
On-Line Maintenance of Simplified Weighted Graphs for
Efficient Distance Queries

Floris Geerts
University of Edinburgh

Hasselt University

fgeerts@inf.ed.ac.uk

Peter Revesz
University of Nebraska-Lincoln
Max Planck Inst. für Informatik

revesz@cse.unl.edu

Jan Van den Bussche
Hasselt University

Transnational Univ. of Limburg

jan.vandenbussche@uhasselt.be

Abstract
We give two efficient on-line algorithms to simplify weighted
graphs by eliminating degree-two vertices. Our algorithms
are on-line — they react to updates on the data, keeping the
simplification up-to-date. We provide both analytical and
empirical evaluations of the efficiency of our algorithms. We
prove an O(log n) upper bound on the amortized time com-
plexity of our maintenance algorithms, with n the number of
insertions. One of our algorithms can handle in logarithmic
time the deletions of vertices and edges as well.

Categories and Subject Descriptors: E.1: Graphs and
networks

General Terms: Algorithms.

Keywords: topological simplification, network graph algo-
rithms, online algorithms.

1. Introduction
Many real-life applications involve data in the form of

some network, such as a road, railway, or river network. It
is common to represent such network data by an undirected
weighted graph, where the weights represent distance infor-
mation. Many applications, such as on-line monitoring in-
volve traffic jams in road networks or downlinks in computer
networks, require efficiently answering a series of shortest
path queries about the network, which changes dynamically
by insertions and deletions of nodes and edges.

In developing efficient algorithms, we adopt the idea of
“topological simplification” first proposed for only unweight-
ed graphs by [6, 9, 10] to weighted graphs. In a topological
simplification, all “regular vertices”, i.e., vertices that are
adjacent to exactly two edges, are removed to form new
edges between vertices of degree one or degree greater than
two.

We extend this simplification by making the weight of the
new edge from vertex A to vertex B to be the sum of the
weights of the small edges that lead from A to B via only reg-
ular vertices. Whether this simplification trick will work or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM-GIS’06,November 10–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-529-0/06/0011 ...$5.00.

not, depends on two factors. First, the percentage of regular
vertices in a typical network. Second, the maintance cost of
the simplification. We don’t need to worry much about the
first factor, because many studies have shown that the per-
centage of regular vertices is large in typical networks [13].

The second factor is the more interesting issue. Answering
queries using the simplified network instead of the original
one, requires on-line maintenance of the simplified network
under updates to the original one. Hence the update should
be doable with a minimal overhead. The present paper pro-
poses two different algorithms for on-line maintenance of
“topologically simplifified” weighted undirected graphs.

Topology Tree Algorithm: This is based on the topol-
ogy tree of [2] and has O(n log(n)) time complexity.

Renumbering Algorithm: This algorithm relies on the
numbering and renumbering of the regular vertices and
takes on average logarithmic time per edge insertion.

Unlike most GIS data structures, e.g., an ARC/INFO pla-
nar map structure, both algorithms allow a non-planar data
structure. Real-life network data is often not planar (e.g.,
in a road or railway network, where bridges occur).

Our algorithms are efficient in insertions (of vertices and
edges), but not in deletions. For applications requiring also
deletions, the Topology Tree Algorithm can be easily ex-
tended to efficiently handle those too. The Renumbering
Algorithm can be also extended to handle deletions but
not very efficiently. However, the Renumbering Algorithm
should not be dismissed, because in many real-life applica-
tions insertions are sufficient; and, as our empirical compar-
isons show, for these types of applications the Renumbering
Algorithm can be significantly faster than the Topological
Tree Algorithm.

This paper is organized as follows. Section 2 gives basic
definitions. Section 3 describes in general on-line simplifica-
tion algorithms. Section 4 describes the Topology Tree and
Section 5 describes the Renumbering Algorithm. Section 6
presents the empirical comparison of these two algorithms.

