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Two computationally efficient methods for superresolution reconstruction and restoration of mi-
croscanning imaging systems are presented. Microscanning creates multiple low-resolution images
with slightly different sample–scene phase shifts. The digital processing methods developed here
combine the low-resolution images to produce an image with higher pixel resolution (i.e., superreso-
lution) and higher fidelity. The methods implement reconstruction to increase resolution and resto-
ration to improve fidelity in one-pass convolution with a small kernel. One method uses a small-kernel
Wiener filter and the other method uses a parametric cubic convolution filter. Both methods are based
on an end-to-end, continuous–discrete–continuous microscanning imaging system model. Because
the filters are constrained to small spatial kernels they can be efficiently applied by convolution and
are amenable to adaptive processing and to parallel processing. Experimental results with simulated
imaging and with real microscanned images indicate that the small-kernel methods efficiently and
effectively increase resolution and fidelity. © 2006 Optical Society of America
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1. Introduction

Improvements in the resolution and fidelity of digital
imaging systems have substantial value for remote
sensing, military surveillance, and other applications,
especially those for which a large field of view is desir-
able and the distance to objects of interest cannot be
reduced. Advances in optics and sensor technologies
offer one path for increasing the spatial resolution and
fidelity of imaging systems, but such hardware im-
provements can be costly or limited by physical con-
straints or both.1,2 Digital image processing offers an
alternative path for improving image quality.

Digital superresolution reconstruction and restora-
tion methods can substantially increase resolution
and fidelity of an imaging system. Reconstruction
methods increase pixel resolution beyond that of the
physical imaging system by estimating values on a
finer grid or lattice. Restoration methods increase
fidelity beyond that of the physical imaging system by

correcting for acquisition artifacts such as blurring,
aliasing, and noise. Superresolution reconstruction
and restoration can be combined to produce images
with greater resolution and higher fidelity.3

Typically, superresolution methods produce an en-
hanced image from multiple low-resolution images
with either different sample–scene phase or with dif-
ferent blurring functions.4,5 Microscanning is a sys-
tematic approach to acquiring images with slightly
different sample–scene phases; between successive
images the system is shifted slightly, either in a pre-
determined pattern or in a random pattern. As in
most superresolution methods, the methods devel-
oped in this paper presume global sample–scene
phase shifts.

Most superresolution methods can be decomposed
into three tasks: registration, reconstruction, and res-
toration. These tasks can be implemented as separate
steps or in one or two combined steps:

Registration is the process of orienting several im-
ages of a common scene with reference to a single
coordinate system. Registering images to subpixel ac-
curacy is a crucial factor that greatly affects superreso-
lution processing. It may be trivial to register systems
with precisely controlled phase shifting. Popular meth-
ods for subpixel image registration include phase or
cross-correlation registration6,7 and gradient-based
registration.8,9
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Image reconstruction is the process of estimating
image value at arbitrary locations on a spatial contin-
uum from a set of discrete samples. For superresolu-
tion imaging, the aim of reconstruction is to produce an
image with pixels on a high-resolution grid with uni-
form spacing from multiple registered images, which
may have pixels that are irregularly distributed.
Popular methods for reconstruction include nearest-
neighbor interpolation, bilinear interpolation, cubic-
spline interpolation, piecewise cubic convolution,
and cubic optimal maximal-order–minimal-support (o-
Moms) interpolation.10 Kriging, which originated in
the geostatistic community, is a popular method for
interpolating spatial data.11,12

Image restoration is the process of recovering a
more accurate image of a scene by correcting or re-
ducing degradations such as acquisition blurring,
aliasing, and noise.13 Basic methods for image resto-
ration include deconvolution, use of least-squares fil-
ters, and iterative approaches.14

