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Abstract

A Source Specific Model for Global Earth Data (SSM-GED) is a loss-
less compression method for large images that captures global redundancy
in the data and achieves a significant improvement over CALIC and DCXT-
BT/CARP, two leading lossless compression schemes. The Global Land 1-Km
Advanced Very High Resolution Radiometer (AVHRR) data, which contains
662 Megabytes (MB) per band, is an example of a large data set that requires
decompression of regions of the data. For this reason, SSM-GED compresses
the AVHRR data as a collection of subwindows. This approach defines the sta-
tistical parameters for the model prior to compression. Unlike universal models
that assume no a priori knowledge of the data, SSM-GED captures global re-
dundancy that exists among all of the subwindows of data. The overlap in
parameters among subwindows of data enables SSM-GED to improve the com-
pression rate by increasing the number of parameters and maintaining a small
model cost for each subwindow of data.

1 Introduction

Lossless compression of large data sets is an interesting research problem that affords
the possibility for efficient compression using a source specific paradigm rather than
the common universal modeling paradigm that is used for small images. The Global
Land 1-Km AVHRR [1] data is a good example of a large data set. This is a multi-
band, remotely sensed data set in which each band contains 694,417,757 samples. The
current plan is to produce, store, and make available for distribution a data set for
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Figure 1: NDVI band of the Global Land 1-Km AVHRR data

10 day periods throughout the year. Because users want to view or analyze regions
of the data, it is necessary that the compression scheme allows for decompression of
subwindows of the data. This is accomplished by dividing each data set into a collec-
tion of subwindows and compressing each subwindow individually. The Normalized
‘Vegetation Differential Index (NDVI) band for June 1-10, 1992 is shown in Figure 1.

Leading lossless compression schemes, that are designed to work well on a va-
riety of small images, are based on the paradigm of universal modeling and coding.
Rissanen and Langdon [9] define a universal compression scheme as one which com-
presses each data set with no a priori knowledge of the actual parameters in the data
and is provably asymptotically optimal for data produced by an information source
that fits the assumptions of the model. Some of the leading lossless compression
methods are “good” schemes based on the principles of universal modeling, but have
not been proven to be asymptotically optimal. Such schemes are referred to in [11]
as intuitive modeling schemes. DCXT-BT/CARP [11] and CALIC {14] are two ex-
amples of “good”, but non-optimal models that assume no ¢ priori knowledge of the
data. DCXT-BT/CARP is an adaptation of theoretical results on universal model-
ing [9, 10}, to gray scale images. CALIC is a context-based scheme that groups con-
texts into equivalence classes and uses them in conjunction with a gradient-adjusted
predictor and error-feedback.

Given enough data, a universal method will achieve an optimal coding rate.
However, if the same data is compressed as a collection of subwindows, the com-
pression rate for universal and intuitive methods is non-optimal if the size of the
subwindow is not large enough for the model to learn the optimal parameters. In
contrast to universal modeling, SSM-GED makes one pass through the large data
set and creates the model parameters before compression of the subwindows. Given
a subwindow size of 65,536 samples, SSM-GED achieves a better compression rate
than CALIC and DCXT-BT/CARP. SSM-GED improves compression by increasing
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the number of parameters. Because there is global redundancy in the data, there
is overlap in the model parameters among subwindows. Also, because one model is
used for all of the subwindows, the model cost is shared over all of the subwindows.
This allows an increase in the number of parameters for the model which results in a
compression rate that is better than leading intuitive lossless compression methods.

This paper first describes the data. This is followed by an explanation of SSM-
GED. Compression results are given for the Normalized Differential Vegetation Index
(NDVI) band of the April and May 1992 data sets. These results are compared with
CALIC and DCXT-BT/CARP.

2 The Global Land 1-Km AVHRR data

The Global Land 1-Km Advanced Very High Resolution Radiometer (AVHRR) data
is an example of a large data set that is being collected, stored, and disseminated
on a regular basis. This is a multiple-band, remotely sensed composite data set,
produced for 10-day periods throughout the year, beginning with 1992 and continuing
indefinitely. The data is currently stored in the Interrupted Goode’s Homolosine map
projection [2] and each data set is nearly 10 gigabytes (GB).

Each data set covers the entire globe and thus the changes in the data set are
temporal in nature and not geographical. The image size is 17,347 lines by 40,031
samples. The data set contains five AVHRR spectral bands stored as 10-bit unsigned
integers in two byte format and five additional bands (NDVI, satellite zenith, solar
zenith, relative azimuth, and date) stored in unsigned byte format.