2. Basic Definitions
In undirected graph G = (V, E, λ) without self-loops and

with edge-weights given by mapping λ : E → R+, we say:

1. A vertex v is regular if and only if it is adjacent to
precisely two edges.

2. A vertex that is not regular is called singular.

3. A path between two singular vertices that passes only
through regular vertices is called a regular path.

We assume that the graph G does not contain regular
cycles, i.e., cycles consisting of regular vertices only. The
simplification Gs = (Vs, Es, λs) of G is a multigraph with
self-loops and weighted edges, which is obtained as follows:

1. Vs, the set of nodes of Gs, consists of all singular ver-
tices of G.

2. Es, the set of edges of Gs, formally consists of all reg-
ular paths of G. Every regular path between two sin-
gular vertices v and w represents a topological edge in
Gs between v and w. There might be multiple regular
paths between two singular vertices, hence in general
Gs is a multigraph.

3. the weight λs(e) of a topological edge e is equal to
the sum of all weights of edges on the regular path
corresponding to e.

When a particular regular path e between two singular
vertices v and w is clear from the context, we will conve-
niently denote the topological edge e by {v, w}.

3. Online Simplification in General
We consider only insertions of a new isolated vertex and

insertions of edges between existing vertices in the graph G

(other more complex insertion operations can be translated
into a sequence of these basic insertion operations). The
insertion of an isolated vertex is handled trivially, i.e., we
insert it into Vs.
For the insertion of an edge we distinguish among six cases.

1. Vertices x and y are singular and deg(x) 6= 1 6= deg(y).

2. Vertices x and y are singular and one of them, say x,
has degree one.

3. Vertices x and y are singular and deg(x) = deg(y) = 1.

4. One of the vertices x and y is regular, say x, and the
other vertex, y, is singular and has degree one.

5. One of the vertices, say x, is regular and the other one,
y, is singular with degree not equal to one.

6. Both x and y are regular.

As an example, Figure 1 shows case 6. The left side of
shows the situation before the insertion of the edge {x, y},
drawn as the dotted line, and the right side shows the sit-
uation after the insertion. The topological edges are drawn
in thick lines. The other cases can be handled similarly.

If no regular vertices are involved, then the update on the
graph G translates in a straightforward way to an update
on the simplification Gs. It is only in cases 4, 5, and 6, that
the update on the graph G involves vertices which have no

counterpart in the simplification Gs. In these cases, we need
to find the edge to split and the weights of the topological
edges created by the split. Consequently, the problem of
maintaining the simplification Gs of a graph G amounts to
two tasks:

• Maintain a function find topological edge, which takes
a regular vertex as input, and outputs the topological
edge whose corresponding regular path in G contains
the input vertex.

• Maintain a function find weights which outputs the
weights of the edges created when a topological edge
is split at the input vertex.

4. Topology Tree Algorithm
We now introduce an algorithm for keeping the simplifi-

cation of a graph up-to-date when this graph is subject to
edge insertions. We only describe the case of edge inser-
tion, but it is straightforward to extend the Topology Tree
Algorithm to a fully dynamic algorithm, which can also re-
act to deletions. The algorithm uses a direct adaptation of
the topology-tree data structure of Frederickson [2, 3]. This
data structure has been used extensively in other partially
and fully dynamic algorithms [5]. We first show how the
topological edge can be found efficiently.

4.1 Regular multilevel partition

We define a cluster as a set of vertices. The size of a
cluster is the number of vertices it contains. A regular cluster

is a cluster of size at most two, containing adjacent regular
vertices. A regular partition of a graph G is a partition of
the set Vr of regular vertices, such that for any two adjacent
regular vertices v and w, the following holds:

• either v and w are in the same regular cluster C; or

• v and w are in different regular clusters Cv and Cw,
and at least one of these regular clusters has size two.

A regular multilevel partition of a graph G is a set of parti-
tions of Vr that satisfy the following (see Figure 2):

1. For each level i = 0, 1, . . . , k, the clusters at level i

form a partition of Vr.

2. The clusters at level 0 form a regular partition of Vr.

3. The clusters at level i form a regular partition when
viewing each cluster at level i − 1 as a regular vertex.

A regular forest of a graph G is a forest based on a regular
multilevel partition of G. We focus on the construction of
a single tree in the forest corresponding to a single regular
path. A single tree is constructed as follows (see Figure 3).

1. A vertex at level i in the tree represents a cluster at
level i in the regular multilevel partition.

2. A vertex at level i > 0 has children that represent
the clusters at level i − 1 whose union is the cluster it
represents.

