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ABSTRACT: As columns age and differ between systems,
retention times for comprehensive two-dimensional gas
chromatography (GCxGC) may vary between runs. To
properly analyze GCxGC chromatograms, it often is desirable
to align the retention times of chromatographic features, such
as analyte peaks, between chromatograms. Previous work by
the authors has shown that global, low-degree polynomial
transformation functions, namely affine, second-degree poly-
nomial, and third-degree polynomial, are effective for aligning
pairs of two-dimensional chromatograms acquired with dual
second columns and detectors (GC×2GC). This work assesses
the experimental performance of these global methods on
more general GCxGC chromatogram pairs and compares their
performance to that of a recent, robust, local alignment algorithm for GCxGC data [Gros et al. Anal. Chem. 2012, 84, 9033].
Measuring performance with the root-mean-square (RMS) residual differences in retention times for matched peaks suggests that
global, low-degree polynomial transformations outperform the local algorithm given a sufficiently large set of alignment points,
and are able to improve misalignment by over 95% based on a lower-bound benchmark of inherent variability. However, with
small sets of alignment points, the local method demonstrated lower error rates (although with greater computational overhead).
For GCxGC chromatogram pairs with only slight initial misalignment, none of the global or local methods performed well. In
some cases with initial misalignment near the inherent variability of the system, these methods worsened alignment, suggesting
that it may be better not to perform alignment in such cases.

This work assesses the performance of global, low-degree
polynomial transformations, namely, affine, second-degree

polynomial, and third-degree polynomial,1 for retention-time
alignment between chromatograms obtained by comprehensive
two-dimensional gas chromatography (GCxGC). It also
compares the performance of these global methods to that of
a recent, robust, local alignment algorithm for GCxGC
chromatograms proposed by Gros et al.2

Because of column aging and other run-to-run system
variations, retention times may vary between GCxGC
chromatograms, even when acquired on the same system. To
mitigate this issue, it may be necessary to perform chromato-
graphic alignment by mapping the retention times of one
chromatogram to the times of another chromatogram.
Alignment methods can be classified as “global or local, i.e.,
whether the geometric differences between chromatograms are
characterized by a single function for the entire chromatogram

or by a combination of many functions for different regions of
the chromatogram”.1

Previous work1 by the authors investigated global, low-degree
polynomial transformation functions for aligning chromato-
gram pairs acquired by comprehensive two-dimensional gas
chromatography with one first-dimension (1D) column and two
parallel second-dimension (2D) columns (GC×2GC).3−6 The
chromatogram pairs aligned in that work came from the same
run with one 2D column to a flame ionization detector (FID)
and another 2D column to a mass spectrometer (MS). These
chromatogram pairs had significant variations in the 2D
retention times. For GC×2GC, low-degree polynomial
mapping functions outperformed affine transformations.
These polynomial functions were able to approach benchmarks
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for retention-time root-mean-square residual error (RMSE)
between chromatograms based on consecutive replicate sample
runs on the same system and detector.
The present work investigates the performance of these

global, low-degree polynomial transformations more generally
to align GCxGC chromatograms, that is: do the retention-times
RMSE between two chromatograms after alignment approach
the noise benchmark? To assess these global methods,
chromatograms from three sets of data are used for alignment.
Each data set varies an important chromatographic parameter:
the date and time, the sample, and the instrument
configuration. This allows the alignment methods to be tested
across a wide range of situations. The first set of chromato-
grams was produced from the same diesel sample run over a
period of about two and a half years. These chromatograms
have moderate initial misalignment due to system and column
variations. The second set of chromatograms was produced
from samples of three different wine vintages that were run in a
period of days. These chromatograms have minimal initial
misalignment from run-to-run system variability. The last set of
chromatograms was produced from a single cocoa sample, but
on systems with two different modulation technologies: flow
and thermal. These chromatograms are extremely misaligned
due to different system configurations, namely, different
modulators, column dimensions, and carrier gas flow.
Additionally, this research compares the performance of

these global functions to that of a high-performing local
alignment algorithm.2 Comparing global and local methods
may show whether retention-time differences between GCxGC
chromatograms are systemic and therefore well-suited to
simple, global functions, or if the differences are too complex
and require more sophisticated local methods for alignment.
For this, a local alignment method developed by Gros et al.2 is
evaluated. Although there are other available local alignment
methods, their work indicates that compared to two other local
alignment methods, their robust algorithm “performs the best
overall in terms of decreased retention time deviations of
matching analytes”.2 Gros et al. compared their method to one
developed by Pierce et al.,7 which was “the first published
alignment algorithm for the correction of shifts resulting from
uncontrollable variations for whole GCxGC chromatograms”,2

and to two-dimensional correlation optimized warping (2-D
COW),8 a multidimensional extension of the original COW
algorithm.9 As evidenced by these results, the method described
by Gros is a high-performing local method.
The experimental methods for testing the various alignment