The number of bytes needed to store a band of this data set in unsigned byte
format is 662 megabytes (MB). Each band stored in unsigned two-byte format requires
1,324 MB. The 10 bands of the data set contain 9.05 GB of data. The current plan is
to produce, store, and make available for distribution a composite data set for 10-day
periods throughout the year on a continuous basis, making compression of the data
a practical necessity.

These data have the potential to give high compression ratios. The two-
byte integer format for the 10-bit spectral bands do not utilize six bits per sample.
There are also three fill or mask conditions in these data. Because these data are for
the study of the world’s land surface, all non-land regions are masked and set to a
constant. In addition, the interrupted areas in the Interrupted Goode’s Homolosine
map projection are set to another constant. The third fill condition is over land where
there are no data, such as in parts of Antarctica. The fill comprises approximately
80.1% of the image area.

Because of the size of this data set, users often want to extract subwindows of
the data. For this reason, the image is compressed so that portions of the image can
be decompressed efficiently. For example, if a user wishes to study a portion of South
America, he is able to enter latitude/longitude coordinates and extract a subwindow
of data that contains the area between the coordinates. It is highly impractical to
decompress all of the data that precede the requested geographical area. Since the
common coding algorithms, Huffman [3] and arithmetic [13], do not allow for random
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access to compressed data, one solution to the subwindow decompression problem is
to divide the image into many subwindows or blocks of data, and compress each block
independently. Provided the blocks are not too small, it is simple and practical to
store a table of offsets for each block of data and retrieve only the necessary blocks
during decompression.

Kess, Steinwand, and Reichenbach [5] give a compression method called Land
& Mask for the Global Land 1-Km AVHRR data in which the data is compressed as
a collection of subwindows. Their compression scheme is uses a hierarchical JPEG-
based method [7] for compression of the land data and a quadtree for compression of
the mask data. SSM-GED gives a 14.9 percent improvement over Land & Mask for
non-hierarchical compression.

3 Model structure for SSM-GED

SSM-GED is a static, context-based tree model created prior to compression of sub-
windows of the data. Initially, SSM-GED makes one pass through all of the data,
collecting conditional probability functions for all of the contexts of size four that
actually occur in the data. SSM-GED then consolidates the tree from the bottom
up by reducing the size of contexts for which the model is overfitted. The reduction
procedure is based on estimates of model cost versus the entropy of the probability
functions.
If the data fits a Markov process of order k, then for each sample z,,

P(I}n ' xn_l,...,xn_k)zP(xn | l’n_l,...,.’bn_k,...,.’lf()). (1)

A context tree for a Markov process, My, of order k on an alphabet S withd = | S |
symbols z € S, is a d-ary tree of depth & in which each leaf node represents one of
the d* possible contexts z = z,..., 2_1. Each leaf node, n, contains a conditional
probability function for the nezt symbols that occur after the context at node n.

Because the data is available prior to compression it is possible for SSM-GED
to empirically create a context tree that represents a Markov process of order k, and
then consolidate the tree from the bottom up to a more general tree structure. The
number of contexts is a combinatorial explosion as the order increases. However,
only a small subset of the possible contexts actually occurs, making it possible to
empirically construct the tree, creating contexts as they occur.

Adaptive context algorithms such as DCXT-BT/CARP [11] and Algorithm
Context [9] decide dynamically how large each context is based on previously seen
data. Other algorithms such as CALIC [14] use a predetermined context size, but
group the contexts into equivalence classes because the amount of data available for
compression only allows enough data to learn the parameters for a small number of
contexts.

Nohre [6] gives an optimal consolidation algorithm for a binary tree. How-
ever, for gray scale images in which the alphabet size is 256, the number of possible
consolidated trees is a combinatorial explosion. Weinberger, Rissanen, and Arps [11]
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approach this problem by transforming the 256-ary gray scale tree into a binary tree.
Although this allows for the use of binary tree consolidation methods, the original
assumption that a binary tree is a good fit for gray scale data may not be correct.
SSM-GED uses a consolidation algorithm for the context tree that achieves a com-
pression rate that is close to the computed fourth order conditional entropy of the
data, which is a lower bound for any compression scheme that uses the same four
context samples [4] to model the data.

There are two phases for creating the model. The first phase is data collection
and the second phase is context consolidation.

3.1 Data Collection

In the data collection phase there are three decisions. The first is how many nearby
samples to include in each context, the second is which nearby samples to include,
and the third decision is how to order the bits that occur in the context.

3.1.1 Determining the Context Size

The decision of how many samples to initially include in each context is decided em-
pirically, based on available computing resources and the number of unique contexts
that actually occur in the data. Contexts were collected for the NDVI band from six
different data sets taken from the months of April and May 1992. Empirically, it was
determined that collecting and manipulating contexts of size four is convenient with
only a few gigabytes of disk space available. Table 1 shows that for the amount of
data tested, the average number of parameters per context of size four is only 5.47.
Thus, with a context size of four, many of the contexts have a limited number of
samples in the context. Based on the rate of decrease in the number of parameters
per context, the average number of parameters for contexts of size five will be between
two and three.