The height of a topology tree is logarithmic in the number
of regular vertices in the leafs [2].

We also store adjacency information for the clusters. Two
regular clusters C and C′ at level 0 are adjacent , if there
exists a vertex v ∈ C and a vertex w ∈ C′ such that v and w

are adjacent in G.
We call two clusters C and C′ at level i adjacent, if they

have adjacent children. A regular cluster C at level 0 is
adjacent to a singular vertex s if there exists a regular vertex
v ∈ C adjacent to s. A cluster at level i > 0 is adjacent to a
singular vertex s if it has a child adjacent to s.

xx

y y

Figure 1: Case 6 of edge insertions described in Section 3.

v7

level 3

level 2

level 1

level 0

v10

v11

v9

v1 v2 v3 v4

v5

v6
v8

Figure 2: Example of a regular multilevel partition of a graph.

v11

level 1

level 2

level 3

v9

v9

v9

v9

v9

v5

v9

v9

v9

v9

v8v7v6v4v3v2v1v10

level 0

Figure 3: The regular forest corresponding to the regular multilevel partition shown in Figure 2.

C’’

D

x

y

x

C

y

C’ D

Figure 4: Adjusting the regular partition after in-
serting edge {x, y}.

4.2 Maintaining a regular multilevel partition

The following procedure, for maintaining a regular mul-
tilevel partition under edge insertions, closely follows the
procedure described in [2], as our data structure is a direct
adaptation of Frederickson’s.

Level 0: It is very easy to adjust the regular partition, i.e.,
the regular clusters at level 0 of the regular multilevel par-
tition. When an edge e = {x, y} is inserted, we distinguish
between the following cases: 1. the edge e destroys a regular
vertex u; 2. the edge e destroys two regular vertices u and
v; 3. the edge e creates a regular vertex u; 4. the edges
e creates two regular vertices u and v; 5. the edge e does
not change the number of regular vertices. We denote with
Cu (Cv) the regular cluster containing the vertex u (v). We
treat these cases as follows.

1. If the size of Cu is 1, then this cluster is deleted. Other-
wise if Cu is adjacent to a cluster C of size one, remove
u from Cu and union Cu with C.

2. Apply case 1 to both Cu and Cv.

3. Create a new cluster Cu only containing u. If Cu is
adjacent to a cluster C of size one, union Cu with C.

4. Apply case 3, but if both Cu and Cv are not adjacent
to a cluster of size one, then they are unioned together.

5. Nothing has to be done.

As an example consider the graph depicted in Figure 4.
The insertion of edge {x, y} destroys the regular vertex x, so
we are in case 1. Because C′ is adjacent to C′′ and the size
of C′′ is one, we must union C′ and C′′ together into a new
regular cluster C. The maintenance of the regular partition
is completed after adjusting the adjacency information of
both C and D, as shown in Figure 4.

Level > 0: We assume the regular partition at level 0 re-
flects the insertion of an edge, as discussed above. The num-
ber of clusters which have changed, inserted or deleted is at
most some constant. We put these clusters in a list LC , LI ,
and LD according to whether they are changed, inserted or
deleted. More specifically, these lists are initialized as fol-
lows. Each regular cluster that has been split or combined to
form a new regular cluster is inserted in LD, while each new
regular cluster is inserted in list LI . The adjacency infor-
mation is stored with the clusters in LI . For clusters in LD

every adjacency information is set to null, except the parent
information. For each regular cluster whose set of vertices
has not changed but its adjacency information has changed,
update the adjacency information and insert it into LC .

We create lists L′

D, L′

I , and L′

C to hold the clusters at the
next higher level of the regular multilevel partition. These
lists are initially empty.

We first adjust the clusters in the list LD. Every cluster C
in LD is removed from LD, and C is removed as child from
its parent P (if existing).

• If P has no more children, then insert P in L′

D.

• If P still has a child C′, then if C′ is not already in LC

or LD, then insert C′ into LC .

Next, we search the list LC for clusters that have siblings.
Suppose that C ∈ LC has a sibling C′ and parent P .

• If C and C′ are adjacent, then remove C from the list
LC , and remove C′ from LC if it is in this list. Insert
P into L′

C .