functions follow previous work.1 The effectiveness of the
alignment methods is measured in terms of the RMSE of the
postalignment retention times for pairs of matched peaks in
two GCxGC chromatograms. The error that the alignment
methods aim to reach is the benchmark RMSE, computed
between pairs of chromatograms from consecutive replicate
sample runs on the same system. This benchmark is based on
the assumption that the retention-times differences between
consecutive replicate sample runs on the same system are
unpredictable random noise. Cross-validation experiments are
used to evaluate all methods: affine, second-degree polynomial,
third-degree polynomial, and the local algorithm from Gros et
al. To get an unbiased indicator of performance, these tests use
one set of matched peak-pairs to fit (or train) the alignment
functions, and a different, disjoint set to measure (or test) the
postalignment RMSE.

■ EXPERIMENTAL SECTION

Samples. Three different sample types are used to assess
performance of the data alignment algorithms. The first is a
single distillate diesel sample. The sample was run four different
times on the same system over a period of about two and a half
years to produce a set of GCxGC chromatograms. Each of
these runs were far apart in time, so the chromatograms have
moderate misalignments from column differences, such as aging
and replacement. The lower-bound benchmark RMSE was
determined from a set of four consecutive replicate runs with
the same diesel sample on the same system.
The second set of chromatograms came from samples of

three different wine vintages. All samples were run within a
period of 3 days as part of a study at the Universidade Federal
do Rio Grande do Sul related to the characterization of
commercial Merlot wines from the Brazilian Campanha region.
All samples were from the same Merlot brand, but from
different years: 2011, 2012, and 2013. Each sample was run on
the system twice consecutively, which provides the replicate
runs for determining the alignment benchmark. Because all
runs were within a short time period on the same system, the
misalignments are relatively small.
The third set of chromatograms came from a single

Trinitario cocoa nib sample from Ecuador. The sample was
run as part of a study at the Universita ̀ degli Studi di Torino in
Turin, Italy, that focuses on the sensomic characterization of
cocoa samples from different botanical and geographical
origins. Two chromatograms were first acquired on the system
using a reverse-inject differential flow modulator.10 The same
sample was again run about four months later to acquire three
more chromatograms, but this time with a loop-type thermal
modulator. The flow-modulated GCxGC runs were preliminary
experiments under unoptimized conditions, making alignment
even more difficult. The sample was run consecutively on each
modulation platform, so there are replicate runs to determine
the alignment benchmarks. Varying the modulation technolo-
gies between these sets of runs results in chromatograms with
extreme misalignment, much larger than that seen in the diesel
chromatograms, particularly in the 1D.

Instrumentation. For analysis of the diesel sample, all run
conditions were in accordance with UOP 990,11 with a
modulation period of 8 s and sampling with a flame ionization
detector (FID) at 200 Hz, on a LECO GCxGC-FID system
(LECO Corp., St. Joseph, MI) with Agilent 6890 GC (Agilent
Technologies, Little Falls, DE).
For analysis of the volatile fraction of wine samples,

headspace solid-phase microextraction (HS-SPME) was
performed with one mL of wine, 0.3 g of sodium chloride at
55 °C (±0.9), and a DVB/CAR/PDMS fiber (Supelco,
Bellefonte, PA) in 20 mL headspace screw-capped glass
vials.12 The system was a LECO GCxGC with an Agilent
6890N and time-of-flight mass spectrometric detector
(TOFMS). The modulation cycle was 7 s with spectra from
45 to 450 m/z acquired at about 100 Hz.
For analysis of the cocoa nib, the GCxGC experimental

conditions were different for each modulation technology. The
GC×2GC-MS/FID runs with reverse-inject differential flow
modulation used an Agilent 7890B GC unit coupled to an
Agilent 5977A fast quadrupole MS detector operating in EI
mode at 70 eV, and a fast FID. The modulation cycle was 3 s
with spectra from 40 to 240 m/z acquired at about 35 Hz. The
GCxGC-MS runs with thermal modulation used an Agilent
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6890 unit with a Zoex loop-type modulator (Zoex Corp.,
Lincoln, NE) coupled to an Agilent 5975C MS detector
operating in EI mode at 70 eV. The modulation cycle was 3 s
with spectra from 40 to 240 m/z acquired at about 29 Hz.
Additional details of the instrumental conditions for all

systems are included in the Supporting Information.
Data Preprocessing. Data preprocessing was performed

using GC Image GCxGC Edition Software (R2.6 alpha build)
from GC Image, LLC (Lincoln, NE).13

