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1. INTRODUCTION

Despite the growing popularity of digital imaging devices, the
problem of accurately estimating the spatial frequency response
or optical transfer function (OTF) of these devices has been
largely neglected. Traditional methods for estimating OTFs were
designed for film cameras and other devices that form continuous
images. These traditional techniques do not provide accurate
OTF estimates for typical digital image acquisition devices be-
cause they do not account for the fixed sampling grids of digital
devices . This paper describes a simple method for accurately
estimating the OTF of a digital image acquisition device. The
method extends the traditional knife-edge technique''3 to ac-
count for sampling.

One of the principal motivations for digital imaging systems
is the utility of digital image processing algorithms, many of
which require an estimate of the OTF. Algorithms for enhance-
ment, spatial registration, geometric transformations, and other
purposes involve restoration—removing the effects of the image
acquisition device. Nearly all restoration algorithms (e.g., the
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Abstract. Despite the popularity of digital imaging devices (e.g., CCD array
cameras) the problem of accurately characterizing the spatial frequency
response of such systems has been largely neglected in the literature. This
paper describes a simple method for accurately estimating the optical
transfer function of digital image acquisition devices. The method is based
on the traditional knife-edge technique but explicitly deals with funda-
mental sampled system considerations: insufficient and anisotropic sam-
pling. Results for both simulated and real imaging systems demonstrate
the accuracy of the method.

inverse filter, the Wiener filter, and the constrained-least-squares
filter) are conditioned on a linear, shift-invariant model of the
acquisition device characterized by the OTF. The performance
of these algorithms can be degraded, sometimes dramatically,
by inaccurate OTF estimates.

The knife-edge technique computes the OTF estimate from
an image of a knife edge (a target with a straight-edged, sharp
discontinuity, i.e. , a step function). A knife-edge target is rel-
atively easy to fabricate accurately—much easier than the targets
required by other techniques (e.g. , an infinitestimal pulse, a set
of sinesoidal targets, or a set of bar targets). Only one knife
edge is needed and, with care, radiance nonuniformity and edge
irregularity can be made small. Also, in some situations (e.g.,
remote sensing), the OTF must be estimated without the use of
specially fabricated targets. Because sharp edges occur naturally
in many scenes, the knife-edge technique frequently can be used
even if an image of a special target is not available.

As is demonstrated in this paper, if the traditional knife-edge
technique is used to characterize a typical imaging device, sam-
pling effects cause significant errors in the OTF estimate. The
knife-edge technique was originally developed for characterizing
acquisition devices that produce spatially continuous (rather than
digital) images1 (especially film cameras2'6'7'9'10). The tradi-
tional knife-edge technique relies on oversampling a continuous
image with a scanning device. If the image is not oversampled,
as in a typical digital image, then the traditional knife-edge
estimate is inaccurate.

The technique developed in this paper solves the problems
caused by sampling and accurately estimates the OTFs of digital
image acquisition devices, even those that inherently undersam-
ple. Section 2 describes the traditional knife-edge technique and
details the problems of applying it to digital imaging devices.
Section 3 describes our extension of the traditional knife-edge
technique to deal with sampling. In Section 4, the extended
knife-edge technique is applied to images generated by a sim-
ulated system. In Section 5, the extended knife-edge technique
is used to characterize a CCD digital camera.

Subject terms: image formation; image restoration; modulation transfer function;
optical transfer function; point spread function; evaluation technology; image ac-
quisition devices; sampling.
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Fig. 1. Example system and estimates. (a) Example system PSF and
OTF (Pc 0.55). (b) Traditional knife-edge estimate. (c) Improved
knife-edge estimate.

2. PROBLEMS WITH THE TRADITIONAL KNIFE-
EDGE TECHNIQUE
A traditional ' 'analog'

'
image acquisition device produces an

image that is spatially continuous. To characterize the spatial
frequency response of such a device, the continuous image of
a knife edge is scanned and sampled (e.g. , with a micro-
densitometer6) along a line that is perpendicular to the edge.
The sampled data are a measure of the device's edge spread
function (ESF). The derivative of the ESF with respect to the
scan direction is the line spread function (LSF). The Fourier
transform of the LSF is a one-dimensional slice through the
center of the two-dimensional ' When the knife-edge tech-
nique is applied to a continuous image, the principal problem
is noise.

