Bringing Ultra-Large-Scale
Software Repository Mining
to the Masses with

Boa

Robert Dyer

November 8, 2013
Department of Computer Science

lowa State University

The research and educational activities described in this talk were supported in part by the US National Science Foundation (NSF)
under grants CCF-13-49153, CCF-13-20578, TWC-12-23828, CCF-11-17937, CCF-10-17334, and CCF-10-18600.

Research Overview

Dynamic Aspect Virtual Machine Support - Nu
[AOSD’08] [TOSEM]

Language Evaluation - Ptolemy
[AOSD’12] [TAOSD]

Easing Ultra-large-scale Software Mining - Boa
[ICSE’13] [GPCE’13] [SPLASH 13 SRC]
In submission: [ICSE'14] Planned: [PLDI'14]

What is actually practiced
Keep doing what works

To find betlchicee il Empirical validation

Spot (anti-)patterns

Why mine software repositories?

Learn from the past — Inform the future

SOURCEFORGE.NET® |
L

launchpad

1,000,000+ projects

1,000,000,000+ lines of code

10,000,000+ revisions

3,000,000+ issue reports

1,000,000+ projects
What is the most used PL

50,692

40,934
32,696
30,580
’ 15,352 15,305
12,748
9,783

| I 4,379 3842

" H B

java c++ c python c# java- perl unix delphi/
script shell kylix

[7}]
wbed
(8]
=
(o}
P .
o
[T
(o}
|
(]
0
£
-
P

1,000,000,000+ lines of code
How many methods are named "test"?

32,203

How many methods use JUnit’'s @Test
annotation?

870,181
in 4,578 projects

10,000,000+ revisions
How many words are in log messages?

HO
W 1-15

16-25
H 26-50
B 51 or more

Running example task

"How many bug fixes add checks for null?"

. = t
mine projec foreach Output count

SOURCEFORGE.NET® —Mmetadata " of all null

checks

Find null
checks in

repository?
P ry each source

code

Find all

Access

repository mine
revisions

Java source
files

I
I
I
I
I
I
I
I
I
|
I
I
I
: Yes mine source
I
I
I
I
I
I
I
I
I
I
I
I
|

A solution in Java...

class AddNullCheck {
static void main(String[] args) {
/* create and submit a Hadoop job */

static class AddNullCheckMapper extends Mapper<Text, BytesWritable, Text, LongWritable> ({ I u prog ra

static class DefaultVisitor {

pp—— over 140 lines of code
\}/oid map (Text key, BytesWritable value, Context corfle ‘
fina; :roj:;t i= ... /* read from mputode
et LD | Uses JSON, SVN, and
if (e.kin :ﬂ lonKlnd.EQea) =‘ExpressionKind.NEQ) Eclipse JD T Iibraries

xPression exgt : efx SYONSs
oo if (exp.klgtp ssionKind.LITERAL && exp.literal.equals("null")) {
“ write (new Text ("count"), new LongWritable(l));

}

o~ Uses Hadoop framework

}.visit(p);

}

L L]
static class AddNullCheckReducer extends Reducer<Text, LongWritable, Text, LongWritable> ({ Expl ICIt/I I Ial lual

void reduce (Text key, Iterable<LongWritable> vals, Context context) { - 1
e s parallelization
for (LongWritable value : vals)
sum += value.get();

context.write (key, new LongWritable (sum)) ;

The Boa language and
data-intensive infrastructure

http://boa.cs.iastate.edu/

[ICSE’13]

Challenges and Design goals

=) FEasy to use
m) Scalable and efficient

= Reproducible research results

Boa architecture

Boa Language

PR 4 Query Program

MapReduce’

Types
_-v Compile

'
' - v
v

I
I

I

I

I

I

- !

——————————— e e e e - o . . . = I
Boa's Compiler Query Plan :

I

I

I

I

I

I

I

I

I

I

I
|
|
1
-
r —
Domain-specific [*
1
I
: Replicator
|

I

Caching Translator

] |

| |

| |

| |

| |

| _User Functions i

1 . . g

I Domain-specific : Deploy
I Types I

| |

. . v
| |

| |

| |

Execute on
Hadoop Cluster

/

Query Result

Local Cache

' Pike et al, Scientific Prog. Journal, Vol 13, No 4, 2005
2 Anthony Urso, http://github.com/anthonyu/Sizzle

Boa's Data Infrastructure

Recall: A solution in Java...

class AddNullCheck {

static void main (String[

args) {

/* create and submit a Hadoop job */

}

static class AddNullCheckMapper extends Mapper<Text,

static class DefaultVisitor {

/* define default tree traversal */

}

new DefaultVisitor ()

o

boolean preVisit (Expr “ {

if (e.kin

i

(o}
DO break;
}

}.visit(p);