For the diesel chromatograms, phase-shifting, baseline
correction, and peak detection were performed.14 Automated
bidirectional peak matching created initial lists of correspond-
ing peaks between all pairs of chromatograms. The lists were
edited manually to increase the number and temporal coverage
and to ensure correct correspondences, resulting in a total of
112 peaks that were matched across all eight chromatograms
(four runs well separated in time and four consecutive replicate
runs). Because manual verification was being performed, loose
matching criteria were used for creating the initial list to
increase the number of prospective peak-pairs and minimize
bias. After manual editing, the peaks are well-distributed across
the retention times of the chromatograms (Figure S11).
For the wine chromatograms, baseline correction and peak

detection were performed. Using the same process as for the
diesel sample, a total of 78 peaks were selected and confirmed
by MS to correspond across all six chromatograms (Figure
S12).
Chromatograms acquired from the cocoa sample yielded

fewer corresponding peak-pairs using these peak matching
techniques. After baseline correction and peak detection, 33
peaks were confirmed by MS across all five chromatograms
(Figures S13 and S14).
Evaluation Metric. The primary evaluation metric is the

RMSE of the postalignment retention times across the peak
sets for pairs of chromatograms. This metric is described in
detail in previous work.1 A blob’s retention times indicate its
data point with the maximal signal value, that is, its apex.
Transformation Models. The first evaluation is with no

alignment function applied, that is, the initial misalignment.
The transformation functions of the affine, second-degree
polynomial, and third-degree polynomial global alignment
methods are given in previous work.1 Each global function
requires a minimum number of alignment peak-pairs to
determine the parameters: three peak-pairs for affine, six
peak-pairs for second-degree polynomial, and ten peak-pairs for
third-degree polynomial. For numbers of peak-pairs larger than
the minimum number, the optimal parameters minimize the
RMSE of fitted pairs.
The local alignment method of Gros et al.2 also uses

corresponding peak-pairs for alignment. These peak-pairs are
referred to as alignment points. This algorithm guarantees that
these points are perfectly aligned in the final chromatogram
produced. Based on these alignment points, displacements for
the rest of the data are estimated in both dimensions. In the 1D,
displacements are linearly interpolated between alignment
points. In the 2D, displacements are estimated using Sibson
natural-neighbor interpolation,15 based on Voronoi diagrams.
For interpolation in the 2D, the algorithm requires the typical
peak width (tpw) for both dimensions. This is the number of
data-points that make up approximately two standard
deviations of a peak.16 In the diesel experiments, tpws of 2
and 40 data-points (0.267 min and 0.2 s) were used for the 1D
and 2D, respectively. For the wine samples, tpws of 2 and 17

(0.23 min and 0.17 s) data-points were used. For the cocoa
samples, tpws of 5 (0.25 min) and 6 data-points (0.17 s for flow
modulation, 0.21 s for thermal) were used. These tpws were
roughly determined by visual examination of typical peaks near
the center of the chromatogram. This process follows the
documentation to users from Gros et al.16 The final step of the
algorithm reinterpolates the signal values for all pixels and
applies a deformation correction. This part of the algorithm was
not executed during the cross-validation testing in this paper,
because the focus here is on comparing the retention-times
alignments with those of the global methods and not on the
separate step of intensity interpolation.

Evaluation Methodology. The evaluation methodology
follows previous work.1 Within the alignment points used, the
transformations fit the noise as well as the alignment peaks,
which is a problem of overfitting. To get an unbiased estimate
of a method’s performance, a cross-validation technique is
employed. The set of corresponding peak-pairs is partitioned
into two disjoint sets: a training and testing set. The training set
is used as the alignment points for fitting the methods, and the
testing set is used to measure their performance. Measuring the
error across testing-set peak-pairs after alignment is a good
unbiased indicator of the method’s performance, as the
transformation was not fit to these peak-pairs and their
inherent noise.
The experiments are run for every training set size from 3

peak-pairs (the minimum size for affine transformations) to all
of the matched peak-pairs, at which point the test set is null.
For each training set size, 100 trials are run. The training and
testing sets are randomly generated at each trial (and are
disjoint complements of the peak-pairs set). Because of the
random selection of peak-pairs, the training set may not be
well-distributed across the entire chromatogram. The alignment
is also done both forward and backward, i.e., peaks from
chromatogram 1 are fit to those in chromatogram 2 and vice
versa. The reported RMSE for each training set size is the
average RMSE over all 200 trials (with 100 in each direction).

Performance Benchmarks. The global alignment meth-
ods are assessed in two ways. First, does the method approach
the benchmark error set by the consecutive replicate runs?
Second, does the method perform better than the local
alignment algorithm? For the first question, the misalignment
between consecutive replicate runs can be used as a benchmark
indicating the lower bound of alignment performance due to
systemic noise. Any misalignment between two replicate
chromatograms acquired one after another with the same
sample on the same system can be considered the level of
random retention-times noise inherent to the system itself.
The degree to which an alignment method approaches the

benchmark is measured by its percent improvement Ip. For a
specific alignment method, let S be the set of postalignment
average RMSEs for every testing set size and min{s}, s ∈ S, be
the best average RMSE achieved for any testing set size. Then
that method’s percent improvement is defined as

