Mining Source Code
Repositories
with

{rdyer,hoan,hridesh,tien}@iastate.edu

lowa State University

The research and educational activities described in this talk was supported in part by the US National Science Foundation (NSF)
under grants CCF-13-49153, CCF-13-20578, TWC-12-23828, CCF-11-17937, CCF-10-17334, and CCF-10-18600.

What is actually practiced
Keep doing what works

To find betteReteti Empirical validation

Spot (anti-)patterns

Why mine software repositories?

Learn from the past — Inform the future

Open source repositories

y..2

P (
pen Source Project Community

g
SOCIAL CODING

SOURCEFORGE.NET®

Apache

”"""-'f"ff_ffff:f.fﬁ_'ff.\ ‘
(L
@ launchpad

Open source repositories

1,000,000+ projects
1,000,000,000+ lines of code
10,000,000+ revisions

3,000,000+ issue reports

Open source repositories

1,000,000+ projects
What is the most used PL?

1,000,000,000+ lines of code
How many methods are named "test"?

10,000,000+ revisions
How many words are Iin log messages?

3,000,000+ issue reports
How many issue reports have duplicates?

Consider a task to answer

"How many bug fixes add checks for null?"

. = t
mine projec foreach Output count

SOURCEFORGE.NET®—Mmetadata " of all null

checks

Find null
checks in

repository?
P ry each source

code

Find all

Access

repository mine
revisions

Java source
files

I
I
I
I
I
I
I
I
I
|
I
I
I
: Yes mine source
I
I
I
I
I
I
I
I
I
I
I
I
|

A solution in Java...

class AddNullCheck {
static void main(String[] args) {
/* create and submit a Hadoop job */
}

static class AddNullCheckMapper extends Mapper<Text, BytesWritable, Text, LongWritable> ({ I u II prog ral I I

static class DefaultVisitor {

- over 140 lines of code

}

void map (Text key, BytesWritable value, Context corffle

- cO Uses JSON, SVN, and

boolean preVisit (Expr

— \
if (e.kin ﬂnmmm.mea)d ExpressionKind.NEQ) Eclipse JD T Iibraries

S

fo xPression expgt : efx
Oo if (exp.klgtp ssionKind.LITERAL && exp.literal.equals("null")) ({
c“

write (new Text ("count"), new LongWritable(l));

| o~ Uses Hadoop framework

}.visit(p);

}

L L]
static class AddNullCheckReducer extends Reducer<Text, LongWritable, Text, LongWritable> ({ Expl ICIt/I I Ial lual

void reduce (Text key, Iterable<LongWritable> vals, Context context) { - 1
e s parallelization
for (LongWritable value : vals)
sum += value.get();

context.write (key, new LongWritable (sum)) ;

The Boa language and data-
intensive infrastructure

http://boa.cs.iastate.edu/

Design goals

=) FEasy to use
m) Scalable and efficient

= Reproducible research results

Design goals

=) FEasy to use
e Simple language

e No need to know details of
o Software repository mining
o Data parallelization

Design goals

m) Scalable and efficient

e Study millions of projects

e Results in minutes, not days

Design goals

=) Reproducible research results

Replicating MSR:
A study of the potential replicability of papers published in the
Mining Software Repositories Proceedings

Gregorio Robles

/LibreSoft

iversidad Rey Juan Carlos
Madrid, Spain

GSy

Email: gr

Abstract—This paper is the result of reviewing all papers
published in the proceedings of the former International
Workshop on Mining Software Repositories (MSR) (2004-2006)
and now Working Conference on MSR (2007-2009). We have
analyzed the papers that contained any experimental analy
of software projects for their potentiality of being replicated.
In this regard, three main issues have been addressed: i) the
public availability of the data used as case study. ii) the public
availability of the processed dataset used by researchers and
the public availability of the tools and scripts. A total number of
171 papers have been analyzed from the six workshops/working
conferences up to date. Results show that MSR authors use
in general publicly available data sources, mainly from free
software repositories, but that the amount of publicly available
processed datasets is very low. Regarding tools and scripts, for
jority of papers we have not been able to find any tool,
even for papers where the authors explicitly state that they have
built one. Lessons learned from the experience of reviewing the
whole MSR literature and some potential solutions to lower the
barriers of replicability are finally presented and discussed.

eywords-replication, tools, public datasets, mining software
repositories

.urj N msr2010.