Although noise is also a problem in estimating the OTF of a
digital device, there are other problems as well. In a digital
image acquisition device, image formation (i.e. , the operation
of the OTF on the scene) is followed by sampling at fixed points
of the image. The fixed sampling grid of a digital device presents
two problems for the knife-edge technique: insufficient and an-
isotropic sampling. In the traditional knife-edge technique, the
scans of the continuous images are sampled to facilitate pro-
cessing (i.e., computing the derivative). However, because sam-

h(u) =
exP(_2)

' (1)

where u is the spatial frequency (normalized to the sampling
rate) and Pc 0.55. The OTF and the corresponding point
spread function (PSF) are pictured in Fig. 1(a). (The PSF is the
inverse Fourier transform of the OTF.) Note that the response
of the OTF extends to frequencies beyond the sampling passband
or Nyquist frequency (u = 0.5). This is typical—most digital
imaging systems have a significant response to frequencies be-
yond the sampling passband (although sampling causes these
frequencies to alias).

Figure 1(b) pictures the traditional knife-edge estimate of the
OTF in Fig. 1(a) derived from a noise-free edge scan. The OTF
estimate is cut off at the Nyquist frequency and is inaccurate at
all but the lowest frequencies. The sharp cutoff in the OTF
estimate appears as ringing in the corresponding PSF, and the
loss of high frequencies in the OTF estimate is seen as a broad-
ening or loss of sharpness in the PSF.

As described in Sec. 3, the extended knife-edge technique
uses many edge scans to generate a single scan with super-
resolution (resolution higher than the sampling rate) sufficient
to eliminate aliasing. For the example system of Fig. 1(a), dou-
bling the sampling rate sufficiently samples the ESF. The knife-
edge estimates of the OTF and PSF based on twofold super-
resolution are shown in Fig. 1(c). It is evident that in this case,
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pling is implemented with an external device, the sampling rate
and orientation relative to the image can be controlled. In con-
trast, the sampling grid of a digital device is fixed and neither
its density nor orientation relative to the image can be changed.

2.1. Noise
Noise corrupts the ESF in actual edge scans. Differentiation of
the noisy scans to estimate the LSF amplifies the high-frequency
components of the scans, where the signal-to-noise ratio (SNR)
is typically lowest. Many techniques have been proposed to deal
with noise (e.g. , Refs. 6, 9, 1 1 , and 12). Some of these tech-
niques implicitly affect the OTF estimate by suppressing the
estimate where noise is high or presuming a parametric form
for the OTF.

Implemented properly, scan-line averaging is a simple tech-
nique that suppresses zero-mean noise without affecting the OTF
estimate. Scan-line averaging is implemented by generating many
scans across an edge. Then, the scans are registered using es-
timates of the edge location (i.e. , the scans are shifted so that
the edge points in all of the scans are aligned) and averaged."
The extended knife-edge technique described in Sec. 3 uses
scan-line averaging.

2.2. Undersampling
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: Typical diqital image acquisition devices are designed to un-\ I dersample. (In practice, sufficient sampling can be achieved

. 0.6 \I only with a design that causes excessive blurring.) Undersam-
0.4 \ pling causes aliasing—the folding of spatial-frequency com-c

2 I N ponents above the Nyquist frequency into frequencies below the
.

Nyquist frequency.
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J When the traditional knife-edge technique is applied to typical
0.0 0.4 0.8 digital imaging devices, aliasing causes significant errors in the

(c)
Frequency 0Th estimate. For example, consider a simulated, one-dimensional

system with a Gaussian (presampling) OTF
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the extended knife-edge technique produces a much more ac-
curate estimate than the traditional knife-edge technique.

Sample/scene phase'5"6 (the location of the edge relative to
the sample points) is a source of variability in the edge scans.
In sufficiently sampled scans, differences between scans caused
by sample/scene phase shifts can be removed by spatial inter-

1 1 However, interpolation cannot remove variations
caused by sample/scene phase shifts from undersampled scans.
If the traditional knife-edge technique is applied to insufficiently
sampled edge scans, the OTF estimate varies with sample/scene
phase. The extended knife-edge technique described in Sec. 3
achieves sufficient sampling, so sample/scene phase shifts can
be removed.