Digital processing for superresolution is an area of
active research.1,15 Approaches based on nonuniform
interpolation are the most intuitive. Computational
efficiency is their major advantage. For example, Alam
et al. proposed a superresolution method for infrared
images, in which a gradient-based method to estimate
shift, a weighted nearest-neighbor approach to align
irregularly displaced low-resolution images to form a
superresolution image, and finally a Wiener filter for
image restoration are used.9 However, nonuniform in-
terpolation approaches do not account for variations in
acquisition conditions for the low-resolution images or
guarantee the optimality of the end-to-end imaging
system.3 Tsai and Huang investigated superresolution
imaging in the frequency domain,16 using the shift
theorem of the Fourier transform and the aliasing re-
lationship between low-resolution images and the
ideal superresolution image. High-frequency compo-
nents are extracted from aliased low-frequency com-
ponents. Kim et al. extended this approach for blurred
and noisy images and developed a weighted recursive
least-squares algorithm.17,18 Unfortunately, Fourier-
domain methods are computationally costly. Super-
resolution methods based on stochastic theories
employ a priori knowledge about a scene and noise.
For example, Shultz and Stevenson19 proposed a
Bayesian restoration with a discontinuity-preserving
prior-image model, and Elad and Feuer5 and Elad and
Hel-Or20 approached superresolution by unifying the
maximum-likelihood, maximum a posteriori, and pro-
jection onto convex set. Stochastic approaches also
may have high computational complexity and subop-
timality for an end-to-end imaging system. Computa-
tionally efficient spatial-domain methods have been
proposed. Nguyen and Milanfar21 proposed efficient
block circulant preconditioners for solving the Tik-
honov regularized superresolution problems by using
the conjugate gradient method, but the method re-
quires perfect shift estimation.22 Farsiu et al. proposed
a robust method that defines the cost function of reg-

ularization by use of the L1 norm minimization.23 The
method is robust for estimation errors of shift and
noise, but the system model accounts only for acquisi-
tion in the end-to-end system, and the proposed fast
solution is iterative. Even though interpolation and
restoration are done simultaneously, computational
costs for real-time applications are a concern with it-
erative methods.

In this paper we investigate superresolution
methods for microscanning imaging systems that
can be implemented efficiently with small convolu-
tion kernels. The approach is based on an end-to-
end continuous–discrete–continuous (CDC) system
model that accounts for the fundamental trade-off
in imaging system design between acquisition blur-
ring related to optics, detectors, and analog circuits
and aliasing owing to sampling. The system model
also accounts for noise associated with unpredict-
able signal and system variations and quantization,
for misregistration of the low-resolution images,
and for the display system. The approach uses one-
pass convolution with small kernels for computa-
tionally efficient reconstruction and restoration.
This approach also is amenable to adaptive process-
ing and to parallel processing with appropriate
hardware support.

The rest of this paper is organized as follows: in
Section 2 we present the CDC system model, introduce
microscanning, and formulate the system’s fidelity. In
Section 3 we derive superresolution reconstruction and
restoration filters, including the optimal Wiener filter,
a spatially constrained Wiener kernel, and a paramet-
ric cubic convolution kernel. In Section 4 we present
experimental results for images from a simulation and
from a real imaging system. In Section 5 we summa-
rize this paper and describe issues for future work.

2. System Model and Problem Formulation

In this section we present the CDC system model,
describe microscanning, and formulate the fidelity of a
microscanning imaging system based on the system
model. The system model is introduced in the spatial
domain of the image, but the problem and fidelity anal-
ysis are formulated in the Fourier frequency domain,
so spatial convolution can be considered pointwise
multiplication of transform coefficients.

A. Continuous–Discrete–Continuous System Model

The superresolution methods developed in this paper
are based on the CDC model pictured in Fig. 1. This
imaging system model is relatively simple, yet it
captures the most significant degradations in typical
imaging systems: linear shift-invariant blurring
characterized by acquisition point-spread function
(PSF) h; aliasing, which is due to sampling a contin-
uous function on a uniform, rectangular lattice ���;
additive system noise e; and display, characterized by
display PSF d.

With this model, a single low-resolution digital im-
age p is defined mathematically as
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p�m, n� ��� s�x, y�h�m � x, n � y�dxdy

� e�m, n�, (1)

where �m, n� are integer pixel indices for digital im-
age p and �x, y� are continuous coordinates for scene
s. For notational convenience, and without loss of
generality, the spatial coordinates are normalized in
units of the sampling interval. In practice, the spatial
extent of the image is finite, but that issue is not
significant for the following analyses.

Restoration and reconstruction can be implemen-
ted in one step by convolution of image p with filter
PSF f to produce a processed image of arbitrary reso-
lution, which can then be displayed. Modeling the dis-
play as a linear shift-invariant process characterized
by display PSF d yields continuous output image r:

r�x, y� �����
m

�
n

p�m, n�f�x� � m, y� � n��
� d�x � x�, y � y��dx�dy�. (2)

B. Microscanning

Microscanning is the process of generating multiple
images from a common scene by shifting either the
scene or the image-acquisition system. The shifting
can be performed in a regular pattern or an irregular
pattern. Figure 2 illustrates the microscanning pro-
cess for a sequence of images pk, k � 0 . . . K � 1, with
an unchanging scene shifted between images, vari-
able blur and noise, and a fixed sampling grid. (Re-
verse shifting of the sampling grid for a fixed scene
produces the same images.) Then microscanned im-
age pk is

pk�m, n� ��� s�x � xk, y � yk�

� hk�m � x, n � y�dxdy � ek�m, n�, (3)

where k is the index for the microscanning image,
�xk, yk� is the relative shift, hk is the acquisition PSF,
and ek is the additive system noise.

