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Abstract. Estimation of noise contained within a remote sensing image is essen-
tial in order to counter the effects of noise contamination. The application of
convolution data-masking techniques can effectively portray the influence of noise.
In this paper, we describe the performance of a developed noise-estimation tech-
nique using data masking in the presence of simulated additive and multiplicative
noise. The estimation method employs Laplacian and gradient data masks, and
takes advantage of the correlation properties typical of remote sensing imagery.
The technique is applied to typical textural images that serve to demonstrate its
effectiveness. The algorithm is tested using Landsat Thematic Mapper (TM) and
Shuttle Imaging Radar (SIR-C) imagery. The algorithm compares favourably
with existing noise-estimation techniques under low to moderate noise conditions.

1. Introduction
1.1. Characteristics of noise

Noise in remote sensing imagery degrades the interpretability of the data. Noise
is produced by numerous factors including thermal effects, sensor saturation, quant-
ization errors and transmission errors. Noise added to the data in an optical remote
sensing system is typically independent of the data, and is generally additive in
nature. This type of noise can generally be represented as a normally distributed
(Gaussian), zero-mean random process with a probability density function (pdf )
f
x
(x) given as

f
x
(x)=

1

√2psn
e−x2/2s2

n
(1)

where sn is the standard deviation of the noise process. The effect of an additive
noise process, na , on an image digital number (DN), at the ith and jth pixel can
then be modelled as the summation of the true signal, S, with the noise as shown
by

DN(i, j )=S(i, j )+na (i, j ) (2)
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Radar remote sensing systems, such as a Synthetic Aperture Radar (SAR), are
affected by multiplicative noise in addition to additive noise. Multiplicative (speckle)
noise is produced by the coherent superposition of spatially random multiple scat-
tering sources within the resolution volume of the radar. The scattered waves con-
structively or destructively interfere with each other causing a speckled appearance
to the image. This type of noise can be expressed as a unity-mean normal random
process with pdf given by

f
x
(x)=

1

√2psn
e−(x−1)2/2s2

n
(3)

The effect of multiplicative noise, nm , on the image can be modelled as

DN(i, j )=S(i, j )nm (i, j ) (4)

This type of noise is dependent on the reflected signal magnitude.

1.2. Data masking technique
It is often desired to estimate the noise standard deviation of imagery so that

the image may be suitably filtered to remove the noise. Numerous techniques have
been developed to filter and estimate the standard deviation of noise (Bracho and
Sanderson 1985, Voorhees and Poggio 1987, Lee and Hoppel 1989, Meer et al. 1990,
Olsen 1993, Rank et al. 1999). Spatial filtering of the image can be performed by
convolving the image with a small moving window (mask) which implements a
desired frequency characteristic. Each pixel of the original image is replaced by a
weighted average of the product of the window and the neighbouring pixels. This
process is typically referred to as discrete convolution filtering or data masking
(Gonzalez and Woods 1992). If a 3×3 mask template is given by

z1 z2 z3
z4 z5 z6
z7 z8 z9

(5)

the new pixel values of the image are

DNnew=∑
9

i=1
z
i
DN
i
orig

(6)

where the DNs represent the brightness values of the pixels. The data mask is moved
one pixel at a time with the pixel being filtered directly in the centre of the mask,
and the neighbouring pixels have equation (6) applied sequentially until every pixel
has been filtered.

One method to estimate the noise standard deviation is to first filter the image
to remove the image structure, thereby leaving only the noise. It has been shown
that a Laplacian mask can be useful for image structure suppression (Immerkaer
1996). The Laplacian of a function, f (x, y), is given by

(2 f=∂2 f/∂x2+∂2 f/∂y2 (7)

which can be written in discrete form as (Rosenfeld and Kak 1982)

(2 f¬ f (x+1, y)+f (x−1, y)+f (x, y+1)+f (x, y−1)−4 f (x, y) (8)

The second-order nature of the Laplacian tends to make it sensitive to noise,
while suppressing smoothly varying and uniform regions and enhancing edges. The
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difference of two Laplacians can be used as well for image suppression. One variation
of a 3×3 data mask associated with the difference of two Laplacians can be written
as

1 −2 1

−2 4 −2

1 −2 1

(9)

Using the difference of two Laplacians further increases the sensitivity of the mask
to noise. In remote sensing imagery, there generally exist a high degree of correlation
between a pixel and the surrounding neighbourhood. Laplacian masking essentially
takes the difference of the difference of adjacent pixels in an image. Because of the
correlatedness of the image, the Laplacian image suppresses a majority of the original
image structure, leaving mostly noise remaining.