• If C and C′ are not adjacent, then remove C and C′ as
children from P . Remove C from the list LC , and also
remove C′ from LC if it is in this list. Insert both C
and C′ into LI , and insert P in L′

D.

Finally, we treat any remaining cluster C in LC and LI . First
remove C from the appropriate list. Then in what follows
the degree of C is the number of adjacent clusters.

• If C has degree zero, then it is the root of a tree in the
regular forest. Insert its parent P , if existing, in L′

D.

• If C has degree one or two, then we have the following
possibilities:

– If every adjacent cluster to C has a sibling, then
insert the parent P of C into L′

C in case P exists.
In case C does not have a parent, create a new
parent cluster P and insert it into L′

I .

– Let C′ be a cluster adjacent to C which has no
sibling. Remove C′ from the appropriate list, if
it is in a list. If both C and C′ have a parent,
denoted by P and P ′ respectively, then remove C
as child of P and make it a child of P ′. Insert P
into L′

D, and insert P ′ into L′

C . If both C and C′

have no parent, then create a new parent P of C
and C′, and insert P into L′

I . If C has a parent
P , and C′ has no parent, then make C′ a child of
P and insert P into L′

C . The case that C′ has a
parent P ′, and C has no parent, is analogous.

When all clusters are removed from LD, LC , and LI , deter-
mine and adjust the adjacency information for all clusters
in L′

D, L′

C , and L′

I and reset LC to be L′

C , LC to be L′

C ,
and LI to be L′

I . If no clusters are present in L′

D, L′

C or
L′

I , nothing needs to be done and the iteration stops. This
completes the description of handling lists LD, LC , and LI .

4.3 Finding a topological edge

Consider that we are in one of the cases 4–6 described in
Section 3, where we have to split a topological edge. Let x be
the regular vertex at which we have to split the topological
edge. We store a pointer from x to the regular cluster Cx

1

551

1

5

1

12

2

2

2
5

23

3

3

5

321

1

2 3

2

Figure 5: Example of a regular tree together with its weight information.

in which it is contained. We also store a pointer from each
root of a tree T in the regular forest to the topological edge,
corresponding to the regular path formed by all vertices in
the leaves of T . We find the topological edge which needs to
be split by going from Cx to the root of the tree containing
Cx. Since the height of the tree is at most O(log ℓ), where
ℓ is the current number of edge insertions, we obtain the
following.

Proposition 4.1. Given a regular vertex x, the regular

forest returns the topological edge corresponding to the regu-

lar path on which this regular vertex lies in O(log ℓ) time.

4.4 Storing weight information

We store weight information in two different places. We
define the weight of a regular cluster at level 0 of size one as
zero. Let C be a cluster at level 0 of size two, and let v and w

be the two regular vertices in C. Then we define the weight
of C as the weight of the edge {v, w}. If a cluster at level 0
is adjacent to a singular vertex s, then we store the weight
of {v, s} together with the adjacency information (here, v

is the vertex in C adjacent to s). If two clusters C and C′

at level 0 are adjacent, then we store the weight of {v, w}
together with their adjacency information (here v ∈ C and
w ∈ C′ and v is adjacent to w).

The weight of a cluster of size one at level i > 0, is defined
as the weight of its child at the next lower level. The weight
of a cluster of size two at level i > 0 equals the sum of
the weights of its two children and the weight stored with
their adjacency information. If two clusters at level i > 0 are
adjacent, we store the weight of the adjacency information of
their adjacent children. If a cluster at level i > 0 is adjacent
to a singular node, we store the weight of the adjacency
information of its child and the singular node.

4.5 Maintaining weight information

The weight of clusters and the weights stored together
with the adjacency information, is updated after each run
of the update procedure for the regular multilevel partition,
with an extra constant cost. Indeed, both the weights of
clusters at level 0 and the weights stored with the adjacency
information, are trivially updated. When we assume that
all levels lower than i represent the weight information cor-
rectly, the weight information of clusters in LC and LI is
trivially updated using the weight information at level i−1.

4.6 Finding the weights

As mentioned above, each root of a regular tree in the reg-
ular forest, has a pointer to a unique topological edge. This
root has its own weight, as defined above, and is adjacent to
two singular vertices. The weight of the topological edge is
obtained by summing the weight of the root together with
the weights of the adjacency information of the two singular
vertices. This is illustrated in Figure 5.

