
pyMethods2Test:
A dataset of Python

tests mapped to focal
methods

Idriss Abdelmadjid

Robert Dyer

Problem: How to map Python tests to focal methods?

def square(n):
 return n * n
def cube(n):
 return n ** 3

class MathUtils:
 def factorial(self, n):
 if n == 0:
 return 1
 return n * self.factorial(n - 1)

 def multiply(self, a, b):
 return a * b

import unittest
from math_ops import square, cube, MathUtils

class TestMathOps(unittest.TestCase):
 def test_square(self):
 self.assertEqual(square(2), 4)
 self.assertEqual(square(-3), 9)

 def test_fact(self):
 utils = MathUtils()

 self.assertEqual(utils.factorial(0), 1)
 self.assertEqual(utils.factorial(5), 120)

2

Test file (test_math_ops.py) Focal file (math_ops.py)

Problem: How to map Python tests to focal methods?

def square(n):
 return n * n
def cube(n):
 return n ** 3

class MathUtils:
 def factorial(self, n):
 if n == 0:
 return 1
 return n * self.factorial(n - 1)

 def multiply(self, a, b):
 return a * b

import unittest
from math_ops import square, cube, MathUtils

class TestMathOps(unittest.TestCase):
 def test_square(self):
 self.assertEqual(square(2), 4)
 self.assertEqual(square(-3), 9)

 def test_fact(self):
 utils = MathUtils()

 self.assertEqual(utils.factorial(0), 1)
 self.assertEqual(utils.factorial(5), 120)

2

Test file (test_math_ops.py) Focal file (math_ops.py)

Problem: How to map Python tests to focal methods?

Test file (test_math_ops.py)

def square(n):
 return n * n
def cube(n):
 return n ** 3

class MathUtils:
 def factorial(self, n):
 if n == 0:
 return 1
 return n * self.factorial(n - 1)

 def multiply(self, a, b):
 return a * b

import unittest
from math_ops import square, cube, MathUtils

class TestMathOps(unittest.TestCase):
 def test_square(self):
 self.assertEqual(square(2), 4)
 self.assertEqual(square(-3), 9)

 def test_fact(self):
 utils = MathUtils()

 self.assertEqual(utils.factorial(0), 1)
 self.assertEqual(utils.factorial(5), 120)

Focal file (math_ops.py)

2

Applications

For Researchers:
Mining test smells, testing design
patterns, test code styles, etc.

For Developers:
Could be used to train/fine-tune LLMs
for automated test generation, fault
localization, etc.

For Educators:
Real-world test examples for teaching
and evaluation.

3

Data Format (JSON)Key Statistics

File data includes:

• File paths,

• module name,
• methods,

• classes,
• line numbers, and

• indentation level.

Test data also includes:

• testing framework,

• non-library imports, and
• test methods.

Repositories: 88,846

Files:

• Total: 18,517,737

• Test files: 1,289,630

Classes: 36,222,490

Methods:

• Total: 222,020,293
• Test methods: 22,662,037

Mapped Focal Methods: 2,198,378

Focal data includes:

• File paths,

• identified testing framework,
• test method locations,

• line numbers,
• indentation, and

• import statements.

4

Solution

def square(n):
 return n * n
def cube(n):
 return n ** 3

class MathUtils:
 def factorial(self, n):
 if n == 0:
 return 1
 return n * self.factorial(n - 1)

 def multiply(self, a, b):
 return a * b

import unittest
from math_ops import square, cube, MathUtils

class TestMathOps(unittest.TestCase):
 def test_square(self):
 self.assertEqual(square(2), 4)
 self.assertEqual(square(-3), 9)

 def test_fact(self):
 utils = MathUtils()

 self.assertEqual(utils.factorial(0), 1)
 self.assertEqual(utils.factorial(5), 120)

5

Test file (test_math_ops.py) Focal file (math_ops.py)

Solution

def square(n):
 return n * n
def cube(n):
 return n ** 3

class MathUtils:
 def factorial(self, n):
 if n == 0:
 return 1
 return n * self.factorial(n - 1)

 def multiply(self, a, b):
 return a * b

import unittest
from math_ops import square, cube, MathUtils

class TestMathOps(unittest.TestCase):
 def test_square(self):
 self.assertEqual(square(2), 4)
 self.assertEqual(square(-3), 9)

 def test_fact(self):
 utils = MathUtils()

 self.assertEqual(utils.factorial(0), 1)
 self.assertEqual(utils.factorial(5), 120)

5

Test file (test_math_ops.py) Focal file (math_ops.py)

M. Tufano, S. K. Deng, N. Sundaresan, and A. Svyatkovskiy, “Methods2Test: A dataset of focal methods mapped to test cases,”

MSR 2022.