Image acquisition (with blurring, sampling, and
noise), digital processing (for registration, reconstruc-
tion, and restoration), and display of microscanned
imaging are analyzed more easily in the Fourier fre-
quency domain, regardless of whether digital image
processing is performed in the spatial domain or in
the frequency domain. In the frequency domain,
the Fourier transform of microscanned image pk [the
transform of Eq. (3)] is

p̂k�u, v� � �
�

�
�

ŝ�u � �, v � ��ĥk�u � �, v � ��
� exp��i2���u � ��xk � �v � ��yk�	
� êk�u, v�, (4)

where a circumflex indicates a Fourier transform. In
Eq. (4) the frequency-domain equivalent for spatial-
domain blurring by convolution in Eq. (3) is pointwise
multiplication of the transform coefficients of the
scene and the PSF. The frequency-domain equivalent
for spatial-domain sampling is the double sum, which
folds the transform coefficients.

The microscanned images must be registered rela-
tive to one another. In the frequency domain the reg-
istered and combined microscanned images are

p̂�u, v� �
1
K �

k�0

K�1

p̂k�u, v�exp�i2��u�xk � �k�

� v�yk � 	k��	

�
1
K �

�
�

�
ŝ�u � �, v � ��

� �
k�0

K�1

ĥk�u � �, v � ��exp�i2��u�k � v	k��
� exp�i2���xk � �yk��

�
1
K �

k�0

K�1

ek�u, v�exp�i2��u�xk � �k�

� v�yk � 	k��	, (5)

Fig. 1. End-to-end model of the digital imaging process.

Fig. 2. Microscanning produces multiple images.
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where ��k, 	k� is the registration error for image pk.
Mathematically, the registered images are combined
by addition. If registration is perfect, then �k � 	k

� 0, and each microscanned image is shifted to its
proper position in the registered image.

In the Fourier frequency domain, reconstruction
and restoration of the scene are products of the
Fourier transform of registered image p̂ and filter
transfer function f̂. Then the display process multi-
plies that result by display transfer function d̂:

r̂�u, v� � p̂�u, v�f̂�u, v�d̂�u, v�. (6)

C. Fidelity Analysis

By Rayleigh’s theorem, the expected mean square
error (MSE) of the CDC imaging system for an en-
semble of scenes can be analyzed in either the spatial
or the frequency domain:


2 � � 
�� �r�x, y� � s�x, y��2 dxdy�
� � 
�� �r̂�u, v� � ŝ�u, v��2 dudv�. (7)

In the following analysis it is assumed that the
power spectra of the scene ensemble and the noise are
known, that the scene and the noise are uncorrelated,
that coaliased components of the sampled scene are
uncorrelated, and that the noise between images is
uncorrelated24:

��ŝ�u, v�ŝ*�u � �, v � ��� � 
̂s�u, v� ��, �� � �0, 0�
0 otherwise

,

��êj�u, v�êk*�u, v�� �
̂ek�u, v� j � k

0 otherwise
,

��ŝ�u � �, v � ��êk*�u, v�� � 0, (8)

where the asterisk denotes complex conjugation, ̂s

is the power spectrum of the scene, and ̂ek
is the

power spectrum of the noise. For convenience, and
without loss of generality, scenes are normalized
such that the mean and the variance are 0 and 1,
respectively.

The expected MSE 
2 for the CDC imaging system
can be expressed in terms of the scene and noise
power spectra, the acquisition transfer function, the
relative shifts and registration errors, the reconstruc-
tion and restoration filter, and the display transfer
function:


2 ��� �̂s�u, v� � f̂�u, v�d̂�u, v�̂s,p*�u, v�

� f̂*�u, v�d̂*�u, v�̂s,p�u, v�
� �f̂�u, v��2�d̂�u, v��2

̂p�u, v��dudv, (9)

where ̂p is the power spectrum of the registered
image and ̂s,p is the cross-power spectrum of the
scene and the registered image:

̂p�u, v� � � ��p̂�u, v��2�

�
1

K2 �
�

�
�

̂s�u � �, v � ��

� ��
k�0

K�1

ĥk�u � �, v � ����exp�i2�

� �u�k � v	k��exp�i2�

� ��xk � �yk��	�2

�
1

K2 �
k�0

K�1

̂ek�u, v�,

̂s,p�u, v� � ��ŝ�u, v�p̂*�u, v��

� ̂s�u, v�
1
K �

k�0

K�1

ĥk*�u, v���exp��i2�

� �u�k � v	k��	. (10)

If the distribution of the registration errors is
known, the expressions for the expected MSEs can be
analyzed with respect to those errors. For example, if
�k and 	k are uniformly distributed in the intervals

�
1

2Wx
,

1
2Wx

�, �
1

2Wy
,

1
2Wy

�,
respectively, then, because

�
�

1
2Wx

1
2Wx �

�
1

2Wy

1
2Wy

exp�i2��u�k � v	k��WxWyd�kd	k

� sinc�u�Wx�sinc�v�Wy�, (11)

the components of the expected MSEs are

̂p�u, v� �
1

K2 sinc2�u�Wx�sinc2�v�Wy�

� �
�

�
�

̂s�u � �, v � ��

� ��
k�0

K�1

ĥk�u � �, v � ��exp�i2���xk

� �yk���2

�
1

K2 �
k�0

K�1

̂ek�u, v�,

̂s,p�u, v� � sinc�u�Wx�sinc�v�Wy�

� ̂s�u, v�
1
K �

k�0

K�1

ĥk*�u, v�. (12)

̂p is subject to relative shifts �xk, yk�. For instance, if
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the number of microscanned images K is 2, ̂p for
relative shifts ��x0, y0� � �0, 0�, �x1, y1� � �0, 0.5�} is
the same as for relative shifts ��x0, y0� � �0.5,
0�, �x1, y1� � �0.5, 0.5�	 but is different from that for
relative shifts ��x0, y0� � �0, 0�, �x1, y1� � �0.5, 0�	 and
for ��x0, y0� � �0, 0.5�, �x1, y1� � �0.5, 0.5�	. Filters de-
rived with respect to ̂p can vary, depending on the
relative shift pattern of microscanned images.

Fidelity25 is a normalized measure of image quality
based on the MSE:

� � 1 �

2

�� ̂s�u, v�dudv

. (13)

The greatest fidelity possible is 1 when the MSE is 0.
In Section 3 we derive superresolution reconstruction
and restoration filters that maximize fidelity � (or
equivalently minimize the MSE, 
2).

3. Superresolution Reconstruction and Restoration

The techniques developed in this section are designed
for performance of reconstruction and restoration.
The methods take as input multiple images that have
been registered and produce a single output image
with high fidelity and superresolution.

A. CDC Wiener Filter

For comparison of performance, it is useful to derive
the optimal CDC Wiener filter.24 Denoting MSE as a
functional of the filter transfer function f̂�u, v� yields


2�f̂� ��� L�u, v, f̂�dudv, (14)

where

L�u, v, f̂� � ̂s�u, v� � f̂�u, v�d̂�u, v�̂s,p�u, v�
� f̂*�u, v�d̂*�u, v�̂s,p*�u, v�
��f̂�u, v��2�d̂�u, v��2

̂p�u, v�. (15)

The optimal filter must satisfy

�L

� f̂
� f̂*�u, v��d̂�u, v��2

̂p�u, v� � d̂�u, v�̂s, p*�u, v�

� 0, (16)

so the optimal filter is

f̂w�u, v� �
̂s, p�u, v�
̂p�u, v�

d̂*�u, v�

�d̂�u, v��2 �
̂s, p̃�u, v�
̂p̃�u, v�

,

(17)

where ̂p̃ and ̂s, p̃ are introduced to incorporate the

effects of the display device on the image (and are used
in the derivations of the small kernels in the following
sections). The CDC Wiener filter cannot be imple-
mented practically by means of spatial convolution be-
cause it is continuous and its support is the full extent
of the image. As described in Subsection 3.B, one can
reduce the computational costs of superresolution re-
construction and restoration by constraining the spa-
tial support of the filter to a small kernel.