After the tree consolidation is finished, another pass is made through the data
to collect three more context samples for the contexts of size four in the consolidated
tree. These additional contexts are consolidated to context lengths of four through
seven. Although a small estimated compression gain is observed by adding more
contexts, SSM-GED uses a maximum context size of four in order to reduce the
complexity of the model.

3.1.2 Choosing Samples for the context

The second decision is which four samples to collect for each context. Given z at
row ¢ and column j in the NDVI image I, Figure 2 shows the conditional entropy
of sample z based on each of the causal samples, y, whose distance from z is less
than or equal to three. These entropy results were obtained from the land samples
in the April 1-10, 1992 NDVI band. The conditional entropies were gathered only on
sample points in which all fourteen surrounding sample values were land values.



April through May 1992 NDVI Data, Band 6
Context Total Total Conditional Average

Size Samples Contexts Entropy Parameters
(Bits/Sample) | Per Context

4 4,166,058,204 | 8,298,971 0.4735 5.47

3 4,166,058,204 | 260,138 0.5120 13.81

2 4,166,058,204 15,987 0.5212 31.86

1 4,166,058,204 182 0.5964 83.88

Table 1: Conditional entropy based on empirical calculations

Column

-3 j-2 j-1 j j+1 i+2

i-3 3.74

3.64 3.57 3.54] 3.59 3.69

i-1 348 326 3091 330 353

363 | 340 | 2.85 X

Figure 2: Conditional entropy of z given y at neighboring locations

The conditional entropy given in Figure 2 is a measure of the amount of
information that each sample contributes to z. The results show a slight bias in the
horizontal direction for the NDVI data. This is a result of the instrument used in the
image acquisition process. The results given in Figure 2 suggest that on the average,
the best four context samples to choose with respect to each z at location (i, 7) are
the samples at locations (¢,7 — 1), (¢ — 1,5), (i — 1,7 —1),and (i — 1,5 + 1).

For each z = I(4, 7), its context Z(z) is initially chosen as

Z(.’E) = 20, 21,%2,%3 :I(i;j_ l)aI(i_ 1aj)aj(i”‘ 1,5~ 1)aI(i_1aj+1)' (2)

3.2 Chodsing a bit ordering

To determine a good bit ordering for the context samples, four different orderings of
the bits were tested. It was decided from the empirical results that the best ordering
uses the first two samples followed by the four high order bits of context samples
two and three and the four lower order bits of context samples two and three. The
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reasoning for this approach is that the samples in locations (z,7—1) and (i —1, j) give
the most information about the value of & respectively. The conditional entropy of x
with respect to these samples is considerably less than samples 2z, and z;. Samples
2y and z3 are close in the amount of information they contain about sample z. SSM-
GED reorders the bits in Z = z, 21, 22, 23 where z; = 2;9...2;,7 to form the context
Z*(z) as follows:

*
Z (ZI?) == 20,0+ R0,75R1,0 -+ Z1,7,22,0 -+ %2,3%23,0+++ 233,224 +-227%34-+237" (3)

3.3 Consolidating the Contexts

SSM-GED consolidates the context tree by examing each context to determine if it
is most efficient to keep the context or make it smaller by removing the last byte of
the context and moving its frequency counts to the parent context. Given a Markov
tree My, of depth k, the algorithm begins by traversing through the parent nodes at
depth k — 1. Before examining each child node, n;, of a parent node, 7, the algorithm
computes a probability function for the parent node by adding together all of the
child probability functions. Each probability function consists of frequency counts
for the values that appear after the context. ;

The decision to keep or remove the child node, n;, is based on computing
the model cost of the child node plus the number of bits required to code all of the
samples counted in its probability function. The code length plus model cost estimate
is compared to the number of bits required to code all of the samples at n; using the
probability function at the parent node.

For each context, the model cost is computed by precisely stepping through
the model compression algorithm and counting the bits that will be used to store the
context. The model cost is an estimate because a small part of the cost depends upon
the final consolidated tree structure. The model compression algorithm is cogent with
Rissanen’s mean model cost of 0.5mlogn in [8] where m is the number of parameters
and n is the number of samples. However, the model cost for each node is considered
individually according to the model compression algorithm. This gives an estimate
of the model cost for each context that is more precise than the mean model cost.

There are two aspects to compressing the model: compressing the structure
of the tree and compressing each probability function that occurs in the tree. The
tree compression algorithm is initialized with the maximum depth of the tree. It
compresses the nodes in the tree in the order they occur during a breadth first search
that starts with the root of the tree.