}

00 ™

static class AddNullCheckReducer extends Reducer<Text,

void reduce (Text key,
int sum = 0;

for (LongWritable

Iterable<LongWritable> vals,

value : vals)

sum += value.get();

context.write (key,

new LongWritable (sum)) ;

BytesWritable,

void map (Text key, BytesWritable value, Context co ee‘
L)
final Project p = ... /* read from input

LongWritable, Text,

Context context)

Text,

{

LongWritable> {

{
ﬂnlonKlnd.EQ adiExpressionKind.NEQ)
e

xPression exgt : efx SYONSs
(exp.klgtp ssionKind.LITERAL && exp.literal.equals("null")) {
“ wmwrite (new Text ("count"),

new LongWritable(1l));

LongWritable> {

Full program
over 140 lines of code

Uses JSON, SVN, and
Eclipse JDT libraries

Uses Hadoop framework

Explicit/manual
parallelization

A better solution...

ép: Project = input;

: count: output sum of int;

. visit(p, visitor {
before e: Expression ->

if (e.kind == ExpressionKind.EQ || e.kind == ExpressionKind.NEQ)
exists (i: int; isliteral (e.expressions[i], "null"))
count << 1;

Full program 8 lines of code!
Automatically parallelized!
No external libraries needed!

Analyzes 28.8 million source files in about 15 minutes!

(only 32 microseconds each!)

Dimipstt Boa Program Output

p= project1 program
; : count << 1
p= project2 program
: : count << 1
& D =project, = program :
count' OUtPUt Count[] = 120789791

count << 1 sum of int;

1+1+1+1+..

count << 1

p = project . program

pP: Project = input;

count: output sum of int;

visit(p, visitor {

before e: Expression ->

if (e.kind == ExpressionKind.EQ || e.kind == ExpressionKind.NEQ)

exists (i: int; isliteral (e.expressions[i], "null"))

count << 1;

Challenges and Design goals

=) Easy to use
Scalable and efficient

Reproducible research results

Let's see it In action!

http://boa.cs.iastate.edu/boa/

Why are we waiting for results?

Program is analyzing...

699,331 projects
494,158 repositories
15,063,073 revisions

69,863,970 files

18,651,043,238 AST nodes

Let's check the results!

<<demo>>

Domain-specific types

http://boa.cs.iastate.edu/docs/dsl-types.php

ép: Project = input;

. count: output sum of int;

. visit(p, visitor {
before e: Expression —>

if (e.kind == ExpressionKind.EQ || e.kimd == Hxy

exists (i: int; isliteral (e.essgmessssiicorss[il]],, "hullll'))))
count << 1;

Abstracts details of how to mine software repositories

User-defined functions

http://boa.cs.iastate.edu/docs/user-functions.php

Eid := function (a1: t
. # body

[return ... ;]

17 o7 =)

Return type is optional

® Allows for complex algorithms and code re-use

® Users can provide their own mining algorithms

Quantifiers

http://boa.cs.iastate.edu/docs/quantifiers.php

foreach (i: int; condition...) body;

For each value of 1 where condition holds, run body

Quantifiers

http://boa.cs.iastate.edu/docs/quantifiers.php

foreach (i: int; condition...) body;

For each value of 1 where condition holds, run body

exists (i: int; condition...) body;

If there exists a value of i1 where condition holds, run body

Quantifiers

http://boa.cs.iastate.edu/docs/quantifiers.php

foreach (i1i: int; condition...) body;

For each value of i1 where condition holds, run body

exlists (1i: 1nt; condition...) body;

If there exists a value of 1 where condition holds, run body

ifall (i: int; condition...) body;

If for all values of i condition holds, run body

Output and aggregation

http://boa.cs.iastate.edu/docs/aggregators.php

ép: Project = input;

: count: output sum of int;

. visit (p, visitor {
before e: Expression ->

if (e.kind == ExpressionKind.EQ || e.kind == ExpressionKind.NEQ)
exists (i: int; isliteral (e.expressions[i], "null"))
count << 1;

® Output defined in terms of predefined data aggregators

O sum, set, mean, maximum, minimum, etc

® \Values sent to output aggregation variables

What about source code?