B. Small-Kernel Wiener Filter

The derivation of small-kernel Wiener filter fc is con-
ditioned on constraints imposed on its spatial sup-
port. The support of the kernel is a nonempty set of
spatial discrete locations C for which filter values can
be nonzero. Except for locations in the support set,
the filter value is 0:

fc�x, y� � 0, �x, y� � C. (18)

The larger the filter support, the better the perfor-
mance, but small kernels can be highly effective.26

We derive the optimal, spatially constrained filter
by minimizing MSE 
2 with respect to the elements in
C, which mathematically requires that

�
2

�fc�x, y�
� 0, ∀ �x, y� � C. (19)

These constraints can be expressed in a system of
linear equations26:

�
(x�, y�)�C

p̃ �x � x�, y � y��fc�x�, y�� � s,p̃ �x, y�,

∀ �x, y� � C, (20)

where ̂p̃ is the autocorrelation of the displayed im-
age and ̂s, p̃ is the cross correlation of the scene and
the displayed image. The number of equations and
the number of unknowns are both equal to the num-
ber of elements in support set C; i.e., there are |C|
equations in |C| unknowns.

C. Parametric Cubic Convolution

Piecewise cubic convolution is a popular interpola-
tion method for image reconstruction that is tradi-
tionally implemented by separable convolution with
a small one-dimensional kernel consisting of piece-
wise cubic polynomials.27,28 One can generalize this
popular method to two dimensions and reformulate
it by relaxing constraints to perform reconstruction
and restoration in one pass with small-kernel con-
volution.29 With constraints for symmetry, continu-
ity, and smoothness, the two-dimensional kernel
with support ��2, 2� � ��2, 2� has five parameters
�a1, a2, a3, a4, a5	:

fp�x, y� � f0�x, y� � a1 f1�x, y� � a2 f2�x, y�
� a3 f3�x, y� � a4 f4�x, y� � a5 f5�x, y�,

(21)
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where f0–f5 are defined in Appendix A. This kernel,
designated 2D-5PCC-R (to distinguish it from two-
dimensional piecewise cubic interpolation30), is a con-
tinuous function.

One can derive the optimal 2D-5PCC-R kernel fp

for an ensemble of scenes by minimizing the MSE 
2

with respect to the five parameters. Computing the
partial derivatives of 
2 with respect to the parame-
ters and solving for simultaneous equality with zero:

�
2

�a1
�

�
2

�a2
�

�
2

�a3
�

�
2

�a4
�

�
2

�a5
� 0, (22)

yields five equations for the optimal parameter value:

�� f̂i�u, v��Re�̂s, p��u, v�� � f̂0�u, v�̂p̃�u, v�	dudv

��� f̂i�u, v��f̂p�u, v� � f̂0�u, v��̂p̃�u, v�dudv,

i � 1 . . . 5. (23)

Fig. 3. Simulation results.
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4. Experimental Results

In this section we present experimental results for a
simulated imaging system and for real images. In the
simulation the scene is a high-resolution digital im-
age. The simulated scene is blurred, sampled, and
degraded by noise (by digital processing) to produce
simulated microscanned images. These images are
reconstructed and restored by the optimal CDC
Wiener filter, by the small-kernel Wiener filter, by
the 2D-5PCC-R filter, by shift-and-add with Wiener
deconvolution, denoted SA � Wiener,20,31 and by
norm 2 data with L1 regularization (denoted Norm 2
Data).23,31

We implement the superresolution computations
for the optimal Wiener filter in the Fourier frequency
domain by multiplying the filter defined in Eq. (17) by
the Fourier transform of the registered, combined

images defined in Eq. (5). The computations for the
small-kernel Wiener filter and the 2D-5PCC-R filter
are implemented in the spatial domain, for computa-
tional efficiency, by convolution of the registered com-
bined images with the small kernels defined by the
solutions for Eqs. (20) and (23), respectively. Both SA
� Wiener and Norm 2 Data were developed at the
multidimensional Signal Processing Research Group
at the University of California, Santa Cruz.31 Norm 2
Data is an iterative superresolution method, and
these experiments use default parameter values (ex-
cept the deconvolution kernel) of the software.

For simulated imaging, all resultant images are
compared to the original scene. Because the phase
shifts between the simulated scene and the mi-
croscanned images are known, the simulation facili-
tates true quantitative measures of reconstruction
and restoration performance. We also apply the su-
perresolution methods to real images acquired by
panning an infrared camera slowly across a fixed
scene. Because the true scene values are unknown,
quantitative evaluation is not possible. Also, the mi-
croscanning shifts must be estimated, so the results
are affected by registration error. Nonetheless, real
images are useful for qualitatively demonstrating the
effectiveness of the small-kernel methods in practice.

A. Simulation Results

Figure 3(a) illustrates a 256 � 256 digital image
acquired by aerial photography32 that is used as a
simulated scene, and it is therefore the ideal super-
resolution image. The simulated scene is blurred by a
Gaussian low-pass filter to simulate acquisition blur-
ring:

ĥ�u, v� � exp���u2 � v2��, (24)

so the system transfer function at the Nyquist limit
along each axis is ĥ�0.0, 0.5� � ĥ�0.5, 0.0� � 0.779.