=
−

−
×∈I

m s

m m

min{ }
100s S

p

0

0 b (1)

where m0 is the average testing set RMSE over all trials with no
alignment function applied (i.e., the initial misalignment) and
mb is the benchmark RMSE from consecutive replicate runs.
Comparing global performance to the local method is done

in multiple ways. If the alignment methods have a RMSE less
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than that of the local method, they can be said to perform
better. The computational overhead (i.e., run-time) of an
alignment algorithm is another useful comparison. It is also
important to take into consideration how many peak-pairs are
required in order to achieve (or nearly achieve) the method’s
maximal performance. It may be desired to have a method that
can align two chromatograms relatively well using fewer
alignment points, rather than one that can achieve a slightly
smaller RMSE but which requires more alignment points.
Ideally, the methods should be compared on their perform-

ance for specific data sets of interest. For generality, the data
sets used here offer a wide range of initial misalignment, from
negligible to severely misaligned, so the alignment performance
can be considered relative to the initial misalignment.
Additionally, each data set varies a different GCxGC chromato-
gram acquisition parameter. The first varies the analysis over
time, the second varies the sample, and the third varies the
GCxGC instrument with different modulation platforms.
Execution Methodology. Experiments were run on the

Crane cluster of the Holland Computing Center17 located on
the University of Nebraska-Lincoln campus. The cluster has a
total of 452 nodes with 64 GB of RAM each. In each of the 16
cores within a single node, there are two Intel Xeon E5-2670
2.60 GHz processors.
All alignment methods were implemented in MATLAB. Part

of the MATLAB implementation of the local algorithm from
Gros et al. was parallelized in order to run much faster across
16 cores on the Crane cluster. Even with the speed boost, and
without executing the resampling portion of the algorithm, the
local method was more computationally expensive than the
simpler global functions.
For the case of 105 peak-pairs for aligning two 1199 × 1600

diesel chromatograms, fitting the second-degree polynomial to
the peak-pairs and computing the transformation for every data
point required 0.1906 s. By comparison, the local algorithm
required 8.5971 s to compute the displacements for every data
point. Of course, the computation-time difference is smaller if
fewer retention times must be transformed (e.g., as would be
required to transform a template). However, as these timing
results illustrate, the global function requires significantly less
computation for larger alignment problems.

■ RESULTS AND DISCUSSION
Time-Varied Data Results. Chromatograms acquired from

the diesel sample were used to test the alignment methods on
time-varied data. Tests were performed on chromatograms
from four consecutive replicate runs on the same diesel sample
to establish a benchmark for the alignment methods. These
four chromatograms are labeled runs 17, 18, 19, and 20. The
initial misalignment was recorded for consecutive runs: 17 and
18, 18 and 19, and 19 and 20. The results from the cross-
validation benchmark tests between runs 18 and 19 are shown
in Figure 1. These graphs show the retention-time RMSE for
the testing set of peak-pairs for each alignment method as a
function of the training-set size, that is, the number of
alignment points used. Each alignment method is represented
by a different colored line. The figures for the training sets and
additional replicate results can be found in the Supporting
Information (Figure S1).
In both chromatographic dimensions, as the training set size

increases, the RMSE of the global functions generally decreases
for the testing sets. This makes sense because larger training
sets yield better estimates of the global misalignment (because

overfitting to noise is reduced), producing the decrease seen in
testing-set error.
The RMSE of consecutive replicate runs, which provides our

benchmark error, is the blue line in Figure 1. The 1D graph
(Figure 1a) shows that none of the alignment algorithms are
able to improve upon this initial misalignment. In the 2D
(Figure 1b), there is only a small improvement of less than 0.01
s. This supports the claim that the initial misalignment of
consecutive replicate runs indicates the inherent lower-bound
limits on any alignment algorithm.
In the 1D, with no alignment function applied, the RMSE

averages 0.0375 min, which is the maximum initial misalign-
ment seen in the 1D across the three replicate tests. In the 2D,
the initial misalignment is about 0.0131 s. Across all three pairs
of replicate runs, the average misalignment in the 1D is 0.0243
min which is less than the modulator sampling noise level of
0.038 min. [The distillate analyses have a modulation cycle
(PM) of 8 s or PM = 0.13 min. The standard deviation for
random uniformly distributed residuals with respect to a single
modulation interval is 12−1/2 × PM, which is about 0.038 min
for these data. This is the RMS retention-time noise level from
the sampling effect of modulation and has implications for the
benchmark RMSE in the 1D.] The peaks in the diesel sample
chromatograms are narrow in the 1D, with a tpw of only about
2 modulations, which affects the choice of an alignment
benchmark. An alignment method cannot be expected to
achieve an RMSE better than the sampling noise, so 0.038 min
is the benchmark value in the 1D. Across all three pairs of
replicate runs, the average misalignment in the 2D is 0.0125 s.
This value is the 2D benchmark RMSE for the alignment
methods being tested.
Next, the cross-validation tests were run on every pairwise