2.3. Anisotropic sampling
The knife-edge technique is fundamentally one-dimensional—
the estimate is a one-dimensional slice through the center of the
two-dimensional OTF. Many traditional optical systems have a
radially symmetric OTF that can be characterized by a one-
dimensional slice. If needed, other slices of the OTF can be
obtained by rotating the knife-edge target and acquiring addi-
tional images. For analog imaging systems, as the knife edge is
rotated, the scanning device and the continuous image can be
rotated relative to one another so that the scan direction remains
perpendicular to the knife edge in the image regardless of the
edge orientation.

In a digital imaging system, the sampling grid is fixed and
cannot be rotated relative to the image. This is a problem because
the sampling grid is rotationally anisotropic—the density of the
sampling points along lines perpendicular to the knife edge varies
with the angle of rotation. Moreover, two-dimensional estimates
are more important for digital imaging systems because the (non-
optical) electronic components often cause radial asymmetry in
the 131617 As described in Sec. 3, despite sampling an-
isotropy, the extended knife-edge technique can be applied to
an edge at nearly any angle.

3. KNIFE-EDGE METHOD FOR DIGITAL DEVICES
In this section, the traditional knife-edge technique is extended
to deal with undersampling and anisotropic sampling in digital
systems. By averaging many registered scans, the extended method
generates a superresolution scan with sufficient sampling density
and high SNR from which the OTF can be accurately estimated.
The one-dimensional method is described in Sec. 3 .1 . As de-
scribed in Sec. 3.2, this method can be applied at nearly any
angle to generate two-dimensional estimates.

3.1. One-dimensional estimates
To achieve superresolution, the knife edge is aligned slightly
off-perpendicular to the scan direction, as in Fig. 2(a). Tescher
and characterized this unavoidable off-perpendicular
alignment as unfortunate, but that is not the case for digital
devices—it is the key to increasing the effective sampling rate.
Figure 2(b) shows the noise-free edge responses and sample
points for this sequence of scans. The location of the edge shifts
slightly from scan to scan.

Modeled mathematically, the value of pixel m in scan n of
image p is

pn(m) = J s(m — x' — x)h(x')dx' + e(m)
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Fig. 2. Registering scans with shifted knife edge. (a) Sampling grid
with knife edge skewed from perpendicular. (b) Knife-edge shift in
successive scans. (c) Combined scan with registered edges.

where 5 i5 the knife-edge target with the step edge located at x,
in scan n, h is the (unknown) PSF, and e is the noise. The
coordinates are normalized to the sampling interval.

If the individual scans are correctly registered according to
the location of the edge, then as illustrated in Fig. 2(c), the
combined scan generated by the superposition of the registered
scans will contain more edge response samples than any single
scan, thereby effectively increasing the sampling resolution.

Correctly registering scans requires estimating the edge lo-
cation in each scan line to subpixel accuracy. Several methods
have been suggested for estimating step-edge locations to sub-
pixel accuracy. 18—21 Any of these methods can be used. We
estimate the knife-edge location as follows: (1) estimate the edge
location in each scan line, (2) use linear regression to fit a line
through the individual edge estimates, and (3) use the regression
line to improve the estimate of the edge location in each scan
line. Steps (2) and (3) rely on the straightness of the edge and
should not be employed if the knife edge is irregular.

For noise-free scans and perfect registration [as in Fig . 2(c)],
in the continuum limit as the number of scan lines increases,
the combined scan q is

q(x) = J s(x — x')h(x')dx' (3)

and characterizing the system to any resolution involves a
straightforward inversion of this equation to solve for the PSF
h. In real scans, noise is a problem, registration is imperfect,
and resolution is necessarily limited by the finite number of scans

(2) used. These problems are illustrated in the combined scan q
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Fig. 4. Spatial derivatives in the Fourier frequency domain. (a) Exact
derivative. (b) [— 1 1] approximation. (c) I— 1 0 11 approximation.

Fig. 3. Averaging and resampling. (a) Registered noisy scans. (b)
Averaging intervals along the combined scan. (c) Resampled aver-
aged scan. Under these conditions, when a large number of scans are used,

sample/scene phase bias, residual noise, and misregistration er-
rors are negligible.

pictured in Fig. 3(a). This combined scan consists of 64 noisy
scans registered by estimated edge location.