Fig. 4. Small reconstruction and restoration kernels for the sim-
ulation experiment.

Fig. 5. Low-resolution infrared image of a four-bar target used for
estimating the acquisition transfer function.

Table 1. Fidelity and Computational Costs of Various Methods

Performance Metric

Computation Method

CDC Wiener Small-Kernel Wiener 2D-5PCC-R o-Moms SA � Wiener Norm 2 Data

Fidelity 0.980 0.975 0.966 0.928 0.966 0.979
Preprocessing time (s) 0.521 0.781 0.940 0.000 0.150 0.000
Filtering time (s) 0.121 0.030 0.030 0.120 0.380 49.121
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After blurring, sixteen 64 � 64 low-resolution images
are created with simulated microscanning at quarter-
pixel intervals along each axis. In each simulated
microscanned image, Gaussian white noise is added
to each pixel such that the blurred signal-to-noise
ratio (BSNR) is 30 dB:

BSNR � 10 log10��p
2��e

2�, (25)

where �p
2 is the variance of the blurred microscanned

images (after blurring and before additive noise) and
�e

2 is the variance of the noise. Figure 3(b) illustrates
one of the microscanned images (reference image p0)
interpolated back to 256 � 256 resolution by nearest-
neighbor interpolation to show the granularity of the
sampling. Figure 3(c) illustrates a higher-quality in-
terpolation obtained with cubic o-Moms.33 Four of the
sixteen microscanned images are used for deriving
the reconstruction and restoration filters and for su-
perresolution processing:

where � and O, respectively, stand for locations (at
quarter-pixel intervals) with and without samples.

The actual scene power spectrum is used to derive
the optimal CDC Wiener filter to benchmark the op-
timal fidelity. The power spectrum for optimizing the
small-kernel Wiener filter and the 2D-5PCC-R filter,
however, is estimated (as typically is required in
practice) using the power-spectrum model of a two-
dimensional isotropic Markov random field (MRF).34

The model can be fitted to the image power spec-
trum30 or interactively parameterized for visual qual-
ity (as is done here). The MRF autocorrelation is

s�x, y� � exp���x2 � y2���, (26)

where � is the mean spatial detail of the scene in pixel
units. The mean spatial detail can be interpreted as
the average size of the details in the scene. In terms
of the Hankel transform,35 the power spectrum of the
isotropic MRF is

̂s�u, v� �
2��2

�1 � 4�2�2�u2 � v2��3�2. (27)

The CDC Wiener filter, the small-kernel Wiener filter
with support limited to ��2, 2� � ��2, 2�, and the
2D-5PCC-R filter were derived for this simulation
based on the isotropic MRF scene model with a mean
spatial detail of 4 pixels. Figure 5 illustrates the
small-kernel Wiener PSF [Fig. 4(a)] and the 2D-

5PCC-R PSF [Fig. 4(b)]. The optimal parameter val-
ues for 2D-5PCC-R are a1 � 74.176, a2 � �95.360,
a3 � 16.804, a4 � �0.967, and a5 � 0.238.

Figure 3(d)–3(h) presents the simulation results for
the superresolution methods. To limit boundary ef-
fects, the borders of all resultant images are cleared.
Visually, the superresolution images produced by all
the restoration and reconstruction filters [Figs. 3(d)–
3(h)] are better than provided by a single frame
[Figs. 3(b) and 3(c)]. For example, the small, lightly
colored rectangle in the upper-left quadrant between
the diagonal runway and the leftmost vertical run-
way are clearer in the superresolution images. The
images produced by the five superresolution methods
are of similar visual quality, but the CDC Wiener
filter appears to produce the best image and the SA �
Wiener filter appears to produce the worst image.
The image produced by the small-kernel Wiener filter
appears to be slightly sharper than the image pro-
duced by the 2D-5PCC-R filter.

Table 1 lists the quantitative fidelity and compu-
tational costs for the various methods with the sim-
ulation. The computational costs were measured in
seconds, averaged over multiple runs by MATLAB

Fig. 6. Superresolution average scan of the bar target.

Fig. 7. Estimated acquisition transfer function ĥx�u�.