Because some edge structure information remains after applying the Laplacian
mask shown in equation (9), it is desirable to further filter the image to remove the
edges. First, it is necessary to detect the edges before they can be removed. The
gradient of a function, f (x, y), is

( f=C∂f/∂z∂f/∂yD (10)

which gives the maximum rate of change of f at (x, y). The magnitude of this vector
provides a basis for a data mask in which the edges can be detected. An approxi-
mation to the magnitude of equation (10), using the notation of equation (5), can
be given as (Jensen 1996)

|( f |#| (z3+2z6+z9 )−(z1+2z4+z7 ) |+| (z1+2z2+z3 )−(z7+2z8+z9 ) | (11)

which results in the masks

f
x
=

−1 0 1

−2 0 2

−1 0 1

, f
y
=

1 2 1

0 0 0

−1 −2 −1

(12)

The masks in equation (12) can be simultaneously applied to an image to form the
magnitude operation

|(f |=√ f 2
x
+ f 2
y

(13)

This is commonly referred to as a Sobel edge detector (Jensen 1996). By thresholding
the resulting edge-detected image with a specified value, a binary edge map can be
obtained. An outline of the developed noise standard deviation estimation procedure
can be seen from the flowchart in figure 1.

1.3. Image selection and description
To investigate the above technique for noise standard deviation estimation in

remote sensing images, various datasets were considered. These included simulated
textures, Landsat Thematic Mapper (TM) data, and Shuttle Imaging Radar (SIR-C)
data. In figure 2, the selected textural images are shown. All the textures have pixel
dimensions of 256×256. The horizontal striped image contains alternating, four-
pixel wide, uniform pixels of DN values 64 and 192, respectively. This type of texture
graphically represents agricultural row-crops or orchards. The chequerboard image
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Figure 1. Outline of the noise-estimation procedure.

contains alternating 8×8 blocks, again with pixel DN values of 64 and 192. This is
representative of a series of well laid out agricultural plots. For the random block
image, blocks of pixels ranging in size from 4×4 to 20×20 with DN values 64 and
192 were randomly placed throughout a uniform background of pixel DN value 127
at an approximate 30% density. This situation represents a case where small scattered
plots of vegetation of different sizes exist in an otherwise homogeneous background.
The uniform image is a pure grey image with all pixel DN values set to 127.

For noise estimation from Landsat TM imagery, the three images shown in
figure 3 were selected. The wavelengths and corresponding spectral locations for
the TM sensors are given in table 1. TM Images 1 and 2 are TM bands 7 and 3,
respectively. The scene shown is along the Missouri River near the convergence of
the Nebraska, Iowa and Missouri state borders. Agricultural uses are the predomin-
ant land cover of the scene. TM Image 3 is a TM band 7 image centred on the
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Figure 2. Textural images used for noise estimation.

Figure 3. TM images used for noise estimation.

Table 1. Landsat TM sensor wavelengths and spectral locations.

Band no. Wavelength (mm) Spectral location

1 0.45–0.52 Blue–green
2 0.52–0.60 Green
3 0.63–0.69 Red
4 0.76–0.90 Near IR
5 1.55–1.75 Mid IR
6 10.4–12.5 Thermal IR
7 2.08–2.35 Mid IR
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Black Hills region of South Dakota. The terrain here is much more rugged and
generally forested.

Two type of SIR-C data were also selected for noise estimation as shown in
figure 4. The radar wavelengths and polarizations for the SIR-C are shown in table 2.
The SIR-C images used correspond to L-band and HH polarization amplitude data.
The images show a subset of both single-look complex (SLC) and multiple-look
complex (MLC) amplitude data taken from an agricultural region in the Upper
Peninsula of Michigan. The SIR-C MLC image was generated from the full SLC
image by using 10 multilooks in azimuth and two in the range direction. Both images
are 256×256 in size and can be seen to contain inherent multiplicative noise.

