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ABSTRACT

This paper develops a practical method for image resolu-
tion enhancement. The method optimizes the spatially con-
strained Wiener filter for an efficiently parameterized model
of the image autocorrelation based on a Markov random
field (MRF) with affine transformation. The paper presents
a closed-form solution to parameterize the model for an im-
age. The enhancement method is computationally efficient,
because it is formulated as convolution with a small kernel.
Because the kernel is small, it can be optimized efficiently
and only a small portion of the MRF autocorrelation model
is required. Because the autocorrelation model parameters
and optimal filter can be computed quickly, the method can
be optimized locally for adaptive processing. Experimental
results indicate that the new method can balance the error-
budget tradeoff between signal error and aliasing error.

Keywords: Image processing, Interpolation, Wiener Filter,
Markov Process.

1. INTRODUCTION

Image resolution enhancement is the process of defining a
high-resolution (HR) image from a low-resolution (LR) im-
age(s). It is fundamental in many biomedical imaging ap-
plications, such as image registration and scaling. Resolu-
tion enhancement frequently uses image interpolation meth-
ods. Convolution-basedmethods are most typical, including
nearest neighbor, bilinear, bicubic, and B-spline interpola-
tion [1, 2, 3]. These traditional convolution-based meth-
ods fix interpolation kernels without considering statistical
properties of the image, such as image autocorrelation. In
many imaging applications, interpolation accuracy can be
improved by accounting for image statistics.

The Wiener filter minimizes expected mean square er-
ror (MSE) [4] based on the statistical autocorrelation, but it
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is computationally expensive due to its unconstrained spa-
tial support and its derivation requires the entire autocorre-
lation function. It is recognized that typically the optimal
Wiener filter is determined mainly by the local behavior of
the semivariogram of a presumed random field [5] and that
a few centrally located elements can account for most of the
Wiener filter response [6].

This paper proposes a new, practical method for image
resolution enhancement, based on small-kernel interpola-
tion and efficient modeling of local autocorrelation. The
spatially constrained Wiener filter can perform interpolation
nearly as accurately as the spatially unconstrained Wiener
filter, but it is computationally efficient. Moreover, unlike
the unconstrained Wiener filter, which requires estimation
of the entire autocorrelation function, the constrained kernel
can be optimized with only a portion of the autocorrelation
function.

This paper generalizes a Markov random field (MRF)
with affine transformation to model image autocorrelation
and presents a closed-form solution to fit the model for an
image. Two-dimensional MRF models are popular for both
images and geo-statistical quantities [8]. The MRF model
developed in this paper accurately fits the autocorrelation
function of a wide range of images. The model can be lin-
earized with logarithms to derive a closed-form solution for
a best fit to an image. Because the interpolation kernel is
spatially constrained, only small portion of the MRF auto-
correlation model is required and the model parameters can
be computed quickly. The model can be fit locally to pro-
vide the basis for adaptive filtering.

2. FORMULATION

Image resolution enhancement uses a LR image(s) to pro-
duce a HR image(s). In this paper, the new method attempts
to reconstruct a HR image from only one LR image by ef-
ficient interpolation. Let X [m, n], (0 ≤ m ≤ M − 1, 0 ≤
n ≤ N − 1), be a LR image, R be the resolution magnifica-
tion factor (which could be different for m-axis and n-axis),
Y [m, n], (0 ≤ m ≤ MR−1 and 0 ≤ n ≤ NR−1), denote
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a HR image such that X and Y are equal at common points:

X[m, n] = Y [mR, nR]. (1)

In the Fourier frequency domain:

X̂[µ, ν] =
1

R2

R−1X
r1=0

R−1X
r2=0

Ŷ (µ + r1M, ν + r2N), (2)

where X̂ and Ŷ are the discrete Fourier transforms (DFTs)
of X and Y respectively.

Interpolation typically is implemented by convolving the
LR image X with a HR interpolation kernel F [m, n], (0 ≤
m ≤ MR − 1 and 0 ≤ n ≤ NR − 1) as:

Ya[m, n] = F [m − m′, n − n′] ⊗ X
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m′

R

�
,

—
n′

R
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. (3)

In the frequency domain:

Ŷa[µ, ν] = F̂ [µ, ν]X̂ [µ, ν], (4)

where Ŷa and F̂ is the DFTs of the resolution-enhanced im-
age Ya and the interpolation kernel F respectively. This
section formulates the optimal Wiener filter and spatially
constrained Wiener filter for image resolution enhancement
and presents the MRF model for image autocorrelation.

2.1. Optimal Wiener Interpolation Filter

The optimal Wiener filter is derived for minimal MSE linear
interpolation. By Rayleigh’s theorem, the expected MSE
ε2 for interpolation of an ensemble of HR images can be
analyzed in either the spatial or frequency domain:

ε2 = E

(
MR−1X

µ=0

NR−1X
ν=0

˛̨̨
Ŷa[µ, ν] − Ŷ [µ, ν]

˛̨̨2)
. (5)

If co-aliased components of the sampled image are uncor-
related [7], the expected MSE can be expressed in terms of
image power spectra and the interpolation kernel:

ε2 =

MR−1X
µ=0

NR−1X
ν=0

`
Φ̂Y [µ, ν] − 2

R2
�
n

F̂ [µ, ν]
o
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+
1

R2

˛̨̨
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˛̨̨2
Φ̂X [µ, ν]

´
, (6)

where �{.} denotes the real part of a complex number, Φ̂Y

is the HR image power spectrum, and Φ̂X is the LR image
power spectrum (with aliasing). Without loss of generality,
images are normalized so that the mean and variance are
zero and one respectively [5].