4.7 Complexity Analysis

The complexity of the Topology Tree Algorithm is gov-
erned by two things: the maximal height of a single tree in
the regular forest, and the amount of work that needs to be
done at each level in the maintenance of the regular multi-
level partition. We already saw that the height of a single
tree is logarithmic in the number of regular vertices on the
regular path on which the tree is built. Moreover, Freder-
ickson has proven that in the lists LC , LD, and LI only a
constant number of clusters are stored [2]. These lists are
updated at most O(log ℓ) times, where ℓ is the number of
edge insertions, so that the total update time is O(log ℓ) per
edge insertion. Hence, we may conclude the following:

Theorem 4.1. The total time spent on ℓ updates by the

Topology Tree Algorithm is O(ℓ log ℓ).

5. Renumbering Algorithm
In this section we introduce another algorithm for keeping

the simplification of a graph up-to-date when this graph is
subject to edge insertions. We first show how the topological
edges can be found efficiently.

5.1 Assigning numbers to the regular vertices

We number the regular vertices, that lie on a regular path,
consecutively. The numbers of the regular vertices on any
regular path will always form an interval of the natural num-
bers. The Renumbering Algorithm will maintain two prop-
erties:

Interval property: the assignment of consecutive numbers
to consecutive regular points;

Disjointness property: different regular paths have dis-

joint intervals.

We then have a unique interval associated with each reg-
ular path, and hence with each topological edge of size >

30

33

5051

32

dictionary

e
f

31

30
5 u

v
wg

g

e

f

v

u

w

10 11 12 13

14

50

key item
10

4
2

Figure 6: Dictionary example.

0. Moreover, we choose the minimum of such an inter-
val as a unique number associated with a topological edge.
Specifically, the minimal number serves as a key in a dictio-

nary. Recall that in general, a dictionary consists of pairs
〈key, item〉, where the item is unique for each key. Given
a number k, the function which returns the item with the
maximal key smaller than k can be implemented in O(log N)
time, where N is the number of items in the dictionary [1].

The items we use contain the following information.

1. An identifier of the topological edge associated with
the key.

2. The number of regular vertices on the regular path
corresponding to this topological edge.

3. An identifier of the regular vertex that has the key as
number on this path.

In Figure 6 we give an example of a dictionary containing
three keys, corresponding to the three topological edges in
the simplification Gs of the graph G.

5.2 Maintaining the number of the regular vertices

We must now show how to maintain this numbering under
updates, such that the interval and disjointness properties
mentioned above remain satisfied. Actually, only in case 3
in Section 3 we need to do some maintenance work on the
numbering. Indeed, by merging two topological edges, the
numbering of the regular vertices is no longer necessarily
consecutive. We resolve this by renumbering the vertices on
the shorter of the two regular paths. Note that the size of a
regular path is stored in the dictionary item for that path.

To keep the intervals disjoint, we must assume the maxi-
mal number of edge insertions to which we need to respond
is known in advance. Concretely, let us assume that we have
to react to at most ℓ update operations. This assumption is
rather harmless. Indeed, one can set this maximum limit to
a large number. If it is eventually reached, we restart from
scratch. A regular path is “born” with at most two regular
vertices on it. Every time a new regular path is created,
say the kth time, we assign the number 2kℓ to one of the
two regular vertices on it. Hence, newly created topological
edges correspond to numbers which are 2ℓ apart from each
other. Since a newly created topological edge can become
at most ℓ − 1 vertices longer, no interference is possible.

5.3 Finding the topological edge

Consider that we are in one of the cases 4–6 described
in Section 3, where we have to split the topological edge
at vertex x. We look at the number of x, say k, and find
in the dictionary the item associated with the maximal key
smaller than k. This key corresponds to the interval to which
k belongs, or equivalently, to the regular path to which x

belongs. In this way we find the topological edge which has
to be split, since this edge is identified in the returned item.

The numbering thus enables us to find an edge in O(log m′)
time, where m′ is the number of edges in Gs which corre-
spond to a regular path passing through at least one regular
vertex. Since m′ ≤ m, the number of edges in G, we obtain:

Proposition 5.1. Given a regular vertex and its number,

the dictionary returns in O(log m) time the topological edge

corresponding to the regular path on which it lies.