INTRODUCTION

positories (MSR) has become a fun-

@g

sve.urjc.es

Among these thre may encounter: lack of independent
validation of the presented results; changes in practices, tools
or methodologies; or generalization of knowledge although
a limited amount of case studies have been performed.

A simple taxonomy of replication studies provides us with
WO main groups: e replications and conceptual replica-
tions. The former ones are those in “which the procedures
of an experiment are followed as closely as possible to
determine whether the same results can be obtained”, while
the latter ones are those “one in which the same research
question or hypothesis is evaluated by using a different
experimental procedure, i.c. many or all of the variables
described above are changed.” [2]. In this paper, we will
target exact replications as the requirements that have to be
met to perform an exact replication are more severe, and in

eneral make a conceptual replication feasible.

We are focusing i this paper on potential replication as
we have actually not replicated any of the studies presented
in the papers under review. Our aim in this sense is more
humble: we want to check if the necessary conditions that
make a replication possible are met.

The rest of the paper is structured as follows: in the next
section, the method used for this study is presented. Then

some general remarks on the MSR conference are given,

Robles, MSR'10
Studied 171 papers

Only 2 were "replication
friendly”

Boa architecture

Boa Language

PR 4 Query Program

MapReduce’

Types
_-v Compile

'
' - v
v

I
I

I

I

I

I

- !

——————————— e e e e - o . . . = I
Boa's Compiler Query Plan :

I

I

I

I

I

I

I

I

I

I

I
|
|
1
-
r —
Domain-specific [*
1
I
: Replicator
|

I

Caching Translator

] |

| |

| |

| |

| |

| _User Functions i

1 . . g

I Domain-specific : Deploy
I Types I

| |

. . v
| |

| |

| |

Execute on
Hadoop Cluster

}

Query Result

Local Cache

' Pike et al, Scientific Prog. Journal, Vol 13, No 4, 2005
2 Anthony Urso, http://github.com/anthonyu/Sizzle

Boa's Data Infrastructure

Recall: A solution in Java...

class AddNullCheck {
static void main(String[] args) {
/* create and submit a Hadoop job */
}

static class AddNullCheckMapper extends Mapper<Text, BytesWritable, Text, LongWritable> ({ I u II prog ral I I

static class DefaultVisitor {

- over 140 lines of code

}

void map (Text key, BytesWritable value, Context corffle

- cO Uses JSON, SVN, and

boolean preVisit (Expr

— \
if (e.kin ﬂnlonKlnd.EQea)d ExpressionKind.NEQ) Eclipse JD T Iibraries

S

fo xPression expgt : efx
oo if (exp.klgtp ssionKind.LITERAL && exp.literal.equals("null")) ({
c“

write (new Text ("count"), new LongWritable(l));

| o~ Uses Hadoop framework

}.visit(p);

}

L L]
static class AddNullCheckReducer extends Reducer<Text, LongWritable, Text, LongWritable> ({ Expl ICIt/I I Ial Iual

void reduce (Text key, Iterable<LongWritable> vals, Context context) { - 1
e a2 parallelization
for (LongWritable value : vals)
sum += value.get();

context.write (key, new LongWritable (sum)) ;

A better solution...

ép: Project = input;

: count: output sum of int;

. visit(p, visitor {
before e: Expression ->

if (e.kind == ExpressionKind.EQ || e.kind == ExpressionKind.NEQ)
exists (i: int; isliteral (e.expressions[i], "null"))
count << 1;

Full program 8 lines of code!
Automatically parallelized!
No external libraries needed!

Analyzes 28.8 million source files in about 15 minutes!

(only 32 microseconds each!)