ép: Project = input;

: count: output sum of int;

évisit(p, visitor {
' before e: Expression ->
if (e.kind == ExpressionKind.EQ || e.kind == ExpressionKind.NEQ)
exists (i: int; isliteral (e.expressions[i], "null"))
count << 1;

Declarative Visitors in Boa

[GPCE13]

Basic Syntax

1d := wvisitor {
before i1id:T -> statement
after 1i1d:T -> statement

};

visit(startNode, 1i1d);

Execute statement either before or after
visiting the children of a node of type T

Type Lists and Wildcards

visitor {

before id:T -> statement
after T2,T3,T4 -> statement
after —> statement

Matching single type (with identifier)

Attributes of the node available via identifier

Type Lists and Wildcards

visitor {

before 1d:T -> statement
after T2,T3,T4 -> statement
after —-> gstatement

Type list (no identifier)

Executes statement when visiting
nodes of type T2, T3, or T4

Type Lists and Wildcards

visitor {

before 1d:T -> statement
after T2,T3,T4 -> statement
after -> statement

Wildcard (no identifier)

Executes statement for any node not already listed in
another similar clause (e.g., T but not T2/T3/T4)

Provides default behavior

Custom Traversals

A->E->B->C->D

_
/\

I

before n: A -> {
visit(n.E) ;
visit(n.B);
stop;

That’s the language...

what can we do with it?

Expressiveness

Treasure study reproduction recaniio;
= 22 tasks
[GPCE’13]
Java language feature adoption

= 18 tasks
[in submission ICSE’14]

Several additional tasks (on Boa website)

How do projects adopt features?

Enhanced-for Loop

Projects

Most features see low use

Research question: are there missed
opportunities to use language features?

e.g., Underscore literals
22M occurrences before feature release
2M occurrences after feature release

Is old code refactored to use new
features?

Yes!

e.g., diamond pattern (JDKY)
8.5k refactorings detected
3.8k files
/2 projects

Challenges and Design goals

=) Easy to use
Scalable and efficient

Reproducible research results

Source Code Comprehension [1/3]

e Controlled Experiment
o Subjects shown 5 source code mining tasks in Boa
o Asked to describe (in own words) each task
o Same tasks shown again (random order)
m Multiple choice this time

o Experiment repeated 6 months later in Hadoop
m Same tasks
m Same wording for multiple choice answers

Source Code Comprehension [3/3]

Boa Programs Hadoop Programs
Q1 Q2 Q@3 Q4 Q5

(1) (¥)
) v
N Y N
NO,

T
@n

N N

D0

Source Code Comprehension [3/3]

Grading: Use Multiple Choice

Boa Programs Hadoop Programs

77.5% 62.5%

Source Code Comprehension [3/3]

Grading: Use Free-form

Boa Programs Hadoop Programs

67.5% 30%

Challenges and Design goals

Easy to use
=) Scalable and efficient

Reproducible research results

Efficient execution

100,000

m
T
| =
2
[}
L
%]
£
i
©
i
o
-

1
B Boa R K2 p3 8N el 82 gh 85 86 gl 28 29 gA0 g\ ¢ c? oM 02 03 oA 05

W Java Number of Projects (7k, 70k, 700k)

Efficient execution

x
(=]
o
~
X
o
~
X
~
A
(2]
©
2
o
o
o
[e]
S
(]
o
E
=]
P4

Total time (seconds)

Scalability of input size

100,000
10,000

1,000

n
T
c
Q
o
Q
L
Q
£
-
©
=
o
-

1

| A pZ pd 8N 82 83 b @5 % @l @2 @92 g0 g\ N c? oA 02 03 oA 0B
m Java

W Boa Number of Projects (7k, 70k, 700k)

Scalability of input size

10,750

Total time (seconds)

456 474 598
61 63
30
16 17l 22 15 16 = 15 17 a
7
4
20 & 05

Number of Projects (7k, 70k, 700k)

Scales to more cores

"
©
c
O
3}
@
&
)
=
=
c
o
=
5
o
]
X
Ll

Task A.3 Task B.6 Task C.1 Task D.5

H1map N2maps 4 maps HE8 maps N 16 maps 32 maps

Optimizations

FIFO Queue

.......
" .
.

- Computing
Submit Task Cluster

<9 Task

Result

: =
] e
*a e
A] -
: MapReduce, '
Hadoop, etc
N5
. 6 6 i
. ~,..’ u"-"
',.. La by
-.'____.'_-_..,.-_-_-.-.............................:Z::::-.-......‘_L-;_{_{.i.'u’-i"-“'*‘%““"

Time Sharing

. .,
.