We next show how, when a topological edge is split, we
can quickly find the weights of the two new edges created
by the split.

5.4 Assigning weights to the regular vertices

The weight of a regular vertex v will be denoted by λ∗(v).
Weights will be assigned to the regular vertices such that if
v and w are two consecutive regular vertices with weights
λ∗(v) and λ∗(w) respectively, then λ({v, w}) = |λ∗(v) −
λ∗(w)|.

5.5 Maintaining weights of regular vertices

The maintenance of the weights of regular vertices un-
der edge insertions is easy. It requires only constant time
when a topological edge is extended. Indeed, let {x, y} be a
topological edge, and suppose that we extend this edge by
inserting {y, z}. Let u be the regular vertex adjacent to y.
Then,

• if λ∗(u) < 0, then λ∗(y) := λ∗(u) − λ({u, y}).

• if λ∗(u) > 0, and no regular vertex with a positive
weight is adjacent to u, then λ∗(y) := λ∗(u)+λ({u, y}).
Otherwise, let v be the regular vertex adjacent to u.
If λ∗(v) > λ∗(u), then let λ∗(y) = λ∗(u) − λ({u, y}),
else let λ∗(y) = λ∗(u) + λ({u, y}).

When a topological edge is split, no adjustments to the
weight of the remaining regular vertices is needed at all.
However, when two topological edges are merged we need to
adjust the weights of the regular vertices on the shortest of
the two regular paths, as shown in Figure 7. This adjust-
ment of the weights can clearly be done simultaneously with
the renumbering of the vertices.

5.6 Finding the weights

The weights of regular vertices now enable us to find the
weights of the two edges created by a split of a topologi-
cal edge in logarithmic time. Indeed, given the number of
the regular vertex where the split occurs, we search in the
dictionary which topological edge needs to be split; call it
{z1, z2}. In the returned item we find the vertex which has
the minimal number of the vertices on the regular path cor-
responding to {z1, z2}. Denote this vertex with u which is
adjacent to either z1 or z2. We assume that u is adjacent to
z1, the other case being analogous. The weights of the new
topological edges {z1, x} and {x, z2} can be computed by:

107

7 0 −717

3
1 6

6
4 2

36373839404142

42 41 40 210 211

2
−11

46
−1

134
3

107

7
17

10 4 3

Figure 7: Assigning new numbers and weights of regular vertices simultaneously when two topological edges
are merged. The numbers of regular vertices are in bold, the weights are inside the vertices.

• λ({z1, x}) := λ({z1, u}) + |λ∗(u) − λ∗(x)|; and

• λ({x, z2}) := λ({z1, z2}) − λ({z1, x}).

If only one regular vertex remains on a regular path after
a split, or a regular vertex becomes singular, then the weight
of this vertex is set to 0. This can all can be done in constant
time, after the topological edge which needs to be split has
been looked up in the dictionary.

5.7 Complexity analysis

By the amortized complexity of an on-line algorithm [12,
7], we mean the total computational complexity of support-
ing ℓ updates (starting from the empty graph), as a function
of ℓ, divided by ℓ to get the average time spent on supporting
one single update. We will prove here that the Renumbering
Algorithm has O(log ℓ) amortized time complexity. We only
count edge insertions because the insertion of an isolated
vertex has zero cost.

Theorem 5.1. The total time spent on ℓ updates by the

Renumbering Algorithm is O(ℓ log ℓ).

To conclude this section, we recall from Section 5.2 that
the maximal number assigned to a regular vertex is 2ℓ2. So,
all numbers involved in the Renumbering Algorithm take
only O(log ℓ) bits in memory. Theorem 5.1 assumes the
standard RAM computation model with unit costs. If loga-
rithmic costs are desired, the total time is O(ℓ log2 ℓ).

6. Experimental Comparison
The Renumbering Algorithm and the Topology Tree Al-

gorithm are very different, but have the same theoretical
complexity. Hence, the question arises how they compare
experimentally. In this section we try to obtain some in-
sight into this question.

