − y1)2

Simplifying, we get:

(x2 − x1)(y2 − y1) ≤ 0

We can use the above observation to find the safe streets by:

CREATE VIEW Safe(Name, X, Y)
SELECT S1.Name, S1.X, S1.Y
FROM Street AS S1, Street AS S2,
WHERE S1.Name = S2.Name AND

(S2.X - S1.X) (S2.Y - S1.Y) ≤ 0

Finally, we can proceed as in Example 3.5 but using rela-
tion Safe instead of Street.

4. CONCLUSION

Our argument that ”fewer is better” regarding ADTs and
operators may be as popular among members of the Inter-
national Committee for Information Technology Standards
as the notion of ”basic English is enough” among the editors
of the Oxford English Dictionary, which lists over 500,000
English words. Our aim was not to please experts who
love complexity but to appeal to users who seek simplicity.
While dictionaries in libraries grow larger, language in life is
simplified. Yet expressiveness is preserved because simpler
grammar is compensated by stricter word order and smaller
vocabulary by words that can be both nouns and verbs.

As New English simplifies Old English, constraint query
languages simplify GIS query languages. Yet expressiveness
is again preserved because fewer ADTs and operators are
compensated by allowing attributes like x, y and t to refer
to both finite and infinite sets of points in space and time.

In human languages, flexibility springs from simplicity.
Likewise, for GIS query languages to be widely used by mil-
lions, simplicity is not an option but a must.

5. REFERENCES

[1] N. R. Adam and A. Gangopadhyay. Database Issues in
Geographic Information Systems. Kluwer, 1997.

[2] S. Anderson and P. Revesz. Efficient maxcount and
threshold operators of moving objects.
Geoinformatica, 13(4):355–396, 2009.

[3] J. Chomicki and P. Revesz. Constraint-based
interoperability of spatiotemporal databases.
Geoinformatica, 3(3):211–43, 1999.

[4] B. Dent. Cartography Thematic Map Design.
McGraw-Hill, 1999.

[5] M. Egenhofer. Spatial SQL: A query and presentation
language. IEEE Transactions on Knowledge and Data
Engineering, 6(1):86–95, 1994.

[6] M. Egenhofer and R. Franzosa. Point-set topological
spatial relations. International Journal of Geographical
Information Systems, 5(2):161–74, 1991.

[7] F. Geerts, P. Revesz, and J. Van den Bussche. On-line
maintenance of simplified weighted graphs for efficient
distance queries. In Proc. 14th ACM International
Symposium on Advances in Geographic Information
Systems, pages 203–10. IEEE Press, 2006.

[8] R. Güting and M. Schneider. Moving Objects
Databases. Morgan Kaufmann, 2005.

[9] P. C. Kanellakis, G. M. Kuper, and P. Revesz.
Constraint query languages. Journal of Computer and
System Sciences, 51(1):26–52, 1995.

[10] H. J. Miller and E. A. Wentz. Geographic
representation in geographic information systems and
spatial analysis. Annals of the Association of
American Geographers, 93(3):574–94, 2003.

[11] S. Morehouse. The architecture of ARC/INFO. In
Proc. 9th Auto Carto Conference, pages 266–77, 1989.

[12] D. J. Peuquet and D. F. Marble. ARC/INFO: An
example of a contemporary geographic information
system. In D. J. Peuquet and D. F. Marble, editors,
Introductory Readings in Geographic Information
Systems. Taylor & Francis, 1990.

[13] P. Revesz. Introduction to Constraint Databases.
Springer-Verlag, 2002.

[14] P. Revesz and Y. Li. MLPQ: A linear constraint
database system with aggregate operators. In Proc. 1st
International Database Engineering and Applications
Symposium, pages 132–7. IEEE Press, 1997.

[15] P. Rigaux, M. Scholl, and V. Agnés. Introduction to
Spatial Databases: Applications to GIS. Morgan
Kaufmann, 2002.

[16] J. Star and J. Estes. Geographic Information Systems:
An Introduction. Prentice-Hall, 1989.

[17] P. Svensson and H. Zhexue. Geo-sal: a query language
for spatial data analysis. In Proc. Advances in Spatial
Databases, volume 525 of Lecture Notes in Computer
Science, pages 119–40. Springer-Verlag, 1991.

[18] T. C. Waugh and R. G. Healey. The GEOVIEW
design: A relational database approach to
geographical data handling. International Journal of
Geographic Information Systems, 1(2):101–18, 1987.

[19] M. F. Worboys. A unified model for spatial and
temporal information. Computer Journal, 37(1):26–34,
1994.

