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Abstract— The information content in remote sensing im-
agery depends upon various factors such as spatial and radio-
metric resolutions, radiometric contrast between different tar-
get types, and also the final application for which the imagery
has been acquired. Our approach to quantifying image in-
formation content is based upon classification accuracy. As
noise is added to the image, the classification accuracy re-
duces, thereby resulting in loss of “information”. The rela-
tionship between the information content and the noise vari-
ance can be described by a negative exponential model. The
model is seen to be applicable for relating the information
content to noise variance for Landsat TM as well as multi-look
and single-look SIR-C imagery. We observe that the relation-
ship is independent of the type of noise (Gaussian, Rayleigh,
or Gamma). However, the rate of information loss increases
with the correlation distance in the case of spatially correlated
noise. The rate of information loss also increases with the
number of classes chosen for classifying the scene. The model
is useful in deducing allowable signal-to-noise ratios (SNRs)
for different sensor systems.

I. INTRODUCTION

Various textural measures are used to characterize the im-
age information content. Previous work in this area have re-
sulted in three different approaches for quantifying the im-
age information content, primarily based on interpretability,
mutual information, and entropy [1]-[3]. These approaches,
although well-refined, are difficult to apply to all types of re-
mote sensing imagery. In a majority of cases, the raw image
acquired by the sensor is processed using various operations
such as filtering, compression, enhancement, etc. In perform-
ing these operations, the analyst is attempting to maximize the
information content in the image to fulfill the end objective.
In addition to noise added inherently by a sensor, image pro-
cessing techniques corrupt the image with noise. It may seem
obvious that as the image is corrupted with noise , the infor-
mation content reduces, but in remote sensing images there
may not be as great a loss as we might expect. This can be
attributed to the fact that, although the value of a pixel may
change as a result of corruption due to noise, the same pixel
may in most cases, be correctly classified. Thus, an under-
standing of the effects of noise on image quality and inter-
pretability is important from the standpoint of an deducing an

“optimal SNR” depending on the end application.
The following empirical model for information content was

developed.
I = exp f�k(V )ng (1)

In Eq.(1), I is the image information content, V is the vari-
ance of the noise added, k and n are best-fit sensor specific
constants.

The information content thus obtained can be considered
to represent an utility index ranging from 0 to 1. The model
was developed based on the assumption that the reference im-
age or “ground-truth” is the classified image with no noise
added. Maximum achievable information is that value of I
obtained from the “ground-truth” image with the number of
classes remaining constant. Our model formulation is intu-
itively appealing, since for V = 0, I = 1, i.e., all the infor-
mation is preserved, while for increasing values of V , there is
a decrease in the information about the textural aspects of the
scene.

II. PROCEDURE FOR ANALYSIS OF DATA

Both TM and SIR-C imagery were analyzed. The method
of analysis and consisted of the following steps.

(1) Choose the bands in the original image to be used for
generating the classified image, (2) Perform an unsupervised
classification of the chosen bands of the original image, by
using the K-means approach for number of classes (N c =

5; 10; 15), (3) Obtain the “ground-truth” or reference image
from classification using the original bands, for each value
of Nc, (4) For each band, corrupt the image by adding zero
mean noise samples with increasing variance and reclassify
the image, (5) Compare the degraded image with the reference
image to obtain the actual information content Î , (6) Plot Î
obtained versus V , (7) Determine the best-fit constants k and
n, (8) Substitute the values of k and n in the model to generate
a plot of I versus V for values of V ranging from 0 to 2000,
(9) Compare the plots from steps (6) and (7) to determine the
accuracy of the model.

The same procedure is repeated for noise samples with
different distributions and spatially correlated characteristics.
The spatial correlation analysis was performed for circular
correlation lengths of 20; 50; 100. Since we are investigating
the interpretability of classified remote sensing images, we
need to compare the “ground-truth” image with the classified
degraded image to ascertain the latter’s information content.
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The pixel value in the noise corrupted image will change de-
pending upon the value of the noise sample that gets added to
the pixel in the original image. A loss in information would
occur whenever a pixel in the classified degraded image is
misclassified in comparison to the same pixel in the “ground-
truth” image. Hence classification accuracy would be a good
measure of information content, I . A value of I = 1 indicates
that the classified degraded image is identical in interpretabil-
ity to the “ground-truth” image, while I = 0 indicates that the
classified degraded image has no interpretability value for the
scene that it represents.