- Computing
Submit Task Cluster

< Task

Result

3 MapReduce, '
Hadoop, etc
3 ‘. ., ,t;.‘
g "'.-.:"-.'..'.."-'...',""'----.....................::::::::'.:-.-.....”-{_{.{.um.'\-.'-.\.li.;.‘-“")

Solutions?

e Scale the hardware
o Expensive
o Not always feasible (small businesses, MOOC:s,
researchers, etc)

e Optimize the software
o Optimize individual tasks
m standard program optimizations
m chain folding minershooki2, SIDIING/MSCR fusion (chambersto;
o Optimize multiple tasks
m manual job merging minershook12)

[Chambers10] Craig Chambers et al., “FlumeJava”, PLDI 2010
[MinerShook12] Donald Miner and Adam Shook, “MapReduce Design Patterns”, O’Reilly, 2012

Research Questions

1. Can we automatically merge related tasks
from different users?

Answer: Task Fusion
[SPLASH 13 SRC]

2. Does Task Fusion decrease user wait times
In shared computing clusters?

Individual

Task Task q
Submit Tasks FUSiOH

MapReduce
Cluster

Task 4 Task

Result 1 Result N

.
.
. .
...........................
...

Reduce N

Technical Challenge:

map output == side effect

Single, Fused Task

-
Reduce 1 Result 1

v
S
Reduce 2 Result 2
v
S
Reduce ... Result ...
v
S
Reduce N Result N
v

Reduce N

Solution: modify maps to Custom partitioner
output composite keys ensures proper routing

Single, Fused Task

-

—»| Reduce 1 Result 1
~_

S
Reduce 2 Result 2

N~ —

-

Reduce ... Result ...
v

S
Reduce N Result N

~N~—

Custom Partitioner

Results

Times
Task Size # of Tasks
No Task Fusion Task Fusion

Small' 21 8.1m 0.8m
Medium? 22 2.3h 1.8h

Large? 18 4.6h 3.9h

Mixed? 9 1.3h 0.9h

[1] queries on project and revision metadata only
[2] queries on metadata and millions of source files
[3] 3 small, 3 medium, 3 large

Results

User Wait Time Improvement

1 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126 132138 144 130

Number of Tasks Fused

Can we do better?

Yes! = Visitor fusion
[to submit PLDI'14]

visit(p, visitor { visit(p, visitor {
before Tl -> sl; before Tl -> s2;
before T2 -> s3; after T3 -> s4;

}) }) s

Y _—

visit(p, visitor {
before Tl -> {
sl;
s2;

}
before T2 -> s3;

after T3 -> s4;
})

Results

Task Size

Medium

Large

Mixed

of Tasks

22
18
9

Times
Task Fusion Visitor Fusion
1.8h 1.8h
3.9h 0.5h
0.9h 0.6h

Combined Results

Times

Task Size # of Tasks Task+Visitor

No Fusion .
Fusion

Small' 21 8.1m 0.8m
Medium? 22 2.3h 1.8h

Large? 18 4.6h 0.5h

Mixed? 9 1.3h 0.6h

[1] queries on project and revision metadata only
[2] queries on metadata and millions of source files
[3] 3 small, 3 medium, 3 large

Challenges and Design goals

Easy to use
Scalable and efficient

=% Reproducible research results

Reproducing MSR results

Replicating MSR.
A study of the potential replicability of papers published in the
Mining Software Repositories Proceedings

Gregorio Robles
GSyC/LibreSoft
Universidad Rey Juan Carlos
Madid, Spain

wail: gre

Abstract—This paper is the result of reviewing all papers
published in the proceedings of the former International
Workshop on Mining Software Repositories (MSR) (2004-2006)
and now Working Conference on MSR (2007-2009). We have
analyzed the papers that contained any experimental analy
of software projects for their potentiality of being replicated.
In this regard, three main issues have been addressed: i) the
public availability of the data used as case study.

availability of the processed dataset used by researchers and iii)
the public availability of the tools and scripts. A total number of
171 papers have been analyzed from the six workshops/working
conferences up to date. Results show that MSR authors use
in general publicly available data sources, m;

software repositories, but that the amount of publicly avail
processed datasets is very low. Regarding tools and script:

a majority of papers we have not been able to find any tool,
even for papers where the authors explicitly state that they have
built one. Lessons learned from the experience of reviewing the
whole MSR literature and some potential solutions to lower the
barriers of replicability are finally presented and discussed.

Keywords-replication, tools, public datasets, mining software
repositories

ge: http://gsyc.urje.es/~grex/msr2010.
. INTRODUCTION
Mining software repositories (MSR) has become a fun-
damental arca of research for the Software Eng
community, and of vital importance in the case of empirical

studies. Sofiware repositories contain a large amount of valu-
able mformation that includes source control systems storing

all the history of the source code, defect tracking systems
that host defects, enhancements and other issues, and other
communication means such as mailing lists or forums.

a result of the possibilities that mining software repositories
offer, an annual workshop first, then working conference on
this topic has been organized with an extraordinary success
in participation and research output.