The noise in the combined scan can be suppressed by smooth-
ing and resampling, thereby sacrificing some spatial resolution
in order to reduce noise. The resampling resolution should be
at least as great as the OTF cutoff, and the smoothing filter
should be matched to the resampling resolution. For typical
digital image acquisition devices, twofold (or slightly higher)
superresolution is usually sufficient.

Recovering the OTF from Eq. (5) is an inverse problem. The
inverse function of the step edge s is the derivative operator with
respect to the normal to the edge (the direction of the scan). As
is shown in Fig. 4, commonly used discrete approximations of
the derivative (e.g. , [ — 1 1] and [— 1 0 11) suppress high fre-
quencies. Therefore, using a discrete-difference approximation
of the derivative to invert Eq. (5) attenuates high frequencies of
the OTF estimate. Accurate inversion is simpler in the frequency
domain. The frequency domain equivalent of Eq. (5) is

Averaging is a simple smoothing operation that is easily corn-
puted for the irregularly spaced samples of the combined scan.
If the resampling resolution is a and the width of the averaging

u) =
sinc()(u)ui(u)

, ui < (6)
a

a
interval is 1/a, then each of the original samples contributes to
exactly one resampled value. For example, Figs. 3(b) and 3(c) where the sinc function is the spectrum (or Fourier transform)
illustrate an averaging interval of 1/2 and a resampling resolution of the unit pulse,
(or superresolution ratio) of a =2.

Assuming the sample/scene phase is uniformly distributed
over all scans, in the continuum limit, the averaged and resam-
pled scan r is

(m\
rI—)

a fl(m — ax)q(x)dx , (4)a -

I
, if = 0

sinc(u) =
sin(iru) (7)

otherwise
ITU

is the spectrum of the knife-edge target s,

for all integers m, where fl is the unit pulse. (Note that the
sample points are indexed by the integer m, but are located at
intervals of 1/a.) If the noise is zero mean and the scan lines (8)

are registered into the correct averaging interval, then from Eqs.
(3) and (4), in the continuum limit as the number of scans
increases, the resampled scan is and / is the OTF being estimated. Then, the OTF estimate is

(m\ f [f - x')h(x')d']dx . (5)r—1=a fl(m—ax)a - h(u) —
sinc(u/a)(u)

i(u)
(9)

__:! , otherwise2iu
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Fig. 6. Idealized horizontal and vertical spatial responses.

Inpractice, I is computed as the DFT ofthe smoothed, resampled
scan r and the OTF estimate in Eq. (9) is computed only at
discrete frequencies of the DY!'. The use of the DFT assumes
the periodic extension of a finite-length, discrete scan. Gener-
ally, the impact of using a finite-length scan is negligible because
the PSF is much narrower than the scan length.8 Periodicity can
be effected by using a wide bar with a knife edge on both sides
or (if the OTF is symmetric) mirroring the edge scan.

To summarize, the extended knife-edge technique is as fol-
lows:

(1) Generate many scan lines across a knife edge that is on-
ented nearly perpendicular to the scan direction. (A slant
of at least one pixel across all scans is required to produce
a uniform distribution of sample/scene phase.)

(2) Register the scans according to their estimated edge lo-
cations.

(3) Choose a superresolution (or resampling) ratio a.
(4) Average the registered scan values that fall within sub-

pixel intervals of width 1/a about the resampling points.
(5) Compute ,, the DFT of the resampled scan.
(6) Compute h , the estimate of the OTF slice [as in Eq. (9)1,

to the superresolution Nyquist frequency ( a/2).

3.2. Two-dimensional estimates
A two-dimensional OTF estimate can be reconstructed from
many one-dimensional slices at different angles. Despite sam-
pling anisotropy, the extended knife-edge technique can be ap-
plied at nearly any angle. Figure 5 illustrates how to generate
scans at 45° across an edge. Each scan consists of samples from
different rows and columns. Scans at other off-axis angles can
be implemented similarly. Note that the sampling rate along the
scan is a function of the angle. For examle, at 45°, as in Fig.
5, the sampling rate is l/[(x)2 + (zy)2] /2, where Ex and zy

are the horizontal and vertical sampling rates. The differences
in sampling rates must be considered in reconstructing a two-
dimensional OTF.