combination of four chromatograms acquired over 2.5 years.
Because of column aging, these chromatograms exhibit
moderate misalignments. The results from one of these
pairwise tests are shown in Figure 2. The names of the
samples (January 20, 2011, and June 14, 2013) indicate the
dates on which they were run; so, the chromatograms aligned
in this figure were acquired about 2.5 years apart. Before any
alignment is applied (the blue line in Figure 2), the RMSE is
about 0.76 min in the 1D and 0.24 s in the 2D. The “None”
function is excluded from plot (Figure 2a) to focus on
performance of the alignment models.
The testing-set plots in Figure 2 show how the trans-

formations affect peak-pairs that were not used for fitting, for an
unbiased evaluation. In both dimensions, significant improve-
ments are seen after applying both the global and local methods
to the alignment of chromatograms 012011 and 061413. In the
1D, the third-degree polynomial transformation achieves the
smallest RMSE of 0.0641 min compared to the largest RMSE of

Figure 1. Cross-validation retention-time RMSE results as a function
of training set size for consecutive replicate runs of a diesel sample.
The RMSE is shown for (a) 1D with the testing set and (b) 2D with
the testing set.
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0.0871 min for the local algorithm. The (best-performing)
third-degree polynomial (0.0641 min) has a percent improve-
ment of Ip = 96.4% using the benchmark of 0.038 min. Though
it has the largest RMSE of the methods tested, resulting in a
percent improvement of Ip = 93.2%, Gros’ algorithm only
requires about 10 peak-pairs to approach its peak performance.
This is a smaller training-set size than required for the global
methods to reach peak performance.
In the 2D, the third-degree polynomial also achieves the best

peak performance, with a minimum RMSE of 0.017 s (Ip =
98%), nearing the 0.0125 s benchmark, compared to 0.0346 s
(Ip = 90.3%) for the local method. In the 2D, Gros’ algorithm
takes much longer to reach its peak performance at around 85
peak-pairs, but it has a lower RMSE than the global functions
when the training set size is small.
Training-set data and graphs similar to Figure 2 for all other

cross-validation experiments can be found in the Supporting
Information (Figure S4). The patterns discussed with Figure 2
are consistent across most of the experiments. Table 1
summarizes the results from all six cross-validation experiments
run with the nonreplicate diesel chromatograms. Under “None”
is the average initial misalignment (m0 in eq 1). For each
experiment, the minimum average testing set RMSE (min{s},s
∈ S, in eq 1) for each alignment method is shown. The bottom
two rows present the averages for the minimum RMSE and
percent improvement. Note that the top-performing method in
terms of average minimum RMSE may not be the best in terms
of average percent improvement (and vice versa), because the
average percent improvement depends heavily on initial
misalignment. Even if a method averages the smallest RMSE,
it may not have the smallest RMSE in cases that the

misalignment is very small, which negatively affects its average
percent improvement.
On average, all three global alignment methods are able to

reach a better peak performance and percent improvement than
the local algorithm in both dimensions. The third-degree
polynomial averages a 9.3% greater percent improvement than
Gros’ algorithm in the 1D, and 7.6% greater in the 2D. In the
1D, the average percent improvement for all alignment methods
is noticeably worse than the experiment discussed in Figure 2.
For chromatogram pairs with a less significant initial misalign-
ment in the 1D (012011−090912, 012011−100412, and
090912−100412 in Table 1), the alignment methods tend to
reach similar minimum RMSE values to the experiments with
larger initial misalignments, causing the lower average percent
improvements overall. For experiments with large misalign-
ments (>0.7 min), like in Figure 2, the third-degree polynomial
is consistently able to achieve a percent improvement over 95%.
In the 2D, both the second and third-degree polynomials
average a percent improvement over 93% for all experiments.
There is a clear trade-off in terms of the number of alignment

points used and the minimum RMSE reached for both the local
and global methods. If using a very small number of alignment
points (∼5), it may be preferable to use Gros’ algorithm
because it starts out at a much lower error than any of the
global methods. Though the local method performs relatively
well with a small number of alignment points, it is
outperformed in both dimensions by the global methods
when a larger numbers of alignment points are available. The
number of peak-pairs at which the global methods overtake the
local method varies between algorithms, and is larger in the 1D
than the 2D. With just under 10 points or more, the affine
transformation becomes a better choice, attaining a clear
performance gain in both dimensions, on average. With around
30 pairs or more, the second-degree polynomial performance
overtakes the local method. The third-degree polynomial
improves upon the local method when about 50 alignment
points or more are available. Though the third-degree
polynomial is also able to outperform the second-degree
(with ∼55 points), the performance gain is small. In terms of
percent improvement, the second-degree actually averages
better than the third-degree in the 1D, and is within 1% in the
2D. Therefore, for computational simplicity and because fewer
alignment points are required, it may be preferable to use the
second-degree function. This result is similar to that seen in
previous work for GC×2GC.1

Figure 2. Cross-validation retention-time RMSE results as a function
of training set size for chromatograms produced from the same diesel
sample about 2.5 years apart. RMSE is shown for (a) 1D with the
testing set and (b) 2D with the testing set. The names of the samples
correspond to the acquisition date (January 20, 2011, and June 14,
2013).

