
Journal of Chromatography A, 1086 (2005) 165–170

Peak pattern variations related to comprehensive two-dimensional
gas chromatography acquisition

Mingtian Nia,∗, Stephen E. Reichenbachb, Arvind Visvanathanb,
Joel TerMaatc, Edward B. Ledford Jr.c

a GC Image, LLC, 216 N 11th Street, Suite 302, Lincoln, NE 68508, USA
b Department of Computer Science and Engineering, University of Nebraska, Lincoln, NE 68588, USA

c Zoex Cooperation., 2611 West M ST, Suite D, Lincoln, NE 68522, USA

Available online 6 July 2005

Abstract

Identifying compounds of interest for peaks in data generated by comprehensive two-dimensional gas chromatography (GC× GC) is a
c g. Pattern
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ritical analytical task. Manually identifying compounds is tedious and time-consuming. An alternative is to use pattern matchin
atching identifies compounds by matching previously observed patterns with known peaks to newly observed patterns with u
eaks. The fundamental difficulty of pattern matching comes from peak pattern distortions that are caused by differences in data
onditions. This paper investigates peak pattern variations related to varying oven temperature ramp rate and inlet gas pressure a
wo types of affine transformations for matching peak patterns. The experimental results suggest that, over the experimental
hanges in temperature ramp rate generate non-linear pattern variations and changes in gas pressure generate nearly linear patt
he results indicate the affine transformations can largely remove the pattern variations and can be used for applications suc
atching and normalizing retention times to retention indices.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Comprehensive two-dimensional gas chromatography
GC× GC) combines the resolving power of two columns in-
erfaced by a thermal modulator, offering significantly greater
eparation capacity than traditional one-dimensional GC[1].
C× GC can separate thousands of different compounds,
hereas it is difficult to distinguish a few hundred peaks

n data generated by traditional one-dimensional GC. The
reat performance of GC× GC holds promise for many im-
ortant applications such as environmental monitoring[2],
etrochemical processing[3], and chemical warfare agent
etection[4].

∗ Corresponding author. Tel.: +1 402 474 2942; fax: +1 402 472 7767.
E-mail addresses:mni@cse.unl.edu (M. Ni); reich@cse.unl.edu
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Given a chemical sample, the GC× GC output dat
can be represented, visualized, and processed as a
age. In the image, each resolved compound produc
small two-dimensional peak with values larger than b
ground values. Identifying compounds for peaks of in
est is a critical task in GC× GC analysis. GC× GC im-
ages contain potentially thousands of peaks in complex
terns, making compound identification a challenging p
lem. Manually identifying compounds is tedious and tim
consuming.

Several approaches have been used to automate the
pound identification process in GC× GC analysis, includ
ing library search, rule-based techniques, and pattern m
ing [5]. In library search, sample data are compared to
erence data with associated compound information in
brary. Library search has proven useful for compound i
tification with GC× GC–MS (mass spectrometry)[6]. Rule-
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based techniques try to relate a set of rules to each com-
pound of interest. Rules express criteria for compounds
based on various features such as peak retention times
and peak statistics. Welthagen et al. used a rule-based ap-
proach based on GC× GC retention times and MS fragmen-
tation patterns to produce preliminary classification of com-
pound classes in the analysis of airborne particulate matter
[7].

Pattern matching identifies compounds by matching pre-
viously observed patterns with known peaks to newly ob-
served patterns with unidentified peaks[8]. Peak pattern
matching involves two peak patterns: a peak template (or
template peak pattern) and a target pattern (or target peak
pattern). A peak template is a set of annotated peaks.
Annotated peaks have both computed features and anno-
tated information. Computed features, such as peak loca-
tion and volume, are computed from GC× GC images di-
rectly. Annotated information, such as compound name,
are provided externally and are used for identifying and
characterizing the peaks. A target peak pattern is a set of
unannotated peaks that have only computed features. De-
termining annotated information for the target peak pat-
tern is the objective of the compound identification pro-
cess.