� O � O
O O O O
� O � O
O O O O
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6.5 Release 13 program on an IBM R32 (Intel Pen-
tium M 1.8 GHz CPU, 256 MB RAM, MS Windows
XP Professional 2002). The optimal CDC Wiener fil-
ter (which uses the actual scene power spectrum) has
the highest fidelity, as expected mathematically. The

CDC Wiener filter requires preprocessing for comput-
ing the filter (which then can be used to filter multiple
images) and requires forward and inverse Fourier
transforms for application of the filter. As expected,
the image from the cubic o-Moms with a single frame

Fig. 8. Superresolution results for a microscanned infrared system.
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has the lowest fidelity. The iterative method, Norm 2
Data, has a fidelity nearly equal to that of the CDC
Wiener filter but requires 50 iterations and nearly
50 s for Fig. 3(h). Of the three small-kernel filters that
can be efficiently applied by spatial convolution, the
small-kernel Wiener filter has somewhat higher fi-
delity than the 2D-5PCC-R or the SA � Wiener filter.

The visual and quantitative results for the simu-
lation indicate that the small-kernel Wiener filter
and 2D-5PCC-R effectively improve image quality
with efficient spatial-domain processing.

B. Results for Real Images

The superresolution reconstruction and restoration
methods require characterizations of the system, in-
cluding the noise power spectrum and acquisition
transfer function. Noise can be characterized accu-
rately from flat-field calibration images or from re-
gions of uniform background of acquired images. The
transfer function can be estimated to frequencies be-
yond the Nyquist limit by use of a knife-edge tech-
nique with images for various sample–scene phase
shifts.36 Microscanning provides such images.

For this experiment with real images, the acquisi-
tion transfer function of an infrared camera system
was estimated from microscanned images of a four-bar
target. The camera platform was microscanned as low-
resolution images were recorded. Figure 5 illustrates a
small piece of one of the 256 � 256 low-resolution
images from the microscanned sequence. Employing
the superresolution knife-edge technique,36 we ob-
tained and averaged a sequence of 120 low-resolution
images of the bar target with subpixel accuracy (to 0.25
pixel). Figure 6 illustrates the resultant superresolu-
tion horizontal slice across the four-bar targets, super-
imposed upon the model of the bar target scene
estimated by thresholding of the registered slice.

Figure 7 illustrates the modulation transfer func-
tion estimated by the CDC Wiener filter. For this
experiment the two-dimensional acquisition transfer
function was modeled as the separable product of the
one-dimensional estimate:

ĥ�u, v� � ĥx�u�ĥx�v�. (28)

A more accurate estimate of the two-dimensional ac-
quisition transfer function could be made from two or
more slices.

In this experiment, the goal of superresolution recon-
struction and restoration is to generate a 1024 � 1024,
high-fidelity image from multiple microscanned 256
� 256 images. Figure 8(a) illustrates one of a mi-
croscanned sequence of low-resolution images from
the infrared camera system, interpolated to 1024
� 1024 by nearest-neighbor interpolation. The scene
is modeled as a modulation transfer function with a
mean spatial detail equal to 8 pixels. The blurred
signal-to-noise ratio was estimated to be 30 dB.

Figure 9 illustrates the small-kernel Wiener and
cubic convolution reconstruction and restoration ker-
nels, based on these system characterizations. The op-
timal parameter values for 2D-5PCC-R are a1 �

�1.052, a2 � �7.033, a3 � 7.584, a4 � �1.123, and
a5 � 0.137. The small-kernel Wiener PSF provides
more sharpening.

Figure 8(b) illustrates a 1024 � 1024 image recon-
structed from a single image by cubic o-Moms.
Figures 8(c)–8(f) illustrate 1024 � 1024 images recon-
structed and restored with the small-kernel Wiener
filter, 2D-5PCC-R, SA � Wiener, and Norm 2 Data.
These results were generated from just three 256
� 256, microscanned low-resolution images with dif-
ferent relative shifts. The relative shift pattern for the
three images is

To limit boundary effects, the borders of the pro-
cessed images are cleared. Visually the resultant im-
ages in Figs. 8(c), 8(d), and 8(f) from superresolution
reconstruction and restoration are substantially better
than a single image in either Fig. 8(a) or Fig. 8(b).

Fig. 9. Small reconstruction and restoration kernels for the real
image experiment.

� � O �
O O O O
O O O O
O O O O
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Figure 9(e) from the SA � Wiener superresolution
method is blurred. The superresolution image from the
small-kernel Wiener filter is slightly sharper than the
image from 2D-5PCC-R, consistent with the simula-
tion results.