Dimipstt Boa Program Output

p= project1 program
; : count << 1
p= project2 program
: : count << 1
& D =project, = program :
count' OUtPUt Count[] = 120789791

count << 1 sum of int;

1+1+1+1+..

count << 1

p = project . program

pP: Project = input;

count: output sum of int;

visit(p, visitor {

before e: Expression ->

if (e.kind == ExpressionKind.EQ || e.kind == ExpressionKind.NEQ)

exists (i: int; isliteral (e.expressions[i], "null"))

count << 1;

Design goals

=) Easy to use
Scalable and efficient

Reproducible research results

Let's see it In action!

http://boa.cs.iastate.edu/boa/

Why are we waiting for results?

Program is analyzing...

699,331 projects
494,158 repositories
15,063,073 revisions

69,863,970 files

18,651,043,238 AST nodes

Let's check the results!

<<demo>>

Domain-specific types

http://boa.cs.iastate.edu/docs/dsl-types.php

ép: Project = input;

. count: output sum of int;

. visit(p, visitor {
before e: Expression —>

if (e.kind == ExpressionKind.EQ || e.kimd == Hxy

exists (i: int; isliteral (e.essgmessssiicorss[il]],, "hullll'))))
count << 1;

Abstracts details of how to mine software repositories

Domain-specific types

http://boa.cs.iastate.edu/docs/dsl-types.php

Project

id : string

name : string

description : string

homepage_url : string
programming_languages : array of string
licenses : array of string
maintainers : array of Person

code repositories : array of CodeRepository

Domain-specific types

http://boa.cs.iastate.edu/docs/dsl-types.php

CodeRepository

url
kind

revisions

Revision
id : int
author : Person
committer : Person
commit_date : time
log : string
fles : array of File

: string
: RepositoryKind

: array of Revision

File

name : string
kind : FileKind

change : ChangeKind

Domain-specific functions

http://boa.cs.iastate.edu/docs/dsl-functions.php

hanlletype := function (rev: Revision, ext: string) : bool {
exists (i: int; match(format(\.%s$, ext), rev.files[i] .name))
return true;

return false;

Mines a revision to see if it contains any files of the type specified.

Domain-specific functions

http://boa.cs.iastate.edu/docs/dsl-functions.php

1sfixingrevision := function (log: string) : bool {
' if (match(\bfix(s|es|ing|ed)?\b , log)) return true;
if (match(\b(error|bug|issue) (s)\b , log)) return true;
return false;

Mines a revision log to see if it fixed a bug.

User-defined functions

http://boa.cs.iastate.edu/docs/user-functions.php

Eid := function (a1: t
. # body

[return ... ;]

17 o7 =)

Return type is optional

® Allows for complex algorithms and code re-use

® Users can provide their own mining algorithms

Quantifiers

http://boa.cs.iastate.edu/docs/quantifiers.php

foreach (i: int; condition...)
body;

For each value of i,

if condition holds
then
run body (with i bound to the value)

Quantifiers

http://boa.cs.iastate.edu/docs/quantifiers.php

exists (i: int; condition...)
body;

For some value of i,

if condition holds
then
run body once (with i bound to the value)

Quantifiers

http://boa.cs.iastate.edu/docs/quantifiers.php

ifall (i: int; condition...)
body;

For all values of i,

if condition holds
then
run body once (with i not bound)

Output and aggregation

http://boa.cs.iastate.edu/docs/aggregators.php

ép: Project = input;

: count: output sum of int;

. visit (p, visitor {
before e: Expression ->

if (e.kind == ExpressionKind.EQ || e.kind == ExpressionKind.NEQ)
exists (i: int; isliteral (e.expressions[i], "null"))
count << 1;

® Output defined in terms of predefined data aggregators

O sum, set, mean, maximum, minimum, etc
® Values sent to output aggregation variables

® Output can be indexed

Declarative Visitors in Boa

http://boa.cs.iastate.edu/

Basic Syntax

1d := wvisitor {
before i1id:T -> statement
after 1i1d:T -> statement

};

visit(startNode, 1i1d);

Execute statement either before or after
visiting the children of a node of type T

