
Mining Ultra-Large-Scale
Software Repositories with

Boa

Robert Dyer, Hoan Nguyen, Hridesh Rajan, and Tien Nguyen
{rdyer,hoan,hridesh,tien}@iastate.edu

Iowa State University

Why mine software repositories?

Why mine software repositories?

Learn from the past

Why mine software repositories?

Learn from the past

Spot anti-patterns

What is actually practiced

Why mine software repositories?

Learn from the past Inform the future

Why mine software repositories?

Learn from the past

Empirical validationTo find better designs

Inform the future

Keep doing what works

Open source repositories

1,000,000+ projects

1,000,000,000+ lines of code

10,000,000+ revisions

3,000,000+ issue reports

Open source repositories

1,000,000+ projects

1,000,000,000+ lines of code

10,000,000+ revisions

3,000,000+ issue reports

What is the most used PL?

How many methods are named "test"?

How many words are in log messages?

How many issue reports have duplicates?

Open source repositories

Consider a task that answers

"What is the average churn rate for Java
projects on SourceForge?"

Note: churn rate is the average number of files changed per revision

mine project
metadata

mine project
metadata foreach

project

Is Java
project?

Has
repository?

Access
repository

Calculate
project's

churn rate

mine project
metadata

Yes

Yes

mine revision
data

foreach
project

Is Java
project?

Has
repository?

Access
repository

Calculate
project's

churn rate

mine project
metadata

Yes

Yes

mine revision
data

foreach
project

Calculate
average

churn rate

A solution in Java...
public class GetChurnRates {

 public static void main(String[] args) { new GetChurnRates().getRates(args[0]); }

 public void getRates(String cachePath) {

 for (File file : (File[])FileIO.readObjectFromFile(cachePath)) {

 String url = getSVNUrl(file);

 if (url != null && !url.isEmpty())

 System.out.println(url + "," + getChurnRateForProject(url));

 }

 }

 private String getSVNUrl(File file) {

 String jsonTxt = "";

 ... // read the file contents into jsonTxt

 JSONObject json = null, jsonProj = null;

 ... // parse the text, get the project data

 if (!jsonProj.has("programming-languages")) return "";

 if (!jsonProj.has("SVNRepository")) return "";

 boolean hasJava = false;

 ... // is the project a Java project?

 if (!hasJava) return "";

 JSONObject svnRep = jsonProj.getJSONObject("SVNRepository");

 if (!svnRep.has("location")) return "";

 return svnRep.getString("location");

 }

 private double getChurnRateForProject(String url) {

 double rate = 0;

 SVNURL svnUrl;

 ... // connect to SVN and compute churn rate

 return rate;

 }

}

Full program
over 70 lines of code

Uses JSON and SVN
libraries

Runs sequentially

Takes over 24 hrs

Takes almost 3 hrs - with
data locally cached!

Too much code!

Do not read

A better solution...

rates: output mean[string] of int;

p: Project = input;

when (i: some int; match(`^java$`, lowercase(p.programming_languages[i])))

when (j: each int; p.code_repositories[j].repository_type == RepositoryType.SVN)

when (k: each int; def(p.code_repositories[j].revisions[k]))

rates[p.id] << len(p.code_repositories[j].revisions[k].files);

Full program 6 lines of code!

No external libraries needed!
Automatically parallelized!

Results in about 1 minute!

The Boa language and data-
intensive infrastructure

http://boa.cs.iastate.edu/

Easy to use

Scalable and efficient

Reproducible research results

Design goals

Easy to use

● Simple language

● No need to know details of
○ Software repository mining
○ Data parallelization

Design goals

Scalable and efficient

● Study millions of projects

● Results in minutes, not days

Design goals

Reproducible research results

Design goals

Robles, MSR'10

Studied 171 papers

Only 2 were "replication
friendly"

Boa architecture

Boa's Data Infrastructure

Local Cache

Replicator

Caching Translator

SF.net

1 Pike et al, Scientific Prog. Journal, Vol 13, No 4, 2005
2 Anthony Urso, http://github.com/anthonyu/Sizzle

Boa architecture

Boa's Data Infrastructure

Local Cache

Replicator

Caching Translator

SF.net
Boa Language

MapReduce1

Domain-specific
Types

1 Pike et al, Scientific Prog. Journal, Vol 13, No 4, 2005
2 Anthony Urso, http://github.com/anthonyu/Sizzle

Boa architecture

Boa's Data Infrastructure

Local Cache

Replicator

Caching Translator

SF.net

Boa's Compiler

MapReduce2

Domain-specific
Types

Quantifiers

Runtime

Cached Data
input reader

User Functions

Boa Language

MapReduce1

Domain-specific
Types

1 Pike et al, Scientific Prog. Journal, Vol 13, No 4, 2005
2 Anthony Urso, http://github.com/anthonyu/Sizzle

Boa architecture

Boa's Data Infrastructure

Local Cache

Replicator

Caching Translator

SF.net

Compile

Execute on
Hadoop Cluster

Deploy

Query Program

Query Plan

Query Result

Boa's Compiler

MapReduce2

Domain-specific
Types

Quantifiers

Runtime

Cached Data
input reader

User Functions

Boa Language

MapReduce1

Domain-specific
Types

1 Pike et al, Scientific Prog. Journal, Vol 13, No 4, 2005
2 Anthony Urso, http://github.com/anthonyu/Sizzle

Domain-specific types
http://boa.cs.iastate.edu/docs/dsl-types.php

rates: output mean[string] of int;

p: Project = input;

when (i: some int; match(`^java$`, lowercase(p.programming_languages[i])))

when (j: each int; p.code_repositories[j].repository_type == RepositoryType.SVN)

when (k: each int; def(p.code_repositories[j].revisions[k]))

rates[p.id] << len(p.code_repositories[j].revisions[k].files);