Being mainly focused on empirical research, we wanted
to evaluate how much of the research presented at the MSR
can be potentially replicated. Replication is a fundamental
task m empirical sciences and one of the main threats to
validity that empirical software engincering may suffer [1].

978-1-4244-6803-4/10/$26.00 © 2010 1

gsyc.urjc.es

Among these threats, we may encounter: lack of independent
validation of the presented results; changes in practices, tools
or methodologies; or generalization of knowledge although
a limited amount of case studies have been performed.

A simple taxonomy of replication studies provides us with
two main group: ct replications and conceptual replica-
tions. The former ones are those i “which the procedures
of an experiment are followed as closely as possible to
determine whether the same results can be obtained”, while
the latter ones are those “one in which the same research
question or hypothesis is evaluated by using a different
experimental procedure, i.c. many or all of the variables
described above are changed.” [2]. In this paper, we will
target exact replications as the requirements that have to be
met to perform an ¢ replication are more severe, and in
general make a conceptual replication feasible.

We are focusing m this paper on potential replication as
we have actually not replicated any of the studies presented
mn the papers under review. Our aim in this sense is more
humble: we want to check if the necessary conditions that
make a replication possible are met

The rest of the paper is structured as follows: in the next
section, the method used for this study is presented. Then
some general remarks on the MSR conference are given,
o give the reader a sense of the type of papers that are
published in the MSR proceedings. Results will be presented
in section IV: first, the replication-friendliness of the papers
will be shown and then each of the individual character-
istics that we have defined will be studied independently.
MSR has a special track called the “Mining Challenge”,
a section is devoted to analyze it with the aim of finding
if’ results differ from those for the rest of papers. Then,
other non-quantitative facts from the review are enumerated.

ction VII discusses the findings of the paper and hints at
possible solutions. Then, conclusions are drawn. In a final
section, the replicability of this paper is considered.

II. METHOD

The method that has been used to perform this study
is a complete literature review of the papers published in

MSR 2010

Robles, MSR'10

2/154 experimental
papers "replication
friendly."

48 due to lack of
published data

Prior research results are difficult
(or impossible) to reproduce.

Boa makes this easier!

Controlled Experiment

® Published artifacts (Boa website):
O Boa source code

O Dataset used (timestamp of data)
O Results

Post-doc
PhD
PhD
PhD
MS
MS
MS

BS

NN W R BB OGO
DW= RN BS

1
3
1
2
4
2
2
2

Fig. 16. Study results. All times given in minutes.

Ongoing work

cvs A
Google Code

bzr GitHub

Launchpad

Infrastructure

improvements Other

artifacts

Language
abstractions

Boa
http://boa.cs.iastate.edu/

e Domain-specific language and infrastructure
for software repository mining that is:

o Easy to use
o Efficient and scalable

o Amenable to reproducing prior results

Related - MSR

Sourcerer
Linstead et.al. 2009

PROMISE
Menzies et.al. 2009

Kenyon
Bevan et.al 2005

Related - Data-Parallel

MapReduce
Dean and Ghemawat 2004

Hadoop

Dryad
|Isard et.al. 2007

Related - Data-Parallel

Sawzall
Pike et.al. 2005

PigLatin
Olston et.al. 2008

HNEREVE!
Chambers et.al. 2010

Related - Visitors

GOF Visitor pattern 1994

Demeterd/DJ
Orleans and Lieberherr 2001

Recursive Traversals
Ovlinger and Wand 1999

Related - Studies

Java generics
Parnin et.al. 2011

Treasure
Grechanik et.al 2010

Language adoption
Meyerovich and Rabkin 2013

Related - Optimizations

Chain folding, job merging
Miner and Shook 2012

sibling fusion, MSCR fusion (FlumeJava)
Chambers et.al. 2012

ChainMapper/ChainReducer (Hadoop)

Domain-specific functions

http://boa.cs.iastate.edu/docs/dsl-functions.php

hanlletype := function (rev: Revision, ext: string) : bool {
exists (i: int; match(format(\.%s$, ext), rev.files[i] .name))
return true;

return false;

Mines a revision to see if it contains any files of the type specified.

Domain-specific functions

http://boa.cs.iastate.edu/docs/dsl-functions.php

1sfixingrevision := function (log: string) : bool {
' if (match(\bfix(s|es|ing|ed)?\b , log)) return true;
if (match(\b(error|bug|issue) (s)\b , log)) return true;
return false;

Mines a revision log to see if it fixed a bug.