2. Noise simulation results
2.1. Additive noise

To estimate the noise standard deviation of a single image, a data-masking
approach was devised. Following the model of equation (2), normally distributed,
uncorrelated, zero-mean additive noise was generated for several different standard
deviation values. The noise was then added to the textural, TM and SIR-C images
to simulate a noisy image. Any inherent noise in the original TM and SIR-C data
was considered to be part of the data. After applying the noise, the pixel DN values
were rounded to the nearest integer.

An example of the procedure using TM Image 1 is described below. The estima-
tion procedure begins by first applying the Laplacian mask of equation (9) to the
image. An example of the resulting masked image is shown in figure 5 for TM
Image 1. The image in figure 5 contains mostly noise but not all the edge structure
was suppressed. Portions of the river and a road bisecting the eastern portion of the
image are the most prominent remaining features. The presence of the edges in the
Laplacian masked image increases the non-noise variance of the image, which is

Figure 4. SIR-C images used for noise estimation.

Table 2. SIR-C wavelengths and polarizations.

Band Wavelength (cm) Polarization

L 23.5 HH, HV, VV, VH
C 5.8 HH, HV, VV, VH
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Figure 5. Result of applying a Laplacian mask to TM Image 1 with a noise variance of 10.0.

undesirable. To reduce the variance contribution of the edges, an edge map was
required. The Sobel edge-detection masks of equation (12) were applied to the
Laplacian filtered image to determine the edge locations. A user-specified threshold
was then required to form an edge/no-edge binary decision map from the Sobel
filtered image. Pixel values above this threshold were determined to be edges while
those below were noise. The corresponding edge map for TM Image 1 is shown in
figure 6, in which the boundaries of the road and river edges are clearly seen. Using
the edge map, the corresponding pixels were removed from the Laplacian image to
reduce the edge variance contribution. The optimal threshold was established by
specifying a range of thresholds and choosing the one in which the resulting variance
of the Laplacian image, with the corresponding edge map subtracted from it, was a
maximum. A plot of the resulting estimated noise variance as a function of the
selected threshold value is shown in figure 7, from which the optimum threshold was
deduced to be 3.5. Thresholding plots for the other TM and SIR-C images generally
followed a similar type of curve. The threshold corresponding to the maximum
variance was chosen for the final estimation.

The final step in the noise standard deviation estimation process involves finding
the local standard deviations of the edge-removed image. The standard deviation of
9×9 blocks of pixels from the edge-removed Laplacian image were calculated, and
a histogram of the results plotted. Pixels that were mapped as edges are ignored
in calculating the local standard deviations. This results in some local standard
deviations being determined from less than the maximum available set of pixels. The
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Figure 6. Edge map from TM Image 1 with a noise variation of 10.0 and a threshold of 3.5.

histogram of the local standard deviations from TM Image 1, with an added noise
variance of 10.0, is shown in figure 8. Some of the original image structure and edge
information remains even after the filtering and edge removal. By using a histogram
of the standard deviation of small blocks from the image, one can make the final
estimation of the noise standard deviation. Through experimentation, it was dis-
covered that the median value of the histogram supplied the most accurate final
estimate.

The estimated noise standard deviations, ŝn , and the error (difference) between
the actual and estimated value, e:, for several different standard deviations of additive
noise, applied to the textural, TM and SIR-C images, are shown in tables 3–5. The
tables show the average of 20 iterations for each noise standard deviation run. The
results show that the estimation technique performs quite well in most cases.

In the TM imagery, the ruggedness of the landcover in TM Image 3 resulted in a
noiseless standard deviation of 16.022, as opposed to 8.803 for TM Image 1, and 5.732
for TM Image 2. Some of this additional initial image structure standard deviation
remains in the the final image used for the noise estimation, and generally results in
a larger mean error for the estimates. This is particularly the case for small added
noise variances. The textural images contain lower image variance compared to the
TM and SIR-C images, and the error of the noise estimates are correspondingly lower.