Table 1. Minimum Test-Set RMSE for Each Alignment Method in Both the First and Second Chromatographic Dimensions for
All Six Experiments with the Nonreplicate Chromatograms from the Diesel Sample

None (av.) Affine Poly2 Poly3 Gros et al.

Chromatograms 1D (min) 2D (s) 1D (min) 2D (s) 1D (min) 2D (s) 1D (min) 2D (s) 1D (min) 2D (s)

012011−061413 0.7563 0.2414 0.0767 0.0344 0.0806 0.0184 0.0641 0.0170 0.0871 0.0346
012011−090912 0.1024 0.3982 0.0574 0.0147 0.0583 0.0130 0.0592 0.0131 0.0640 0.0435
012011−100412 0.0800 0.0569 0.0502 0.0257 0.0460 0.0225 0.0488 0.0223 0.0612 0.0283
061413−090912 0.8353 0.1819 0.0856 0.0367 0.0868 0.0223 0.0747 0.0221 0.0902 0.0209
061413−100412 0.7940 0.2905 0.0763 0.0558 0.0783 0.0331 0.0511 0.0282 0.0996 0.0558
090912−100412 0.0770 0.4386 0.0631 0.0292 0.0635 0.0247 0.0644 0.0241 0.0671 0.0578
Average 0.4408 0.2679 0.0682 0.0328 0.0689 0.0223 0.0604 0.0211 0.0782 0.0402
Average percent improvement (%) 76.7 87.7 77.8 93.1 77.3 93.6 68.0 86.0

aThe “None” columns are the average initial misalignments, not the minimum. The third-degree polynomial function reaches the lowest error on
average and Gros et al. has the highest error on average.
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Sample-Varied Data Results. Chromatograms acquired
from the three wine samples were used to test the alignment
methods on sample-varied data. The benchmark RMSE for
wine sample chromatographic alignment is established with
pairs of consecutive replicate runs of the 2011, 2012, and 2013
vintages. The results for the 2011 sample replicate runs are
shown in Figure 3. Training-set data and additional replicate

runs can be found in the Supporting Information (Figure S2).
The titles of the graphs indicate which two chromatograms
were aligned with the year of the sample followed by an “R”
and the run number (1 or 2). Figure 3 shows aligned
chromatograms for runs 1 and 2 from the 2011 sample. As seen
in the testing-set plots, none of the alignment methods are able
to improve on the initial misalignment. This indicates there is
no systematic retention-time difference between the replicate
runs, only retention-time noise. In the 1D (Figure 3a), the
RMSE with no alignment is about 0.0368 min, which is the
maximum for any of the replicate sample runs. In the 2D
(Figure 3b), the initial misalignment is about 0.0137 s. Over the
three sets of replicate runs from 2011, 2012, and 2013, the
average misalignment in the 1D is 0.03037 min, and in the 2D is
0.01725 s. The average RMSE in the 1D is less than the
modulation sampling noise level of 0.034 min. [The wine
analyses have a modulation cycle of 7 s or PM = 0.117 min, so
the RMS retention-time noise level from the sampling effect of
modulation is 0.034 min.] The peaks detected in the wine
chromatograms are very narrow, with a tpw of about 2
modulations, so the sampling noise must be considered.
Therefore, 0.034 min is used as the 1D benchmark RMSE for
the alignment of the wine sample chromatograms. The average
misalignment in the 2D of 0.01725 s is the other benchmark for
the alignment methods.
The chromatograms produced from the second run of each

year’s sample were tested in every pairwise combination with
the other two years. All these samples were run within a span of
3 days, so the initial misalignment between them is small, due
mainly to run-to-run random variations and sample differences
for the different vintages. The results from aligning chromato-
grams from the 2011 and 2012 samples are shown in Figure 4.
The RMSE between the chromatograms without any alignment
functions applied is only about 0.0344 min in the 1D (Figure
4a) and 0.02 s in the 2D (Figure 4b). Both these values are just
above the benchmark inherent noise threshold in each
dimension, suggesting that the alignment methods should not
be expected to improve much upon the initial misalignment.
This is apparent in both the 1D and 2D testing-set plots which
shows that none of the methods are able to improve the
alignment more than a few thousandths of a minute and
second, respectively. The minimum RMSE reached by Gros’

algorithm in the 1D is slightly worse than the initial
misalignment.
A table of results and graphs for all other cross-validation

experiments can be found in the Supporting Information
(Table S1 and Figures S5 and S6). On average, the initial
misalignment in both chromatographic dimensions is close to
the benchmark values and, as a result, none of the alignment
methods achieve notable improvements. The third-degree
polynomial even averages a slightly greater minimum value
than the initial misalignment in the 1D. These data then suggest
that no method, global nor local, is able to perform well. If two
chromatograms have only a small initial misalignment, it may
be better not to perform any alignment operation at all.