Given a peak template and a target peak pattern, peak
pattern matching tries to establish as many correspondences
a arget
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2. Transformation spaces

A transformation is a one-to-one mapping from the Eu-
clidean spaceR2 to itself. A transformation model gives the
type information of a set of transformations. Each transfor-
mation model typically corresponds to a specific parametric
form. A transformation is an instantiation of a transforma-
tion model. For example, the affine transformation model
t(a, b, e, c, d, f ) (denotedAffine-6) has the following para-
metric form:

t(a, b, e, c, d, f )(x, y) =
[

a b

c d

] [
x

y

]
+

[
e

f

]
. (1)

So, for example,t(1.0, 0.0, 1.0, 0.0, 1.0, 1.0) is an affine
transformation (which performs a vertical and horizontal
shift by 1 unit). A transformation space is a set of trans-
formations under a specific transformation model. It en-
codes the transformation model and the parameter ranges.
For example,{t(a, b, e, c, d, f )|a ∈ [al, ar], b ∈ [bl, br], e ∈
[el, er], c ∈ [cl, cr], d ∈ [dl, dr], f ∈ [fl, fr]} is an affine
transformation space. The size of a transformation space is
then determined by the dimensionality of the transformation
model (the number of variables in the model) and the param-
eter ranges.

The transformation model is designed or selected based on
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s possible from peaks in the template to peaks in the t
eak pattern. After peak correspondences are establishe
nnotated information carried by the peaks in the templa
opied into the corresponding peaks in the target peak pa
onsequently, all the matched compounds in the target
attern are identified.

The fundamental difficulty of the matching process co
rom peak pattern distortions, which cause the same
ound peaks to appear at different locations in diffe

mages. Peak pattern matching algorithms seek a tran
ation in some transformation space to remove the

ortions. Two categories of distortions are distinguish
eak pattern variations and uncorrected distortions.
attern variations are caused by differences in con

able data acquisition conditions such as oven temp
ure ramp rate and inlet gas pressure. Uncorrected
ortions are caused by differences in unpredictable a
ition conditions such as column deterioration over t
nd instrument-to-instrument variations in physical par
ters. Uncorrected distortions typically can not be mod
y practical transformations and are left as noise in
atching process. This paper investigates peak pattern
tions related to oven temperature ramp rate and inle
ressure and affine transformations models for the v

ions.
Section2 of this paper introduces the concept of trans

ation spaces and the two affine transformation models
n the experiments. Section3 describes the two GC× GC
ata sets. Section4 presents the experimental resu
ection5.
he assumptions about the variations present among the
atterns. For example, if it is assumed that the variation

ranslational, then the transformation model should be t
ation. However, if after translation, the peak patterns sti
ot match well, a more powerful transformation model m
e used. Designing or selecting the transformation mode
hallenging task. If the model is under-constrained, i.e., i
oo many variables, then many inferred peak correspond
ay be incorrect and searching the transformation spa

omputationally expensive. If the model is over-constrai
t may not be able to remove the variations effectively
stablish the desired correspondences. The effectivene
fficiency of a peak pattern matching technique primarily
ends on the transformation space. A larger transform
pace typically is more powerful for removing distortio
n the other hand, searching a larger space is more
utationally expensive. In practice, it is desirable to sele

ransformation model that is just powerful enough to rem
he existing variations. Given a transformation model, its
ameter ranges can be determined by statistical estimati
raining data[9].

Affine transformation models are used widely for align
eometric patterns (images) due to their simplicity. The
eriments in Section4 assess the effectiveness of two af

ransformation models,Affine-6andAffine-4, for removing
he variations generated by changes in oven temperature
ate and inlet gas pressure.Affine-4is:

(a, e, d, f )(x, y) =
[

a 0
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3. Data sets

Two calibration data sets,Oven-temperatureand Gas-
pressure, were acquired at Zoex Corporation in February
2004. The two data sets contain a variety of chemical com-
pounds, among which 10 compounds are used for evalu-
ation: 1,2,4,5–tetramethylbenzene, 1,2-dibromobenzene, 1-
decanol, 1-undecanol, 2-methylnaphthalene, dodecane, hex-
adecane, hexamethylbenzene, naphthalene, andtetradecane.

The two data sets were generated by the same GC× GC
unit with similar column configurations.

(i) First column: SPB-1, 15 m× 0.25 mm I.D.× 1.0�m
d.f.

(ii) Modulator tube: non-polar fused silica, 1.8 m× 0.1 mm
I.D.

(iii) Second column: Supelcowax-10, 0.1 mm I.D., 0.1�m
d.f.