Minimizing ε2 with respect to F̂ yields the optimal
Wiener filter for image resolution enhancement:

F̂w[µ, ν] =
Φ̂Y [µ, ν]

Φ̂X [µ, ν]
. (7)

The optimal Wiener filter is a good benchmark for opti-
mal linear image resolution enhancement, but it has uncon-
strained spatial support and requires an estimation of entire
image autocorrelation. It is desirable to derive a kernel that
can be implemented efficiently in the spatial domain and
which requires only a local estimation of the autocorrela-
tion function.

2.2. Spatially Constrained Wiener Filter

Let C, (C ⊆ [0..MR − 1] × [0..NR − 1]) be the discrete
spatial support for the filter on the LR image grid, such that:

Fc[m, n] = 0, if [m, n] /∈ C. (8)

In order to derive the spatially constrained Wiener filter, the
MSE ε2 is rewritten equivalently as:

ε2 =

MR−1X
µ=0

NR−1X
ν=0

 
Φ̂Y [µ, ν]

−�
(

2

MN

X
[m,n]∈C

Fc[m, n]W mµ
MRW nν

NR

)
Φ̂Y [µ, ν]

+

˛̨̨
˛̨ 1

MN

X
[m,n]∈C

Fc[m, n]W mµ
MRW nν

NR

˛̨̨
˛̨
2

Φ̂X [µ, ν]

!
, (9)

where WMR = exp
−j2π

MR and WNR = exp
−j2π

NR .
Minimizing ε2 with respect to each value of Fc requires:

∂ε2
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= 0, ∀[m, n] ∈ C, (10)

which yields:

1

MN

X
[m′,n′]∈C

Fc[m
′, n′]ΦX

»
m − m′

R
,
n − n′

R

–

= ΦY [m, n], ∀[m, n] ∈ C. (11)

The optimal constrained kernel Fc is given by the solution
of the |C| linearly independent equations in the |C| un-
known kernel values in (11).

The spatially constrained Wiener filter Fc requires an
estimate of the image autocorrelation function, but the lim-
ited spatial support C facilitates efficient model fitting. The
image autocorrelation function can be estimated from simi-
lar HR images or fitted to a LR image. The next subsection
develops a MRF model and efficient method for fitting the
model to an image.
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2.3. MRF Model for Estimating Autocorrelation

The autocorrelation function ΦY (τ) of an isotropic MRF
is an appropriate model both for images and geo-statistical
quantities [8]:

ΦY [m, n] = e−
√

m2+n2/d, (12)

where d is the mean-spatial-detail (MSD). MSD can be in-
terpreted as the average size of details in images, i.e., im-
ages with larger objects (relative to the sampling interval)
have larger MSD . This autocorrelation model is isotropic.

A more general autocorrelationmodel without rotational
symmetry can be generated by affine transformation (with-
out translation) of the isotropic MRF . The affine transfor-
mation for scaling and rotation is defined as:»

a11 a12

a21 a22

– »
m′

n′

–
=

»
m
n

–
. (13)

Substituting (13) into (12) and using the substitutions:

dm =
dp

a2
11 + a2

21

, dn =
dp

a2
12 + a2

22

, and

dc =
2(a11a12 + a21a22)

d2
, (14)

gives a more general autocorrelation with three parameters:

ΦY [m, n] = e
−

r
m2

d2
m

+ n2

d2
n

+dcmn
. (15)

For dc = 0, dm and dn can be understood as the mean
spatial details along the m-axis and n-axis respectively. The
parameter dc allows rotational orientation.

2.4. Autocorrelation Estimation Based on MRF

The MRF autocorrelation function in (15) can be fit to the
observed image autocorrelation function by iterative numer-
ical methods, but a closed-form fit is possible if the model
is linearized in terms of its three parameters. First, (15) can
be rewritten as:

ΦY [m, n] = e−
√

am2+bn2+cmn (16)

where a = 1/d2

m, b = 1/d2

n, and c = dc. Let the spatial
support C be limited to [−SR, SR − 1]× [−SR, SR− 1].
In (11), the image autocorrelation is required at the LR pixel
locations |m| < 2S, |n| < 2S. The MSE of the linearized
fit of the model to the observed autocorrelation function of
the LR image Φ̄X is:

J(a, b, c) =
X

|m|,|n]<2S

˛̨
log2 Φ̄X [m, n] − log2 ΦY [mR, nR]

˛̨2
. (17)

Computing the partial derivatives of J with respect to a, b
and c, and solving for the simultaneous equality with zero

yields a model fit:

a =
1

R2(α2 − β2)

X
|m|,|n|<2S

(αm2 − βn2) log2 Φ̄X [m, n]

b =
1

R2(α2 − β2)

X
|m|,|n|<2S

(αn2 − βm2) log2 Φ̄X [m, n]

c =
1

β

X
|m|,|n|<2S

mn log2 Φ̄X [m, n], (18)

where:

α =
256

5
S6

−
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5
S5

+
112

3
S4

−

16

3
S3

−

8

15
S2

+
2

15
S

β =
256

9
S6

−

128

3
S5

+
208

9
S4

−

16

3
S3

+
4

9
S2. (19)

The equations in (18) can be computed globally for a global
filter or locally for an adaptive filter.