Instrument-Varied Data Results. Chromatograms ac-
quired from the single cocoa sample were used to test the
alignment methods on data obtained with differing instruments.
The benchmark RMSE values for the cocoa chromatogram
alignments are established using two replicate sample runs with
the flow modulator and three replicate runs with the thermal
modulator. The results of the second replicate cross-validation
experiment with the thermal-modulator chromatograms are
shown in Figure 5. Training-set data and additional replicate

runs can be found in the Supporting Information (Figure S3).
As expected, only negligible improvements in alignment are
seen from any method in either chromatographic dimension. In
the 1D (Figure 5a), the average initial misalignment for this
experiment is about 0.0438 min which is the maximum seen in
any of the replicate experiments. In the 2D (Figure 5b), the
initial misalignment is about 0.026 s. Across all three replicate
sample run experiments, the average misalignment in the 1D is
0.0412 min, which is used as the benchmark. The modulation
sampling noise level for these chromatograms does not greatly
affect the benchmark because the peaks detected, with a tpw of
about 5 modulations, are wider than those seen from the diesel
and wine samples. [The cocoa analyses have a modulation cycle
of 3 s or PM = 0.05 min, so the RMS noise level from the

Figure 3. Cross-validation retention-time RMSE results as a function
of training set size for consecutive replicate runs of the 2011 wine
sample. The names correspond to the vintage year of the wine sample.

Figure 4. Cross-validation retention-time RMSE results as a function
of training set size for alignment of two different wine sample
chromatograms. The names correspond to the vintage year of the wine
sample.

Figure 5. Cross-validation retention-time RMSE results as a function
of training set size for consecutive replicate runs of a cocoa sample
using a thermal modulator.
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sampling effect of modulation is 0.0144 min.] The average 2D
misalignment is 0.0257 s, which is used as the benchmark.
Pairs of chromatograms, one from the two flow-modulator

runs and one from the three thermal-modulator runs, were
tested in every combination, totaling six experiments. The
chromatograms in each experiment were acquired with two
different modulators, so the initial misalignment is severe,
especially in the 1D because of the constraints posed by the
differential flow modulation dynamics to carrier gas volumetric
flow. The results from aligning the second flow-modulator
chromatogram to the first thermal-modulator chromatogram
are shown in Figure 6. The initial misalignment in the 1D (the

blue line) is excluded from plot (Figure 6a) because it is so
large. In the 2D, the initial misalignment hovers around 0.5 s,
and is also excluded from plot (Figure 6b).
In Figure 6, every method offers significant improvement in

both dimensions. In the 1D, the affine transformation function
reaches the lowest error of 0.488 min (percent improvement Ip
= 98.1%), just in front of Gros’ algorithm at 0.503 min (Ip =
98.0%). The second and third-degree polynomial trans-
formations are about the same at 0.537 and 0.527 min (Ip =
97.9%), respectively. The percent improvement from every
method is good, even though the benchmark of 0.0412 min is
not achieved (perhaps because the initial misalignment is so
large).
That the affine transformation performs best suggests that

the higher-degree polynomials were not fit with enough
alignment points to reach peak performance. Similar to the
diesel results, with fewer than 10 alignment points the local
method outperforms the global methods in terms of RMSE.
Around 10 peak-pairs, though, the affine transformation
surpasses Gros’ algorithm for a slight performance gain.
Because the total number of corresponding peaks across the

cocoa chromatograms is only 33, significantly fewer than for the
diesel or wine chromatograms, the second and third-degree
polynomials do not reach a lower RMSE than the affine
transformation or local method. With training sets around 30
peak-pairs, though, they do approach these performances.
Figure 6 is a good example of the potential advantages to using
Gros’ algorithm or the affine transformation when few
alignment points are available.
In the 2D, the second-degree polynomial reaches the lowest

RMSE of 0.038 s (Ip = 97.4%), followed by Gros’ algorithm at
0.043 s (Ip = 96.3%), the third-degree polynomial at 0.046 s (Ip
= 95.7%), and the affine transformation at 0.052 s (Ip = 94.3%).
Again, every alignment method attains a high percent
improvement. The peak RMSE from the second-degree
polynomial (0.038 s) also approaches the benchmark set at
0.0257 s. In the 2D, the second-degree polynomial converges to
its peak performance with fewer peak-pairs than in the 1D,
allowing it to surpass performance of the affine transformation
and Gros’ algorithm with about 15 alignment points. In terms
of percent improvement, this performance gain is small. The
third-degree polynomial does not have enough alignment
points to be well fit, causing a slightly worse performance than
both the second-degree polynomial and local method.
Table 2 shows a summary of the results from all six cross-

validation experiments. Graphs from the other experiments are
in the Supporting Information (Figure S7). The average case
performance of the global and local methods closely mirrors the
performances discussed with Figure 6. Although a global
function was able to, on average, outperform the local method
(affine in 1D and second-degree polynomial in 2D), the
performance gain is minimal in terms of percent improvement.
All methods perform well, averaging a percent improvement
over 95%. In line with conclusions from the diesel alignment
results, it may be preferable to use Gros’ algorithm if very few
alignment points are available, affine transformation when more
than a few alignment points are available, and polynomial
transformation when 30 or more alignment points are available.