The SIR-C imagery resulted in the highest noise standard deviation errors.
Because of the inherent multiplicative noise in the imagery, the initial stand-
ard deviations of the images are 60.48 and 46.62 for the SLC and MLC images,
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Figure 7. Estimated noise variances over a range of thresholds from TM Image 1 with a
noise variance of 10.0. The chosen optimal threshold was 3.5, which maximizes the
estimated noise variance.

respectively. The multiplicative noise tends to dominate the images and renders the
additive noise estimates unreliable. Statistical parameters of the image are altered
by the summation of the inherent and applied additive noise random variables. The
SIR-C MLC estimates are slightly improved from the SLC case due to the smoothing
effect caused by the integration of the full SLC image. The noise-estimation procedure
does not appear to be effective in extracting additive noise estimates in the presence
of multiplicative noise.

For the uniform image, it was found that changing the intensity of the pixel DN
value from 127 to any other value did not change the noise standard deviation
estimate. This suggests that the estimation method is independent of variations in
homogeneous intensity.

2.2. Multiplicative noise
To simulate multiplicative noise, the model of equation (4) was applied to the

images of figures 2–4. After including the multiplicative noise, the pixel DN values
were rounded to the nearest integer, and the logarithms of the DN values were
computed. This transforms the multiplicative noise into an additive noise in the
logarithm domain. The noise estimation procedure described previously was then
applied to the resulting image. For the final estimate in this case, however, the
variance of histogram was subtracted from the median value of the histogram. The
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Figure 8. Histogram of the local standard deviations of 9×9 blocks from TM Image 1 with
a noise variance of 10.0. An optimal Gaussian fit to the histogram is shown for
reference.

Table 3. Additive noise estimation results for simulated textural imagery.

Noise parameter Striped Chequerboard Random blocks Uniform

s2n sn ŝn e: ŝn e: ŝn e: ŝn e:

10.000 3.162 2.618 0.544 2.689 0.465 2.618 0.544 2.510 0.652
5.000 2.236 2.216 0.020 1.883 0.353 2.168 0.068 2.092 0.144
3.000 1.732 1.601 0.131 1.820 −0.088 1.595 0.137 1.573 0.159
2.000 1.414 1.241 0.173 1.314 0.100 1.225 0.189 1.358 0.056
1.000 1.000 0.939 0.061 0.977 0.023 0.943 0.057 0.957 0.043
0.500 0.707 0.701 0.006 0.709 −0.002 0.686 0.021 0.704 0.003

logarithm introduces a compression of the dynamic range of the pixel DN values,
and it was discovered through experimentation that subtracting the variance pro-
vided the best estimate. The estimation results for the textural, TM and SIR-C
images can be seen in tables 6–8. The results show that the method performs well
for the range of multiplicative noises. The highest values of multiplicative noise
contain the largest estimation error. This is a direct result of the window size in
determining the local noise standard deviations, and is discussed in greater detail in
§2.3. Increasing the block size greater than 9×9 in the histogram analysis will reduce
the overall estimation error for high noise values at a cost of increasing the estimation
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Table 4. Additive noise estimation results for TM imagery.

Noise parameter TM Image 1 TM Image 2 TM Image 3

s2n sn ŝn1 e:1 ŝn2 e:2 ŝn3 e:3

10.000 3.162 2.636 0.526 2.517 0.637 2.772 0.390
5.000 2.236 1.938 0.298 1.888 0.348 2.213 0.023
3.000 1.732 1.844 −0.112 1.544 0.188 1.661 0.071
2.000 1.414 1.403 0.011 1.321 0.093 1.601 −0.187
1.000 1.000 1.065 −0.065 1.008 −0.008 1.405 −0.405
0.500 0.707 0.837 −0.130 0.803 −0.096 1.257 −0.550

Table 5. Additive noise estimation results for SIR-C imagery.

Noise parameter SIR-C SLC SIR-C MLC

s2n sn ŝn1 e:1 ŝn2 e:2

10.000 3.162 4.354 −1.192 1.423 1.739
5.000 2.236 0.422 1.814 0.421 1.815
3.000 1.732 0.233 1.499 1.192 0.540
2.000 1.414 0.215 1.199 0.643 0.771
1.000 1.000 1.502 −0.502 1.377 −0.377
0.500 0.707 0.076 0.631 0.863 −0.156

Table 6. Multiplicative noise estimation results for simulated textural imagery.