Before proceeding with the involved process of two-dimen-
sional reconstruction, it is sensible to analyze the system for
radial symmetry and separability. If the horizontal, vertical, and
diagonal OTF slices are nearly identical, it is indicative (but not
conclusive) evidence that the system is symmetric. Likewise, if
the product of the horizontal and vertical slices is nearly the
same as the diagonal, it suggests (but does not prove) that the
system is separable. These assessments require only three slices,
and if either conclusion is accepted, the process of acquining
other scans and reconstructing can be avoided.

4. SIMULATIONS
This section presents simulation results for the extended knife-
edge technique. The digital acquisition device is modeled with
two components: the camera optics and the sensor array. The
camera optics are modeled with a two-dimensional Gaussian
OTF:

h0(u,v) =
exp[_(V2

+

v2)2]
(10)

separable. The sensor array model assumes rectangular potential
wells with unit bnihtness response within wells and linear falloff
between wells.22' The sensor PSF is pictured in Fig. 6. The
sensor array OTF is

hd(U,V) = , (11)

where 13 and 13 are the dimensions of the potential wells and
"/x and are the distances between wells. For the simulations
in this section, 13 = 5/6, = 1/6, = 1/2, and = 1/2.
The sensor OTF component is separable but not symmetric. The
composite OTF model is the product of the OTFs of the optics
and the second array:

h(u,v) = h0(U,V)hd(U,V) . (12)

The knife-edge targets were simulated with three superresolution
digital images (digital images with greater resolution than the
sampling grid). Three 1024 x 1024 digital scenes were used: one
with a vertical bar, one with a horizontal bar, and one with a
diagonal bar. In each scene, the bar was slightly sloped relative
to the scan direction (a slope of 1 scene element per 64 scan
lines). Each of these targets provided two knife edges (one on
each side of the bar). The effect of the system on the scene is
simulated by multiplying the DF1' of the digital scene by the
OTF. The inverse DFT of this product is the simulated image.
To simulate sampling, the images of the horizontal and vertical
bars were resampled in the scan direction at every sixteenth
scenel (scene element) to produce 1024, 64-element edge scans.
The image of the diagonal bar was sampled both horizontally
and vertically to produce 128 edge scans of varying length. In
all three images, border effects corrupt the top and bottom scans,
so only half the edge scans were retained (those in the center).
White noise was then added to these edge scans.

The image SNR is the ratio of the step-edge height to the
contrast (standard deviation) of the noise:

174 / OPTICAL ENGINEERING / February 1991 / Vol. 30 No. 2
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where Pc = 1/\/2. This OTF component is both symmetric and
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5. EXPERIMENTAL RESULTS
image SNR Io bI , (13) This section presents results of the extended knife-edge tech-°e

nique applied to a real digital camera. A traditional knife-edge
estimate of the OTF of this system would be inaccurate belowwhere o is the brightness value of the object (i.e. , the bar) and the Nyquist frequency and would not measure the componentsb is the brightness value of the background. The simulation was above it. The superresolution estimate derived by the extendedrun for SNR values of 16, 32, 64, 128, and 256as well as no knife-edge technique is consistent with conventional OTF designnoise. For example, the registered scans in Fig. 3(a) have SNR of digital imaging systems and with measured responses to a= 64. For each noise level, the OTF was estimated from 2, 4,

8, 16, 32, 64, 128, 256, and 512 scan lines. In all of the square-wave target.
The extended knife-edge procedure was used to estimate theexperiments, the OTF estimates were made with a = 2. For OTF of a Photometrics l83S slow-scan, three-stage, thermo-each experiment, the mean-square error (MSE) of the OTF es- electric-cooled CCD camera system with a Texas Instrumentstimate relative to the energy of the actual OTF is 4849 array sensor and a Pentax 1 .8 50 mm lens . A commercial

IhQ) — hestQl)12
test target with a black square printed on white Mylar was placed

relative MSE
as close to the camera as could be focused (45 cm). The f-stop=

EIh()I2 was set to 9.5 and the exposure time was 0. 1 s. The resulting
F). images were corrected for dark-field and flat-field response as