3. EXPERIMENTAL RESULTS

The experiment begins with an ideal HR image, a 255×255
MRI pictured in Fig. 1(A). The LR image, created by down-
sampling the ideal HR image to 85×85 (R = 3), is pictured
in Fig. 1(B) (with nearest neighbor interpolation to clearly
illustrate the pixel resolution). Then, the LR image is in-
terpolated back to 255×255 by various resolution enhance-
ment methods and compared to the ideal HR image. To limit
the boundary effects of convolution, the outer edges of all
interpolated images are cleared.

The experiment compares four interpolation methods:
unconstrained Wiener, constrained Wiener, bicubic, and cu-
bic B-spline. The optimal Wiener filter F̂w is derived with
the actual HR image power spectrum (even though it typi-
cally is not known) in order to present the mathematically
optimal result and is applied in the frequency domain. The
constrained Wiener filter Fc is derived with the MRF auto-
correlation model (15) using parameters estimated from the
image (as typically would be necessary) and is constrained
to width S = 2 (the same spatial support as the standard
bicubic). Fig. 2 illustrates: (A) the actual autocorrelation of
the original HR MRI, (B) the MRF autocorrelation model fit
to the LR image, and (C) the model error. As can be seen,
the model error is relatively small, less than 4% of the peak.
The standard bicubic (with parameter value −0.5) and cu-
bic B-spline interpolation are implemented by MATLAB’s
“INTERP2” function.

The interpolated images are shown in Fig. 1(C)–(F). The
unconstrained Wiener filter (based on the HR autocorrela-
tion) has the smallest MSE (ε2 = 0.034) and least alias-
ing artifacts. The other methods have similar MSE , but
the constrained Wiener filter produces smaller aliasing arti-
facts (e.g., ringing). The Wiener filters (including spatially
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A. Actual HR image B. LR Image

C. Optimal Wiener ε2 = 0.034D. Constrained Wiener ε2 = 0.039

E. Bicubic ε2 =0.039 F. Cubic B-spline ε2 = 0.041

Fig. 1. A HR 255×255 MRI downsampled to 85×85, then
interpolated to 255×255 by various algorithms.

constrained and unconstrained) are superior to the cubic B-
spline and bicubic interpolators, because they can balance
the error budget tradeoff between attenuation of signal com-
ponents (if the filter transfer function is less than 1) and pro-
pogation of aliasing (if the filter transfer function is greater
than 0). This balance is important because aliasing typically
is inherent in imaging system designs, especially in biomed-
ical imaging applications where anti-aliasing filters may not
be practically be applied on physical matter [9].

4. CONCLUSIONS

This paper proposes a new method for image resolution en-
hancement, based on optimal constrained linear interpola-
tion and efficient estimation of image autocorrelation. The
spatially constrained Wiener filter with MRF autocorrela-
tion model fit to the image has nearly the interpolation accu-
racy of the optimal Wiener filter, but requires far less com-
putation. The proposed MRF autocorrelation model works
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Fig. 2. The actual autocorrelation of the HR MRI, the MRF
model fit to the LR image, and their difference.

well for a range of images. In experimental results, the
method produces images with smaller artifacts than tradi-
tional convolution-based interpolation methods that do not
account for image statistics. The autocorrelation model pa-
rameters and optimal constrained filter can be computed
quickly, so the method can be optimized locally for adap-
tive processing — a problem for future research.
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[4] J. Ruiz-Alzola, C. Alberola-López, and C. F. Westin, “Adaptive krig-
ing filters for multidimensional signal processing,” Signal Processing,
vol. 85, no. 2, pp. 413–439, 2005.

[5] Michael L. Stein, Interpolation of Spatial Data: Some Theory for
Kriging, Springer-Verlag, New York, NY, 1999.

[6] Stephen E. Reichenbach and Stephen K. Park, “Small convolution
kernels for high-fidelity image restoration,” IEEE Transactions on
Signal Processing, vol. 39, no. 10, pp. 2263–2274, 1991.

[7] Carl L. Fales, Friedrich O. Huck, Judith A. McCormick, and
Stephen K. Park, “Wiener restoration of sampled image data: End-
to-end analysis,” Journal of the Optical Society of America A, vol. 5,
no. 3, pp. 300–314, 1988.

[8] Robert A. Schowengerdt, Remote Sensing: Models and Methods for
Image Processing, Academic Press, Orlando, FL, second edition,
1997.
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