Both algorithms were implemented in C++ using LEDA
[8]. We used the GNU g++ compiler version 2.95.2 without
any optimization option. Our experiments were performed
on a SUN Ultra 10 running at 440 Mhz with 512 MB inter-
nal memory. Implementing the Renumbering algorithm was
considerably easier than implementing the Topology Tree
Algorithm.

We conducted our experiments on three types of inputs.
First of all, we extensively studied random inputs, which
are random sequences of updates on random graphs. Next,
we used two kinds of non-random graph inputs which focus
specifically on the merging and the splitting of topological
edges. Hence, we construct an input sequence which repeat-
edly merges topological edges, and an input sequence which

vertices\edges m=5000 m=10 000 m=20 000
n=1000 [1.10, 1.15] [1.03, 1.06] [0.97, 0.99]

vertices\edges m=5000 m=25 000 m=75 000
n=5000 [1.25, 1.29] [1.01, 1.03] [0.96, 0.98]

vertices\edges m=10 000 m=50 000 m=150 000
n=50 000 [1.30, 1.35] [1.06, 1.07] [0.91, 0.92]

vertices\edges m=10 000 m=100 000 m=300 000
n=100 000 [1.21, 1.23] [0.98, 0.99] [0.85, 0.86]

Table 1: 95% confidence intervals on ratio between
Topology Tree and Renumbering, from 1000 runs on
random inputs.

first creates a very large number of small topological edges
and then splits these edges randomly. Finally, we ran both
algorithms on two inputs originating from real data sets.

Methodology: Since the experiments have an element of
randomness, we show the results in the form of 95% confi-
dence intervals. For each test, we perform a large number of
runs. For each run, we compute the ratio between the total
time taken by Topology Tree and that taken by Renum-
bering. We took the average of these ratios and computed
the 95% confidence interval. So, for example, the interval
[1.10, 1.15] means that Topology Tree was 10 to 15% slower
than Renumbering in 95% of the runs in the test.

Random Inputs: The random inputs consist of random
graphs that are generated, given the number of vertices and
edges. Each run builds a random graph incrementally with
the insertions uniformly distributed over the set of edges.
We conducted a series of tests for different number of nodes
n and number of edges m. For every pair of values for n and
m we did 1000 runs. The results of these experiments are
shown in Table 1.

For small numbers of edge insertions, i.e., when the prob-
ability of having many regular vertices is large, we see that
the Renumbering Algorithm is faster. However, when the
number of edge insertions increases, the Topology Tree Al-
gorithm becomes slightly faster. This is probably due to
the fact that the dictionary in the Renumbering Algorithm
becomes very large, i.e., there are many short topological
edges, and hence it takes longer to search for topological
edges.

Non-Random Inputs: The non-random inputs consisted
of two types. For the first type, we created a large number
of topological edges and then started to merge these edges

Merge (n = 20 099, m = 20 098) [3.60, 3.74]
Split (n = 280 000, m = 200 000) [1.15, 1.17]

Table 2: 95% confidence intervals on ratio between
Topology Tree and Renumbering, from 100 runs on
non-random inputs.

Hydrography [1.62, 1.66]
Railroad [0.95, 0.96]

Table 3: 95% confidence intervals on ratio between
Topology Tree and Renumbering, from 100 runs on
real datasets.

pairwise. The end result was a very long topological edge.
For the second type, we first created a very large number of
short regular paths consisting of a single regular vertex, and
then started to split these randomly. Each result shown in
Table 2 is obtained from 100 runs.

The first type of input was designed in order to reproduce
the cases, observed in the random inputs, where Renumber-
ing is much faster than Topology Tree. This is confirmed
by the experimental result. Indeed, on this type of inputs,
the Topology Tree Algorithm has to maintain large topology
trees, which is probably the reason that it is slower.

The second type of input was designed in an attempt
to reproduce the cases where Topology Tree is faster than
Renumbering. Our attempt failed, however, as the experi-
mental result does not confirm this. Indeed, although the
topology trees all have height one, while the dictionary is
very large, the Renumbering Algorithm nevertheless still is
faster.

Real Data Inputs: We also tested the relative perfor-
mance of both algorithms with respect to graphs represent-
ing real data. We present the results on two data sets:

Hydrography graph A data set representing the hydrogra-
phy of Nebraska. This set contains 157 972 vertices, of
which 96 636 are regular.