In the simulation, the MSE of the OTF estimate is conditioned p(m,) — d(m,n)
p'(m,n)on the image SNR and the number of scan lines used. The f(m,n)/f

experimental results bear out the expected relationships. For a
fixed number of scan lines, the MSE varies inversely with the where d(m,n) is the dark-field response (the CCD output with
square of SNR (e.g. , doubling SNR cuts MSE by a factor of the shutter closed),f(m,n) is the flat-field response (the response
4). For fixed SNR, the MSE varies as the inverse of the number to a target of uniform reflectance), and f is the mean of the
of lines (e.g. , doubling the number of lines halves the MSE). flat-field image. Images with 372, 64-pixel scans across the
In practice, the SNR is not easily controlled, so the MSE of the vertical and horizonal bars were cut from the full 388 X 584
estimate depends principally on the number of lines used. images. The image of the diagonal bar was cut to 128 x 128.

Figure 7(a) shows the horizontal OTF (the solid line) and the Figure 8 illustrates the OTF estimate (for a 2). The re-
OTF estimates for SNR = 64 based on both 64 scan lines (open sponse is typical for digital imaging systems designed to balance
circles) and 5 1 2 scan lines (closed circles). For the estimate the tradeoff between blurring and aliasing—some attenuation of
based on 64 scan lines, the relative MSE (within the band of frequencies below the Nyquist frequency that will cause blurring
frequencies estimated) is approximately 6 X 10 '. For 5 12 scan and some response above the Nyquist frequency that will result
lines the MSE is about 8 x 10 . Figure 7(b) shows the vertical in aliasing. The magnitude of the OTF at the Nyquist limit is
OTF and the estimate based on 5 12 scan lines. Figure 7(c) shows slightly greater than 0.3. Noise begins to dominate the OTF
the diagonal OTF, the estimate based on 5 12 scan lines (closed estimate near the sampling frequency, where the OTF magnitude
circles), and the response predicted by the product of the hori- and the SNR are small.
zontal and vertical estimates (open circles). The vertical, horizontal, and diagonal responses are not very

None of the estimates is very different from the others, in- much different from one another. This is evidence that the OTF
dicating that the two-dimensional OTF is nearly symmetric. The is nearly circularly symmetric. The product of the vertical and
product of the vertical and horizontal estimates is similar to the horizontal transfer function estimates is a poor estimate of the
diagonal knife-edge estimate, supporting the hypothesis that the diagonal response at the appropriate frequency. This indicates
system is separable. It is clear from these estimates that /, the that the system function is not separable.
Gaussian component of the simulated OTF associated with the The OTF estimates for this camera were corroborated using
optics, dominates 1d, the OTF component associated with the an image of a bar chart that conforms to NBS lOlOA and ANSI!
detector. ISO #2 standards taken under the conditions described. The
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Fig. 8. Estimates of CCD system OTF. (a) Vertical estimate. (b) Horizontal estimate. (c) Diagonal
estimate.

frequencies on the bar chart ranged from 1 cycle/mm to 5.6
cycles/mm. The sampling frequency in the target plane was 6
samples/mm, so the normalized square-wave frequencies relative
to the sampling frequency ranged from 0. 167 to 0.933. From
the OTF estimate of Fig. 8(b), the modulation or contrast (i.e.,
the standard deviation) in the images of the square waves is
predicted by the equation24

2 1/2

(u) —
[kOh+l1" ]

, (16)

where, is the estimated contrast for a square wave of frequency
U and a is a scaling constant. Figure 9 shows the normalized
predicted contrast (solid line) and the observed contrast (closed
circles) of the square-wave images . TheOTF estimate accurately
predicts the observed square-wave contrast. The scatter of the
observed contrast is due to noise and sample/scene phase. Only
three bars were usable to all frequencies, and with so few periods
of the square wave, sample/scene phase is a source of significant
variability in the observed contrast.

6. CONCLUSION

The extended knife-edge technique can accurately estimate the
OTF of a digital imaging system. By registering many scans to
create a superresolution scan, the extended technique can esti-
mate the OTF beyond the Nyquist limit of the device. Scan-line
averaging successfully suppresses noise and increases SNR,
making the estimates more accurate and less variable. The tech-
nique can be applied at virtually any angle to generate two-
dimensional OTF estimates or assess the symmetry and separ-
ability of the OTF.
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