Noise parameter Striped Chequerboard Random blocks Uniform

s2n sn ŝn1 e:1 ŝn2 e:2 ŝn3 e:3 ŝn4 e:4

0.0001 0.0100 0.0097 0.0003 0.0098 0.0002 0.0094 0.0006 0.0105 −0.0005
0.0010 0.0316 0.0294 0.0022 0.0295 0.0021 0.0295 0.0021 0.0293 0.0023
0.0050 0.0707 0.0657 0.0050 0.0660 0.0047 0.0661 0.0046 0.0657 0.0050
0.0100 0.1000 0.0932 0.0068 0.0972 0.0028 0.0935 0.0065 0.0933 0.0067
0.1000 0.3162 0.2107 0.1055 0.2227 0.0935 0.1913 0.1249 0.1916 0.1246

Table 7. Multiplicative noise estimation results for TM imagery.

Noise parameter TM Image 1 TM Image 2 TM Image 3

s2n sn ŝn1 e:1 ŝn2 e:2 ŝn3 e:3

0.0001 0.0100 0.0209 −0.0109 0.0216 −0.0116 0.0495 −0.0395
0.0010 0.0316 0.0396 −0.0080 0.0387 −0.0071 0.0592 −0.0276
0.0050 0.0707 0.0718 −0.0011 0.0706 0.0001 0.0857 −0.0150
0.0100 0.1000 0.0962 0.0038 0.0968 0.0032 0.1091 −0.0091
0.1000 0.3162 0.1487 0.1675 0.1697 0.1465 0.1780 0.1382

error of the lower noise values. For all the textural images, the estimation errors are
very similar. Although a direct comparison with the additive case is not possible,
the multiplicative results display similar tendencies.

For the SIR-C imagery, the procedure was first used to estimate the inherent
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Table 8. Multiplicative noise estimation results for SIR-C imagery.

Noise parameter SIR-C SLC SIR-C MLC

s2n sn ŝn1 e:1 ŝn2 e:2

0.0001 0.0100 0.339 −0.329 0.160 −0.150
0.0010 0.0316 0.341 −0.309 0.164 −0.132
0.0050 0.0707 0.350 −0.279 0.172 −0.101
0.0100 0.1000 0.350 0.250 0.182 0.082
0.1000 0.3162 0.219 0.097 0.173 0.143

noise standard deviation without applying any additional simulated noise. The
inherent multiplicative noise standard deviation was computed as 0.321 for SLC and
0.159 for MLC cases. The noise estimates after applying simulated noise increase
from the inherent value with increasing applied noise, although it is observed that
the inherent multiplicative noise contribution is still dominant. The inherent multi-
plicative noise standard deviations are similar to Lee (1986). Some effects of the
windowing begin to occur at s2n=0.0100. The results seem to indicate that the
algorithm can sufficiently estimate the inherent speckle noise of a radar image. The
estimates, after applying simulated noise, tend to be biased due to the change in the
pdf of the image by the multiplication of the inherent and applied noise random
variables.

2.3. EVect of histogram window size
For small values of additive noise, the differences between any residual image

structure information and the noise become less defined and tend to result in higher
estimation errors. This is particularly the case with the TM imagery. For all the
images, higher absolute estimation errors also occurred for the largest added noise
values. This was observed to be related to the block size used in producing the
histogram in the previously described estimation procedure. Taking the standard
deviation of block sizes larger than 9×9 in the histogram is required to improve the
estimate for the largest noise values due to the increased variability of the individual
pixels caused by the noise. Use of a larger subset of the image when calculating the
local standard deviations of the noise, increases the number of sample points and
results in a better representation of the standard deviation. The trade-off is that,
while the higher noise estimates are improved, the lower noise estimates are more
error-prone. This occurs since the probability of having pixels with a greater variance
from the mean value (outliers) increases by using a larger subset. This can be directly
seen in tables 9 and 10 using three different window sizes on the uniform textural
image in figure 2, and TM Image 1 in figure 3. For the TM image, the estimation
error for small noise values is much larger for larger window sizes than for the
uniform image which contains an initial noise-free variance of zero.

Modifications to the estimation algorithm to dynamically choose a histogram
window size based on an intermediate noise estimate are currently being explored.

2.4. Comparison with existing methods
The performance of the estimation method developed in this paper was compared

with existing published techniques. In table 11, estimations using these methods are
shown for two methods for the additive noise case. The uniform images in figure 2
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Table 9. Additive noise estimation results as a function of histogram window size for the
uniform textural case.