Abstracts details of how to mine software repositories

Domain-specific types
http://boa.cs.iastate.edu/docs/dsl-types.php

Project

id : string

name : string

description : string

homepage_url : string

programming_languages : array of string

licenses : array of string

maintainers : array of Person

....

code_repositories : array of CodeRepository

Domain-specific types
http://boa.cs.iastate.edu/docs/dsl-types.php

CodeRepository

url : string

repository_type : RepositoryType

revisions : array of Revision

Revision

id : int

author : Person

committer : Person

commit_date : time

log : string

files : array of File

File

name : string

Domain-specific functions
http://boa.cs.iastate.edu/docs/dsl-functions.php

Mines a revision to see if it contains any files of the type specified.

hasfiletype := function (rev: Revision, ext: string) : bool {

when (i: some int; matches(format(`\.%s$`, ext), rev.files[i].name))
return true;

return false;
}

Domain-specific functions
http://boa.cs.iastate.edu/docs/dsl-functions.php

Mines a revision log to see if it fixed a bug.

isfixingrevision := function (log: string) : bool {
if (matches(`\s+fix(es|ing|ed)?\s+`, log)) return true;
if (matches(`(bug|issue)(s)?[\s]+(#)?\s*[0-9]+`, log)) return true;
if (matches(`(bug|issue)\s+id(s)?\s*=\s*[0-9]+`, log)) return true;
return false;

}

User-defined functions
http://boa.cs.iastate.edu/docs/user-functions.php

id := function (a1: t1, ..., an: tn) [: ret] {

... # body
[return ...;]

}

● Allows for complex algorithms and code re-use

● Users can provide their own mining algorithms

Return type is optional

Quantifiers and when statements
http://boa.cs.iastate.edu/docs/quantifiers.php

rates: output mean[string] of int;

p: Project = input;

when (i: some int; match(`^java$`, lowercase(p.programming_languages[i])))

when (j: each int; p.code_repositories[j].repository_type == RepositoryType.SVN)

when (k: each int; def(p.code_repositories[j].revisions[k]))

rates[p.id] << len(p.code_repositories[j].revisions[k].files);

● Easily expresses loops over data

● Bounds are inferred from condition

Quantifiers and when statements
http://boa.cs.iastate.edu/docs/quantifiers.php

when (i: each int; condition...)
body;

For each value of i,

if condition holds
then

run body (with i bound to the value)

Quantifiers and when statements
http://boa.cs.iastate.edu/docs/quantifiers.php

when (i: some int; condition...)
body;

For some value of i,

if condition holds
then

run body once (with i bound to the value)

Quantifiers and when statements
http://boa.cs.iastate.edu/docs/quantifiers.php

when (i: all int; condition...)
body;

For all values of i,

if condition holds
then

run body once (with i not bound)

Output and aggregation

● Boa uses MapReduce [Dean & Ghemawat 2004]

● Most details abstracted from users

What is MapReduce?

Output and aggregation

source: https://developers.google.com/appengine/docs/python/dataprocessing/overview

https://developers.google.com/appengine/docs/python/dataprocessing/overview

Output and aggregation
http://boa.cs.iastate.edu/docs/aggregators.php

rates: output mean[string] of int;

p: Project = input;

when (i: some int; match(`^java$`, lowercase(p.programming_languages[i])))

when (j: each int; p.code_repositories[j].repository_type == RepositoryType.SVN)

when (k: each int; def(p.code_repositories[j].revisions[k]))

rates[p.id] << len(p.code_repositories[j].revisions[k].files);

● Output defined in terms of predefined data aggregators
○ sum, set, mean, maximum, minimum, etc

● Values sent to output aggregation variables

● Output can be indexed

Let's see it in action!

<<demo>>

Why are we waiting for results?

Program is analyzing...

621,671 projects

370,554 repositories

4,137,763 revisions

39,629,911 files

Let's check the results!

<<demo>>

Efficient execution

Efficient execution

Efficient execution

3
2

1

Efficient execution

Scalability of input size

Scalability of input size

Scalability of input size

Scales to more cores

Reproducing MSR results

Robles, MSR'10

2/154 experimental
papers "replication
friendly."

48 due to lack of
published data

Prior research results are difficult
(or impossible) to reproduce.

Boa makes this easier!

Let's reproduce some prior results!

<<demo>>

Controlled Experiment

● Published artifacts (Boa website):
○ Boa source code
○ Dataset used (timestamp of data)
○ Results

Ongoing work
cvs

git
hg

bzr GitHub

Google Code

Launchpad

Ongoing work
cvs

git
hg

bzr GitHub

Google Code

Launchpad

Other
artifacts

Ongoing work
cvs

git
hg

bzr GitHub

Google Code

Launchpad

Other
artifacts

Language
abstractions

Infrastructure
improvements

Conclusions

● Domain-specific language and infrastructure
for software repository mining

○ Easy to use

○ Efficient and scalable

○ Allows reproducing prior results

For more information...

http://boa.cs.iastate.edu/