The length of the second column was 50 cm forOven-
temperatureand 100 cm forGas-pressure. For all runs, the
oven temperature was programmed from 100 to 260◦C and
the sampling rate was 200 Hz. ForOven-temperature, the in-
let gas pressure was fixed to be 20 psi, the modulation period
was 3 s, and the oven temperature ramp rate was varied from
2 to 11◦C/min in increments of 1◦C/min, generating 10 im-
a as
fi nlet
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1

4

e
a s,
e point

F
t

Fig. 2. Retention times vary with inlet gas pressure inGas-pressure.

shows the location (retention times) of a compound peak.
Each sequence of points connected by a line shows the vari-
ation of the peak locations of a specific compound with oven
temperature ramp rate (or inlet gas pressure). For example, in
Fig. 1, the retention times for hexadecane vary for tempera-
ture ramp rate from (805,168) pixels or (40.25 min,0.84 s)
at 2◦C/min to (258,157) pixels or (12.90 min,0.785 s) at
11◦C/min (as faster ramp rates cause shorter retention times).
And, in Fig. 2, the retention times for hexadecane vary for
inlet gas pressure from (424,368) pixels or (28.27 min,1.84 s)
at 17 psi to (386,267) pixels or (25.73 min,1.335 s) at 24 psi
(as higher gas pressures cause shorter retention times).

Over the experimental ranges, the peak retention times
vary nearly linearly with inlet gas pressure inFig. 2, but
the retention times vary non-linearly with oven temperature
ramp rate inFig. 1. However, note that theOven-temperature
dataset has much larger retention time ranges. For example,
forOven-temperature, the ratios of the longest retention times
(for the slowest temperature ramp rate) to the shortest reten-
tion times (for fastest temperature ramp rate) for 1-undecanol
are 2.6 for the first column and 1.7 for the second column. For
Gas-pressure, the retention time ratios of the longest to short-
est retention times for 1-undecanol are just 1.1 and 1.3. Over
a smaller range, such as might be expected from small run-
to-run changes in experimental conditions, the variations for
both areOven-temperatureandGas-pressureare relatively
l

4
r rying
o peaks
o each
i ithin
e com-
p

ts
a p-
ges. ForGas-pressure, the oven temperature ramp rate w
xed to 4◦C/min, the modulation period was 4 s, and the i
as pressure was varied from 17 to 24 psi in incremen
psi, generating eight images.

. Experimental results

The peak patterns ofOven-temperatureandGas-pressur
re illustrated inFigs. 1 and 2, respectively. In the figure
ach line corresponds to a chemical compound. Each

ig. 1. Retention times vary with oven temperature ramp rate inOven-
emperature.
inear.
The two affine transformation models,Affine-6andAffine-

, are evaluated onOven-temperatureandGas-pressurefor
emoving the peak pattern variations generated by va
ven temperature ramp rate and inlet gas pressure. The
f the 10 selected compounds form a peak pattern for

mage in the data sets. For each pair of peak patterns w
ach data set, a least-squares optimal transformation is
uted based on the known peak correspondences.

Assume thatΓ = {Pi}mi=1 is one of the two data se
nd eachPi is a peak pattern inΓ . The least-squares o



168 M. Ni et al. / J. Chromatogr. A 1086 (2005) 165–170

Fig. 3. Transformation parameter distribution ofa for Affine-4(Eq.(2)) and
Oven-temperature.

Fig. 4. Transformation parameter distribution ofa for Affine-4(Eq.(2)) and
Gas-pressure.

timal transformationti,j from peak patternPi = {pi
k}nk=1 to

Pj = {pj
k}nk=1 is given by argmin{dE(t(Pi), Pj)}, wheret(Pi)

denotes the transformed peak pattern ofPi by transformation
t. The Euclidean distancedE(Pi, Pj) betweenPi andPj is

Table 1
Average residual errors (in pixels distance) over all template-target pairs

Compound Oven-temperature Gas-pressure

Affine-6 Affine-4 Affine-6 Affine-4

1,2,4,5–Tetramethylbenzene 3.69 6.16 1.35 1.44
1,2-Dibromobenzene 1.71 3.11 1.19 1.28
1-Decanol 3.65 4.66 1.88 1.98
1-Undecanol 4.40 3.88 2.88 2.84
2-Methylnaphthalene 2.32 5.31 2.63 2.81
Dodecane 1.56 5.40 1.18 1.36
Hexadecane 1.77 5.49 1.33 1.62
Hexamethylbenzene 5.09 7.16 1.54 1.88
Naphthalene 3.78 2.29 2.65 2.77
Tetradecane 2.80 1.80 0.72 0.77

Average 3.08 4.52 1.74 1.88

defined as (1/n)
∑n

k=1 ‖pi
k − p

j
k‖, where‖pi

k − p
j
k‖ is the

Euclidean distance between pointpi
k andp

j
k.