III. SITE DESCRIPTION

The chosen scene shown in the Figure 1, includes parts of
Nebraska, Iowa and Missouri. This sub-scene was extracted
from Landsat Thematic Mapper (TM) scene acquired on Au-
gust 26, 1991 with central latitude and longitude of 40:6 ÆN

and 95:7ÆW respectively. TM collects radiance data in seven
bands between 0:45 and 12:5 �m. All six bands of data having
a spatial resolution of 30 m, except Band-6 which has a spa-
tial resolution of 120 m, were used for analysis. The image is
predominantly homogeneous with separable classes like soil,
water, lowlands, rock and trees. The small town in the im-
age is Hamburg and the only visible road stretching along is
Highway 29. The image shown in Figure 1 is a false color
composite image obtained using Bands 2, 3, and 4.

Fig. 1. The color composite image using TM Bands 2, 3 and 4, of Hamburg,
Iowa, and surrounding area.

IV. INFORMATION ANALYSIS & MODEL
EFFICIENCY

Six TM bands (Bands 1-5 and 7) were used to obtain the K-
means classified images for each value of V . For each value
of V , Î was calculated following which the best-fit values of
k and n were obtained.

Figures 2 and 3 illustrate the visual effects of adding noise.
It can be easily deduced that as the variance of the noise in-
creases, there is greater misclassification in comparison to the
reference image. When the variance of the noise added is rel-
atively low, there is not much loss of information. This im-
plies that the interpretability of the image decreases with the
increasing noise variance. With Nc = 5, the classified image
with noise variance up to 200 cannot be visually distinguished
from the reference image, as seen from Figures 2(a) and 2(c).

(a) (b)

(c) (d)

Fig. 2. Classified TM images with Nc = 5, and (a) V = 0, (b) V = 20, (c)
V = 200, (d) V = 1000.

(a) (b)

(c) (d)

Fig. 3. Classified TM images with Nc = 10, and (a) V = 0, (b) V = 20,
(c) V = 200, (d) V = 1000.

As the number of classes increases, we can notice that the
rate of fall of information also increases. This results from
the creation of subclasses within the existing classes which
increases the probability of misclassification of a pixel. This
is also visually evident from the Figures 2 and 3. Comparing
classified images for Nc = 5 and Nc = 10, it is visually evi-
dent that for the same noise variance, the classified image for
Nc = 10 has higher degradation. To check whether these ob-
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servations were mathematically consistent, plots relating the
calculated information content, I , and noise variance, V , were
studied for number of classes Nc = f5; 10; 15g.
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Fig. 4. Plots for TM image with Nc = f5; 10; 15g are shown. Modeled
information I is shown as a function of V .

Figure 4 shows the plots for the TM scene, when the K-
Means classifier was used with 5, 10 and 15 classes. On study-
ing the plots for I , it can be seen that for number of classes
Nc equal to 5, the image information content is about 83%
for a noise variance of 1000. Furthermore, as the number of
classes in the scene increases, the rate of information loss also
increases. For higher variances, the information content drops
further. This supports our observations made from Figure 2,
which shows minimal visual degradation for V equal to 1000.

A similar analysis was done for spatially correlated noise.
Figure 5 shows the behavior of information content as a func-
tion of noise variance for different spatial correlation lengths.
With increasing correlation length, there is a faster decay in
information content, but this decay stabilizes after a certain
correlation length.

TABLE 1

k AND n VALUES FOR Nc = f5; 10; 15g, WITH
CORRELATED AND UNCORRELATED NOISE FOR TM

IMAGERY
Correlation TM scene

Length Nc k n

0 5 0.0043 0.5409
0 10 0.0095 0.6229
0 15 0.0365 0.6896

20 10 0.0175 0.6330
50 10 0.0216 0.6134

100 10 0.0240 0.6104

Table 1 shows the values of k and n obtained for the models
of I with different Nc and spatial correlation values. While k
increases with increasing values of Nc, n increases with Nc

for the uncorrelated case but remains almost constant for a
correlation length of 20. Our simulation experiments revealed
that although the rate of information loss and I are functions
of both k and n, the parameter n has a greater influence on the
rate of information loss than k.
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Fig. 5. Plots for TM image with Nc = 10 and correlation length =

f0; 20; 50; 100g are shown. Modeled information I is shown as a func-
tion of V .

V. CONCLUSIONS

This paper presents the effects of noise on information con-
tent of remote sensing imagery. Our formulation relates infor-
mation content to accuracy of pixel classification. Simulations
indicated that the behavior of information content is indepen-
dent of the type of noise distribution. In addition, spatially
correlated noise increases the rate of information decay. It
is seen that to achieve an information content value of 80%,
maximum uncorrelated noise variances are 1482, 159 and 14
for number of classes equal to 5, 10, and 15 respectively. The
model is thus useful in deducing allowable noise variances for
different sensor systems based on the end application.
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