Railroad graph A data set representing all railway main-
lines, railroad yards, and major sidings in the conti-
nental U.S. compiled at a scale 1 : 100 000. It contains
133 752 vertices of which only 14 261 are regular. It is
available at the U.S. Bureau of Transportation Statis-
tics (www.bts.gov/gis).

The results shown in Table 3 are obtained after perform-
ing 100 experiments. In each experiment, we ran both al-
gorithms in a random way on these data sets. We com-
puted the ratio between the total time the Topology Tree
Algorithm needed to perform the test and the total time
the Renumbering Algorithm needed to accomplish the same
task. We took the average of this ratio and computed the
95% confidence interval. Again, we see that when there are
only few, but long, topological edges, the Renumbering Al-
gorithm is faster than the Topology Tree Algorithm. When
there are many, short, topological edges, like in the railroad
graph, the Topology Tree Algorithm is slightly faster than
the Renumbering Algorithm.

In summary, our experimental study shows that when the

percentage of regular vertices is high in a graph, then the
Renumbering Algorithm is clearly better than the Topolog-
ical Tree Algorithm, and when the same percentage is low,
then the reverse often holds. However, our experimental
study did not compare any specific problem solving with
and without using topological simplification. Intuitively, the
value of topological simplification should increase with the
percentage of regular vertices in the graph. Therefore, when
the percentage of the regular vertices is high, the Renumber-
ing Algorithm should be not only better than the Topolog-
ical Tree Algorithm but also yield a significant time saving
over problem solving without topological simplification. We
expect this to be the most important practical implication
of our study for the case when there are only insertions of
edges and vertices into the graph. However, when a fully
dynamic structure is needed, then the Topological Tree Al-
gorithm should be also advantageous in practice.

Acknowledgement
We would like to thank Bill Waltman for providing us with
the hydrography data set.

7. References

[1] T.H. Cormen, C.E. Leierson, and R.L. Rivest. Intro-

duction to Algorithms. MIT Press, 2001.

[2] G.N. Frederickson. Data structures for on-line updat-
ing of minimal spanning trees. SIAM J. Comput., Vol
14:781–798, 1985.

[3] G.N. Frederickson. Ambivalent data structures for dy-
namic 2-edge-connectivity and k smallest spanning
trees. SIAM J. Comput., Vol 26(2):484–538, 1997.

[4] F. Geerts, B. Kuijpers, and J. Van den Bussche. Topo-
logical canonization of planar spatial data and its in-
cremental maintenance. In T. Polle, T. Ripke, and K.-
D. Schewe, editors, Fundamentals of Information Sys-

tems, Kluwer Academic Publishers, 1998, pp 55–68.

[5] G. Italiano. Dynamic graph algorithms. In Mikhail J.
Atallah, editor, Handbook on Algorithms and Theory of

Computation, CRC Press, 1998.

[6] B. Kuijpers, J. Paredaens, and J. Van den Bussche.
Lossless representation of topological spatial data. In:
Advances in Spacial Databases, Volume 951 of Lec-
ture Notes in Computer Science, pages 1–13, Springer-
Verlag, 1995.

[7] K. Mehlhorn. Data Structures and Algorithms 1: Sort-

ing and Searching. EACTS Monographs on Theoretical
Computer Science. Springer-Verlag, 1984.

[8] K. Mehlhorn and S. Näher. LEDA: A platform for
combinatorial and geometric computing. Comm. of the

ACM, Vol 38(1):96–102, 1995.

[9] C.H. Papadimitriou, D. Suciu, and V. Vianu. Topolog-
ical queries in spatial databases. Journal of Computer

and System Sciences, Vol 58(1):29–53,1999.

[10] L. Segoufin and V. Vianu. Querying spatial databases
via topological invariants. Journal of Computer and

System Sciences, Vol 61(2):270–301, 2000.

[11] R. Tamassia On-line planar graph embedding. Journal

of Algorithms, Vol 21:201–239, 1996.

[12] R.E. Tarjan. Data structures and network algorithms.
In CBMS-NSF Regional Conference Series in Applied
Mathematics, Vol 44. SIAM, 1983.

[13] M.F. Worboys, and M. Duckham. GIS: A Computing

Perspective. Taylor&Francis, second edition 2004.