5. Conclusions

Images with superresolution and high fidelity are
required in many imaging applications. In this paper
we have investigated superresolution methods for
microscanning imaging systems that efficiently im-
plement reconstruction and restoration with small
convolution kernels. The approach is based on an
end-to-end system model that accounts for the fun-
damental trade-off in imaging system design between
acquisition and aliasing. The system model also ac-
counts for noise, misregistration of the low-resolution
images, and the display system. Computationally ef-
ficient reconstruction and restoration are achieved by
use of one-pass convolution with small kernels.

We have developed two small convolution kernels
for improved resolution and fidelity: the spatially con-
strained Wiener filter and a parametric cubic convolu-
tion (designated 2D-5PCC-R). Subject to constraints,
both have been optimized with respect to maximum

end-to-end system fidelity. Experimental results for a
simulated imaging system and for real images indicate
the effectiveness of the small-kernel methods for in-
creasing resolution and fidelity. Visually, the super-
resolution images from the small-kernel Wiener filter
are slightly sharper than images from 2D-5PCC-R, but
both small-kernel methods yield significant quantita-
tive and qualitative improvements.

Additional work to develop efficient implementa-
tions of the small-kernel superresolution methods is
required. Even with the efficiency of one-pass resto-
ration and reconstruction by use of small kernels,
superresolution requires significant processing. Each
low-resolution image pixel in the kernel’s region of
support around each superresolution pixel contrib-
utes to the output value. Superresolution processing
of K images, with kernel support of ��S, S� � ��S,
S� pixels and a superresolution increase of R � R,
requires 4KS2R2 floating-point multiplications and
additions. If the distribution of low-resolution pixels
varies with respect to the superresolution pixels,
multiple kernels (each with KS2 weights) should be
used in the computation. These issues make imple-
mentation, especially in hardware, challenging.

Appendix A. Components of the 2D-5PCC-R Cubic Convolution Kernel for Superresolution. Restoration and
Reconstruction [Eq. (21)]

f0�x, y� � �
x2y2 � x2 � y2 � 1 0 � x � 1, 0 � y � 1,

�2xy2 � 2x � 2y2 � 2��x � 2�2 1 � x � 2, 0 � y � 1,

�4xy � 4y � 4x � 4��x � 2�2�y � 2�2 1 � x � 2, 1 � y � 2,

�2x2y � 2y � 2x2 � 2��y � 2�2 0 � x � 1, 1 � y � 2,

f1�x, y� � �
x3y3 � x2y2

�5xy3 � 4xy2 � 4y3 � 3y2��x � 2�2

�9xy � 8y � 8x � 7��x � 2�2�y � 2�2

�5x3y � 4x2y � 4x3 � 3x2��y � 2�2

0 � x � 1, 0 � y � 1,
1 � x � 2, 0 � y � 1,
1 � x � 2, 1 � y � 2,
0 � x � 1, 1 � y � 2,

f2�x, y� � �
x3y2 � 2x2y2 � x2y3

�4xy3 � 3xy2 � 3y3 � 2y2��x � 2�2

�8xy � 7y � 7x � 6��x � 2�2�y � 2�2

�4x3y � 3x2y � 3x3 � 2x2��y � 2�2

0 � x � 1, 0 � y � 1,
1 � x � 2, 0 � y � 1,
1 � x � 2, 1 � y � 2,
0 � x � 1, 1 � y � 2,

f3�x, y� � �
x3 � x2 � y2 � y3

�2xy3 � 2xy2 � x � y2 � y3 � 1��x � 2�2

�4xy � 3x � 3y � 2��x � 2�2�y � 2�2

�2x3y � 2x2y � y � x2 � x3 � 1��y � 2�2

0 � x � 1, 0 � y � 1,
1 � x � 2, 0 � y � 1,
1 � x � 2, 1 � y � 2,
0 � x � 1, 1 � y � 2,

f4�x, y� � �
5x2 � 6x2y2 � 5y2 � 4

�13y2 � 14xy2 � 12x � 11��x � 2�2

�30x � 30y � 32xy � 28��x � 2�2�y � 2�2

�13x2 � 14x2y � 12y � 11��y � 2�2

0 � x � 1, 0 � y � 1,
1 � x � 2, 0 � y � 1,
1 � x � 2, 1 � y � 2,
0 � x � 1, 1 � y � 2,

f5�x, y� � �
4x2 � 3x2y2 � 4y2 � 4

�5y2 � 4xy2 � 8x � 8��x � 2�2

�4x � 4y � 7��x � 2�2�y � 2�2

�5x2 � 4x2y � 8y � 8��y � 2�2

0 � x � 1, 0 � y � 1,
1 � x � 2, 0 � y � 1,
1 � x � 2, 1 � y � 2,
0 � x � 1, 1 � y � 2.
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