Depth-First Traversal

Provides a default, depth-first traversal strategy

A->B->C->D->E

before
before
before
after
before
after
after
before
after

after

» H H W U O 0 Q0 W Pp

statement
statement
statement
statement
statement
statement
statement
statement

statement

statement

Type Lists and Wildcards

visitor {

before id:T -> statement
after T2,T3,T4 -> statement
after —> statement

Single type (with identifier)

Attributes of the node available via identifier

Type Lists and Wildcards

visitor {

before 1d:T -> statement
after T2,T3,T4 -> statement
after —-> gstatement

Type list (no identifier)

Executes statement when visiting nodes
of type T2, T3, or T4

Type Lists and Wildcards

visitor {

before 1d:T -> statement
after T2,T3,T4 -> statement
after -> statement

Wildcard (no identifier)

Executes statement for any node not already listed in
another similar clause (e.g., T but not T2/T3/T4)

Provides default behavior

Type Lists and Wildcards

visitor {

before id:T -> statement
after T2,T3,T4 -> statement
after -> statement

Types can be matched by at most 1 before clause
and at most 1 after clause

Custom Traversals

A>E->B->C->D

_
/\

I

before n: A -> {
visit(n.E) ;
visit(n.B);
stop;

Design goals

Easy to use
=) Scalable and efficient

Reproducible research results

Efficient execution

100,000

w
T
c
2
(]
L
Q
E
R
©
ko
o
[t

1
m Boa R RZ R38N el 82 gh 85 86 gl 28 29 gA0 gV ¢ c? oM 02 03 oA 05

W Java Number of Projects (7k, 70k, 700k)

Efficient execution

x
o
o
~
X
o
~
X
~
S
N
©
2,
©
o
-
[e]
{9
Q
o)
£
=]
P4

Total time (seconds)

Scalability of input size

100,000

n
T
c
Q
5
Q
L
Q
£
-
©
-
o
-

1

| A pZ pd 8N 82 83 b @5 % @l @2 @92 gA0 g\ N c? oA 02 03 oA 0B
W Java

W Boa Number of Projects (7k, 70k, 700k)

Scalability of input size

10,750

Total time (seconds)

456 474 598
61 63
30
ogm 170 2 15 16[2 15 17j 2
7
4
8o cA 05

Number of Projects (7k, 70k, 700k)

Scales to more cores

"
©
=
o
3}
@
L
o
=
-
c
o
-
S
o
)
X
Ll

Task A.3 Task B.6 Task C.1 Task D.5

H1map N2 maps 4 maps HE8 maps N 16 maps 32 maps

Design goals

Easy to use
Scalable and efficient

=% Reproducible research results

Reproducing MSR results

Replicating MSR
A study of the potential replicability of papers published in the
Mining Software Repositories Proceedings

Gregorio Robles

GS

‘LibreSoft

niversidad Rey Juan Carlos
Madrid, Spain

Email: gr

Abstract—This paper is the result of reviewing all papers
published in the proceedings of the former International
Workshop on Mining Software Repositories (MSR) (2004-2006)
and now Working Conference on MSR (2007-2009). We have
analyzed the papers that contained any experimental analysis
of software projects for their potentiality of being replicated.
In this regard, three main issues have been addressed: i) the
public availability of the data used as case study. ii) the public
availability of the processed dataset used by researchers and iii)
the public availability of the tools and scripts. A total number of
171 papers have been analyzed from the six workshops/working
conferences up to date. Results show that MSR authors use
in general publicly available data sources, m

software repositories, but that the amount of publicly available
processed datasets is very low. Regarding tools and scripts, for
a majority of papers we have not been able to find any tool,
even for papers where the authors explicitly state that they have
built one. Lessons learned from the experience of reviewing the
whole MSR literature and some potential solutions to lower the
barriers of replicability are finally presented and discussed.