Noise parameter 9×9 Window 15×15 Window 25×25 Window

s2n sn ŝn e: ŝn e: ŝn e:

10.000 3.162 2.510 0.652 2.827 0.335 2.994 0.168
5.000 2.236 2.092 0.144 2.167 0.069 2.280 −0.044
3.000 1.732 1.573 0.159 1.648 0.084 1.730 0.002
2.000 1.414 1.358 0.056 1.348 0.066 1.413 0.001
1.000 1.000 0.957 0.043 1.013 −0.013 1.027 −0.027
0.500 0.707 0.704 0.003 0.737 −0.030 0.753 −0.046

Table 10. Additive noise estimation results as a function of histogram window size for TM
Image 1.

Noise parameter 9×9 Window 15×15 Window 25×25 Window

s2n sn ŝn e: ŝn e: ŝn e:

10.000 3.162 2.636 0.526 3.186 −0.024 3.140 0.022
5.000 2.236 1.938 0.298 2.275 −0.039 2.272 −0.036
3.000 1.732 1.844 −0.112 1.789 −0.057 1.839 −0.107
2.000 1.414 1.403 0.011 1.422 −0.008 1.469 −0.055
1.000 1.000 1.065 −0.065 1.179 −0.179 1.201 −0.201
0.500 0.707 0.837 −0.130 0.916 −0.209 0.933 −0.226

Table 11. Comparative additive noise estimation results.

Noise
parameter TM Image 1 TM Image 2 TM Image 3 Uniform

s2n sn e:avg e:FNV e: e:avg e:FNV e: e:avg e:FNV e: e:avg e:FNV e:

3.000 1.732 0.896 0.231 0.112 0.485 0.138 0.188 2.395 0.882 0.071 0.077 0.015 0.159
2.000 1.414 1.039 0.278 0.011 0.594 0.169 0.093 2.605 1.000 0.187 0.053 0.021 0.056
1.000 1.000 1/263 0.368 0.065 0.773 0.240 0.008 2.907 1.199 0.405 0.019 0.034 0.043
0.500 0.707 1.456 0.468 0.130 0.937 0.306 0.096 3.143 1.376 0.550 0.014 0.054 0.003

and the TM images in figure 3 were used for the analysis. Simulated normally
distributed additive noise was applied to the images, and the resulting pixel DN
values were rounded to the nearest integer. The mean noise standard deviation of
20 separate estimates for each noise level is shown. The first comparative method is
a moving average using a 9×9 window. This method is widely used due to the ease
with which it can be implemented. The second is the method developed by Immerkaer
(1996). In this method, a Laplacian mask is used to provide a fast method for
additive noise estimation. In table 11, e:avg and e:FNV refer to the errors in noise
standard deviation for the moving average and the Immerkaer models, respectively,
while e: refers to our method. Our described method compares favourably with the
other methods for all of the displayed relatively low noise levels. Without any
adjustments to the window size used to calculate the local noise standard deviations,
the performance of the method tends to decline with a higher amount of noise.
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For noise variances greater than approximately 3.0, our described method tends
to underperform existing techniques. It is suggested that the described method be
used primarily for low to moderate amounts of noise. Adjusting the window size to
span a larger sample space is necessary to achieve accurate estimations of larger
noise standard deviations. If some a priori rough estimate of the amount of noise
present in an image is available, it could be used as a basis for a decision rule in
determining the appropriate window size. The final noise estimate itself could also
be used in an iterative procedure to adjust the window size to produce an improved
estimate if no a priori information is available. These topics are currently being
explored.

3. Conclusions and future work
A technique has been developed in which Laplacian and gradient data masks

are used to estimate the additive and multiplicative noise standard deviations in an
image. The estimation was shown to perform best for low to moderate levels of both
additive and multiplicative noise applied to the imagery. Increasing the window size
to calculate the local standard deviations for the histogram tends to improve the
estimates for higher amounts of noise. Comparisons of the estimation method with
currently existing noise-estimation techniques show favourable results. Further quan-
tification of the relationship between the window size of the local standard deviation
used in the histogram analysis and the initial image variance on the resulting noise
estimates are being explored.
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