■ CONCLUSIONS

This work indicates that low-degree polynomial transformation
functions will, on average, outperform the local alignment
method developed by Gros et al., if given a sufficient number of
alignment points for a good fit. Looking at cross-validation tests
run on diesel chromatograms, which were acquired at varying
times, the global methods consistently achieve a lower peak
RMSE than the local method. The cross-validation experiments

Figure 6. Cross-validation retention-time RMSE results as a function
of training set size for chromatograms produced from the same cocoa
sample but using two different modulation platforms.

Table 2. Minimum Test-Set RMSE Reached by Each Alignment Method in Both the First and Second Chromatographic
Dimensions for All Six Experiments Run with the Chromatograms from the Cocoa Sample

None (av.) Affine Poly2 Poly3 Gros et al.

Chromatograms 1D (min) 2D (s) 1D (min) 2D (s) 1D (min) 2D (s) 1D (min) 2D (s) 1D (min) 2D (s)

Flow 1-Thermal 1 23.2438 0.5204 0.4897 0.0491 0.5417 0.0332 0.5385 0.0358 0.5159 0.0408
Flow 1-Thermal 2 23.2396 0.5094 0.4822 0.0383 0.5265 0.0265 0.5159 0.0324 0.5268 0.0321
Flow 1-Thermal 3 23.2261 0.5271 0.4783 0.0455 0.5352 0.0273 0.5378 0.0362 0.5195 0.0378
Flow 2-Thermal 1 23.2566 0.4952 0.4879 0.0524 0.5367 0.0379 0.5274 0.0457 0.5025 0.0431
Flow 2-Thermal 2 23.2523 0.4842 0.4801 0.0420 0.5226 0.0316 0.5102 0.0427 0.5139 0.0355
Flow 2-Thermal 3 23.2389 0.5018 0.4757 0.0481 0.5304 0.0308 0.5276 0.0450 0.5057 0.0404
Average 23.2429 0.5064 0.4823 0.0459 0.5322 0.0312 0.5262 0.0396 0.5141 0.0383
Average percent improvement (%) 98.1 95.8 97.9 98.8 97.9 97.1 98.0 97.4

aThe “None” columns are the average initial misalignments, not the minimum. All methods perform well as indicated by the high percent
improvements.
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run with the cocoa sample chromatograms, acquired with
differing instrument configurations, support this conclusion,
although the local algorithm still averaged a percent improve-
ment of over 97% in both dimensions. In general, although the
third-degree polynomial transformation consistently reaches
the lowest minimum RMSE with sufficient fitting (requiring
about 55 alignment points), the performance gain over the
second-degree polynomial is not significant and may not be
worth the extra computational cost.
The tests run on GCxGC chromatograms acquired from

varying wine samples indicate that no alignment method, global
or local, is able to significantly improve alignment when initial
misalignment is close to the retention-times noise level. The
third-degree polynomial and local method actually made the
alignment slightly worse in several cases, suggesting that when
misalignment is very small, it may be better not to apply any
alignment operation.
This research suggests that for the purpose of chromato-

graphic alignment between two GCxGC chromatograms, it
may be preferable to use global, low-degree transformation
functions such as second-degree polynomials rather than local
methods when a sufficient number of alignment points are
available. These global transformations show a better average
performance and incur less computational overhead. However,
if working with fewer than 10 alignment points, it may be better
to use Gros’ algorithm. In order to outperform Gros’ algorithm,
the affine transformation needed as many as 10 alignment
points and the second-degree polynomial needed around 30
points.
The training set size at which the alignment methods reach

their peak performance may be affected by how the alignment
points are chosen. In the experiments presented here, these
peak-pairs were chosen randomly from a large, well-distributed
set, but choosing a subset that is better distributed across the
range of retention times in a chromatogram may reduce the
training set size required to approach peak performance. For
the global methods, more distributed alignment points would
allow the systemic misalignment trends to be modeled with
fewer points. Although this would also help the local method, it
is already approaching peak performance with very few points
in most cases, suggesting that better distributed alignment
points might reduce the set size at which the performance of
the global methods overtakes the local method.
A final consideration is the problem of incorrect alignment

points. With a local method, the associated error is localized but
larger; whereas with a global method the associated error is
smaller but global. If alignment point errors are possible, a
global method with many alignment points to regularize the fit
may be preferred.
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