Keywords-replication, tools, public datasets, mining software
repositories

Replication pa

. INTRODUCTION

Mining sofiware repositories (MSR) has become a fun-
damental arca of research for the Sofiware E
community, and of vital importance in the case of empiri
studies. Software repositories contain a large amount of valu-
able mformation that includes source control systems storing

all the history of the source code, defect tracking systems
that host defects, enhancements and other issues, and other
communication means such as mailing lists or forums. As
a result of the possibilities that mining software repositories
offer, an annual workshop first, then working conference on
this topic has been organized with an extraordinary suc
in participation and research output.
Being mainly focused on empirical research, we wi
to evaluate how much of the research presented at the MSR
can be potentially replicated. Replication is a fundam
ask in empirical sciences and one of the mam threats to
validity that empirical software engineering may suffer [1].

978-1-4244-6803-4/10/$26.00 © 2010 1

gsyc.urjc.es

Among these threats, we may encounter: lack of independent
alidation of the presented results; changes in practices, tools
or methodologies; or generalization of knowledge although
a limited amount of case studies have been performed.

A simple taxonomy of replication studies provides us with
WO main groups: ¢ replications and conceptual replica-
tions. The former ones are those in “which the procedures
of an experiment are followed as closely as possible to
determine whether the same results can be obtained”, while
the latter ones are those “one in which the same research
question or hypothesis is evaluated by using a different
experimental procedure, i.c. many or all of the variables
described above are changed.” [2]. In this paper, we will
target exact replications as the requirements that have to be
met to perform an ey replication are more severe,
general make a conceptual replication feasible.

We are focusing i this paper on potential replication as
we have actually not replicated any of the studies presented
in the papers under review. Our aim in this sense is more
humble: we want to check if the necessary conditions that
make a replication possible are met.

The rest of the paper is structured as follow:
section, the method used for this study is prese
some general remarks on the MSR conferer are given,
to give the reader a sense of the type of papers that are
published in the MSR proceedings. Results will be presented
in section IV: first, the replication-friendliness of the papers
will be shown and then cach of the individual character-
istics that we have defined will be studied independently

R has a special track called the “Mining Challenge”,
a section is devoted to analyze it with the aim of finding
if results differ from those for the rest of papers. Then,
other non-quantitative facts from the review are enumerated.

ction VII discusses the findings of the paper and hints at
possible solutions. Then, conclusions are drawn. In a final
section, the repli of this paper is considered.

II. METHOD

The method that has been used to perform this study
is a complete literature review of the papers published in

MSR 2010

Robles, MSR'10

2/154 experimental
papers "replication
friendly."

48 due to lack of
published data

Prior research results are difficult
(or impossible) to reproduce.

Boa makes this easier!

Controlled Experiment

® Published artifacts (Boa website):
O Boa source code

O Dataset used (timestamp of data)
O Results

Post-doc
PhD
PhD
PhD
MS
MS
MS

BS

[\ e R R A e 4)
DW= N BN A

1
3
1
2
4
2
2
2

Fig. 16. Study results. All times given in minutes.

Ongoing work

cvs A
Google Code

bzr GitHub

Launchpad

Infrastructure

improvements Other

artifacts

Language
abstractions

Norway

é} Canada

Ukraine
Kazakhstan
m Mongolia

United St {) A Turk {:}
Inited Sta Yirye urkey Japan
g) China South »
/ antic \ira Afghanistan
A cean J’ q n Q
Egyp!

o Pakista
e Lbya Saudi 5

Mexico Arabia .
Thailand

Mali | Niger Sudan

Chad Q
Venezuela Nigeria Ethiopia

Colombia
-~ Kenya

DR Congo Ind
ndonesia Papua Ney
Brazil Tanzania Guinea

Angola

Bolivia .
Namibia

Madagascar
Botswana 9

Chile Australia

Examples R = |
Programming Guide un Examples
Researcher's Guide Run an Example

Publications How many valid Java files in latest snapshot?

demo Logged In
| cemotoapean |

Job List

1 ¥ t
2 counts: output sum of
My Account . .
3 p = input;
Log Out 4
About 5+ visit(p, {

before node

Privacy & Terms

counts len(getsnapshot(node,
[] H
- News
O a ‘ I l | May 24: User requests are n Input Dataset
] [[] [] open! 2013 May
Mar 1 r

Run Program

Domain-specific language and infrastructure for
software repository mining that is:

m Easyto use
m Efficient and scalable
m Amenable to reproducing prior results