Some of the nodes have a probability function associated with the node. A
table of distributions is created and the distributions are stored in the table in the
same order that they appear during the breadth first search of the tree. When the
model is decompressed, each node that is associated with a distribution will point to
the correct distribution.
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April through May 1992 NDVI Data, Band 6

Con- Samples Number | Cond. | Average | Model Total
text of Entropy | Param- Cost Compression
Size Contexts | (Bits/ eters | Estimate | Estimate

Sample) | Per Ctxt | (Bytes) (Bytes)

4 | 3,817,595,987 21,759 0.2148 31.56 | 1,285,178 | 103,790,863
3 238,600,804 9,477 3.5132 49.08 793,769 | 105,575,437
2 109,268,538 6,826 4.0089 59.34 | 664,192 55,419,750
1 590,057 147 4.7508 88.18 19,260 369,662
0 2,818 1 6.2740 137.00 148 2,358
Total | 4,166,058,204 38,210 | 0.503873 2,762,547 | 265,158,070
Table 2: Coding and model cost estimates after consolidation
4 Results

Table 2 gives the results of the consolidation algorithm. These results tell how many
samples and contexts are represented at each level of the tree along with an estimate
of the model cost in bytes. The model cost is estimated at 2,762,547 bytes. The total
actual model cost for SSM-GED is 2,788,021 bytes which includes 2,744,220 bytes plus
43,801 bytes for distributions of border samples. The border sample distributions were
not included in the original model cost estimate. The model cost estimates are very
close to the actual model cost.

Table 3 gives the results from compression of the data as a collection of sub-
windows with 256 rows and 256 columns. The actual compression results are 1.2
MB higher than the compression estimate. This increase is because the border sam-
ples in each subwindow are coded at a slightly higher bit rate than estimated by the
consolidation process. The bit rate of the border samples was not considered in the
compression estimates, making the model applicable to other subwindow sizes.

Table 3 compares the compression results to those obtained with DCXT-
BT/CARP and CALIC using the same subwindows of data. The results show an
overall 7.26% improvement over CALIC and a 10.92% improvement over DCXT-
BT/CARP. Although results are not given, CALIC performs better on the subwin-
dows than it does on the entire image without subwindows.

SSM-GED has an efficient execution time, making it a practical algorithm to
use for compression and decompression of data. It’s memory requirement is propor-
tional to the number of parameters used in the model.

5 Summary

Compression and decompression of the Global Land 1-Km AVHRR data presents a
practical example of the need to develop a new paradigm for compression of large
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Compression Results for Global Land 1-Km AVHRR Data
NDVI Band, April through May 1992
Data Size: 6 bands with 694,417,757 bytes per band
Results include 42,712 bytes for indexing the subwindows
Model cost for SSM-GED is 2,788,021 bytes

NDVI DCXT- Bit CALIC Bit | .SSM-GED Bit
Data BT/CARP | Rate Rate Rate

Kpril 1-10, 1002 | 46,055,687 | 0.5306 | 45,420,578 | 0.5233 | 41,619,611 | 0.4795
April 11-20, 1992 | 45,432,072 | 0.5234 | 44,916,353 | 0.5175 | 41,097,508 | 0.4735
April 21-30, 1992 | 47,062,516 | 0.5422 | 46,487,665 | 0.5356 | 42,698,423 | 0.4919
May 1-10, 1992 48,887,319 | 0.5632 | 48,198,931 | 0.5553 | 44,277,990 | 0.5101
May 11-20, 1992 | 51,890,359 | 0.5978 | 50,153,501 | 0.5778 | 45,711,438 | 0.5266
May 21-30, 1992 | 59,674,604 | 0.6875 | 52,032,792 | 0.5004 | 48,167,085 | 0.5549

Total 299,002,557 | 0.5741 | 287,209,820 | 0.5515 | 263,572,055 | 0.5061
Total With Model 266,360,076 | 0.5114

Table 3: Compression results using subwindows with 256 rows and 256 columns

images. It is a large data set in which a large amount of data is available prior to
compression and small subwindows of the data set are decompressed independently.
A universal modeling scheme would compress each individual subwindow of data
without regard to structure that exists in the larger global set of data and in succeed-
ing data sets. SSM-GED achieves a better compression rate than leading universally
based models because it preprocesses the data and creates statistical parameters that
are used during compression and decompression of the individual subwindows of data.
SSM-GED is able to improve the compression rate by increasing the number of pa-
rameters, but still maintaining a small model cost per subwindow of data.

The results have potential application to other large data sets, such as video,
in which there is a large sampling of the data available prior to compressing individual
frames of the data. Witten, Moffat, and Bell apply the concept of a static model plus
individually decodable units to large document databases in [12].
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