Oven-temperaturecontains 10 peak patterns (images). In
calculating least-squares optimal transformations, each pat-
tern is used as a peak template and all the 10 patterns are used
as target peak patterns, generating a total of 10× 10 = 100
transformations for each of the two affine transformation
models. Similarly,Gas-pressuregenerates 64 transforma-
tions for each transformation model.

The optimal transformation parameters forOven-
temperaturehave larger ranges and more evident non-
linearities than forGas-pressure. For example, the optimal
values of parametera in Eq. (2) for Affine-4 for Oven-
temperatureandGas-pressureare shown inFigs. 3 and 4.
In Fig. 3, a varies from about 0.4 to 4.5, whereasa only
varies from about 0.97 to 1.03 inFig. 4. The specific values
for the other parameters of Eq.(1) and for the parameters of
Eq. (2) are applicable for this data, but not more generally,
and so are not presented.

Table 1reports the average residual errors for the 10 com-
pounds after applying the optimal transformations. Assume
that {pi

k}mi=1 are the peaks generated by a compound in the
sequence of images inΓ . Then the average residual error for
this compound is

(
m
2

)−1 ∑
i�=j ‖ti,j(pi

k) − p
j
k‖.

Fig. 5. Peak template fromOven-temperatureat 4◦C/min ove
rlaid on an image fromOven-temperatureat 6◦C/min.
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Fig. 6. Peak template fromOven-temperatureat 4◦C/min with optimalAffine-4transformation overlaid on an image fromOven-temperatureat 6◦C/min.

Several observations can be made based on the results
shown inTable 1:

(i) The average residual errors are relatively small com-
pared to the peak pattern variations. Roughly speaking,
bothAffine-6andAffine-4effectively removed the peak
pattern variations in the two data sets. This is the most
important conclusion from these experiments. As illus-
trated inFigs. 5 and 6, even the simplerAffine-4transfor-
mation provides an excellent matching between a peak
template and target peak pattern for datasets acquired
with quite different conditions.Fig. 5 shows the peak
template extracted from theOven-temperaturerun at
4◦C/min overlaid on an image fromOven-temperature
at 6◦C/min. The retention times of the peaks in the
template are quite different than the retention times of
the peaks in the image.Fig. 6shows the template peak
points after the least-squares optimalAffine-4transfor-
mation. Template matching with theAffine-4transfor-
mation is effective even between peak patterns acquired
under very different conditions.

Fig. 7. Residual errors after least-squares optimal transformations of the
template fromGas-pressure21 psi for each of the target peak sets.

(ii) FromAffine-6toAffine-4, the average residual error only
decreases by 1.44 pixels forOven-temperatureand by
0.14 pixels forGas-pressure. So, for applications in
which computational time is an important issue,Affine-
4 may be a better choice for peak pattern matching to
avoid the computation related to the two additional pa-
rameters inAffine-6.

(iii) The residual errors forOven-temperatureare larger than
those forGas-pressure, which suggests that affine trans-
formations are less effective in removing the non-linear
pattern variations over the larger ranges related to oven
temperate ramp rate changes.Fig. 7 plots the residual
errors after the least-squares optimal transformations
of the template fromGas-pressure21 psi for each of
the target peak sets. All of the errors are small.Fig. 8
plots the residual errors after the least-squares optimal
transformations of the template fromOven-temperature
6◦C/min for each of the target peak sets. The errors are
relatively small for peak patterns acquired under simi-
lar conditions and for peak patterns acquired at a more

Fig. 8. Residual errors after least-squares optimal transformations of the
template fromOven-temperature6◦C/min for each of the target peak sets.
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rapid oven temperature ramp rate, but the errors are large
for peak patterns acquired at a slower oven ramp rate.
These (and the other) results suggest that it is better to
have templates that are acquired with similar conditions
as the target pattern and that it is better to match a large
template to small target (as inFigs. 5 and 6) rather than
matching a small template (which has less precision) to
a large target. To better remove the non-linear variations
generated by large differences in oven temperature ramp
rate, a more sophisticated transformation model should
be investigated.

5. Conclusion

These results indicate that affine transformations can
largely remove peak pattern variations related to acquisi-
tion conditions for comprehensive two-dimensional gas chro-
matography (GC× GC). Therefore, affine transformations
can be used as the transformation search space for pattern
matching to identify chemical compounds in GC× GC. Al-
though standard retention indices have not yet emerged for
GC× GC, these results suggest that when such standards are
developed, then local affine transformations may be useful
for transforming GC× GC data to generate two-dimensional

retention indices, just as piecewise linear transformations are
used for generating one-dimensional retention indices.
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