Solution

def square(n):
 return n * n
def cube(n):
 return n ** 3

class MathUtils:
 def factorial(self, n):
 if n == 0:
 return 1
 return n * self.factorial(n - 1)

 def multiply(self, a, b):
 return a * b

import unittest
from math_ops import square, cube, MathUtils

class TestMathOps(unittest.TestCase):
 def test_square(self):
 self.assertEqual(square(2), 4)
 self.assertEqual(square(-3), 9)

 def test_fact(self):
 utils = MathUtils()

 self.assertEqual(utils.factorial(0), 1)
 self.assertEqual(utils.factorial(5), 120)

5

Test file (test_math_ops.py) Focal file (math_ops.py)

Solution

def square(n):
 return n * n
def cube(n):
 return n ** 3

class MathUtils:
 def factorial(self, n):
 if n == 0:
 return 1
 return n * self.factorial(n - 1)

 def multiply(self, a, b):
 return a * b

import unittest
from math_ops import square, cube, MathUtils

class TestMathOps(unittest.TestCase):
 def test_square(self):
 self.assertEqual(square(2), 4)
 self.assertEqual(square(-3), 9)

 def test_fact(self):
 utils = MathUtils()

 self.assertEqual(utils.factorial(0), 1)
 self.assertEqual(utils.factorial(5), 120)

5

Test file (test_math_ops.py) Focal file (math_ops.py)

Solution

def square(n):
 return n * n
def cube(n):
 return n ** 3

class MathUtils:
 def factorial(self, n):
 if n == 0:
 return 1
 return n * self.factorial(n - 1)

 def multiply(self, a, b):
 return a * b

import unittest
from math_ops import square, cube, MathUtils

class TestMathOps(unittest.TestCase):
 def test_square(self):
 self.assertEqual(square(2), 4)
 self.assertEqual(square(-3), 9)

 def test_fact(self):
 utils = MathUtils()

 self.assertEqual(utils.factorial(0), 1)
 self.assertEqual(utils.factorial(5), 120)

5

Test file (test_math_ops.py) Focal file (math_ops.py)

Sample test metadata (math_ops.test.json)
[
 {
 "file_path": "src/test_math_ops.py",
 "test_framework": "unittest",
 "test_imports": {},
 "test_methods": [
 {
 "method_name": "test_square",
 "line": 5,
 "line_end": 7,
 "indent": 4,
 "called_methods": [
 "square"
]
 },
 {
 "method_name": "test_fact",
 "line": 9,
 "line_end": 12,
 "indent": 4,
 "called_methods": [
 "utils.factorial"
]
 }
]
 }
] 6

Sample focal metadata (math_ops.focal.json)

{
 "test_math_ops.py": {
 "focal_file": "src/math_ops.py",
 "methods": {
 "test_square": {
 "line": 5,
 "line_end": 7,
 "indent": 4,
 "focal_class": null,
 "focal_method": {
 "line": 1,
 "line_end": 2,
 "indent": 0,
 "name": "square"
 }
 },

...

...
 "test_factorial": {
 "line": 9,
 "line_end": 13,
 "indent": 4,
 "focal_class": "MathUtils",
 "focal_method": {
 "line": 7,
 "line_end": 10,
 "indent": 4,
 "name": "factorial"
 }
 }
 }
 }

}

7

Sample focal metadata (math_ops.focal.json)

{
 "test_math_ops.py": {
 "focal_file": "src/math_ops.py",
 "methods": {
 "test_square": {
 "line": 5,
 "line_end": 7,
 "indent": 4,
 "focal_class": null,
 "focal_method": {
 "line": 1,
 "line_end": 2,
 "indent": 0,
 "name": "square"
 }
 },

...

...
 "test_factorial": {
 "line": 9,
 "line_end": 13,
 "indent": 4,
 "focal_class": "MathUtils",
 "focal_method": {
 "line": 7,
 "line_end": 10,
 "indent": 4,
 "name": "factorial"
 }
 }
 }
 }

}

7

Sample focal metadata (math_ops.focal.json)

{
 "test_math_ops.py": {
 "focal_file": "src/math_ops.py",
 "methods": {
 "test_square": {
 "line": 5,
 "line_end": 7,
 "indent": 4,
 "focal_class": null,
 "focal_method": {
 "line": 1,
 "line_end": 2,
 "indent": 0,
 "name": "square"
 }
 },

...

...
 "test_factorial": {
 "line": 9,
 "line_end": 13,
 "indent": 4,
 "focal_class": "MathUtils",
 "focal_method": {
 "line": 7,
 "line_end": 10,
 "indent": 4,
 "name": "factorial"
 }
 }
 }
 }

}

7

Sample focal metadata (math_ops.focal.json)

{
 "test_math_ops.py": {
 "focal_file": "src/math_ops.py",
 "methods": {
 "test_square": {
 "line": 5,
 "line_end": 7,
 "indent": 4,
 "focal_class": null,
 "focal_method": {
 "line": 1,
 "line_end": 2,
 "indent": 0,
 "name": "square"
 }
 },

...

...
 "test_factorial": {
 "line": 9,
 "line_end": 13,
 "indent": 4,
 "focal_class": "MathUtils",
 "focal_method": {
 "line": 7,
 "line_end": 10,
 "indent": 4,
 "name": "factorial"
 }
 }
 }
 }

}

7

Context for LLMs

def test_fact(self):
 utils = MathUtils()

 self.assertEqual(utils.factorial(0), 1)
 self.assertEqual(utils.factorial(5), 120)

Provide additional context to train LLMs:

• global function signatures,
• class method signatures,
• class/instance attributes, and
• the focal method body.

8

Context for LLMs

def test_fact(self):
 utils = MathUtils()

 self.assertEqual(utils.factorial(0), 1)
 self.assertEqual(utils.factorial(5), 120)

def square(n): ...
def cube(n): ...

class MathUtils:
 def factorial(self, n):
 if n == 0:
 return 1
 return n * self.factorial(n - 1)

 def multiply(self, a, b): ...

Provide additional context to train LLMs:

• global function signatures,
• class method signatures,
• class/instance attributes, and
• the focal method body.

8

Conclusion

• First large-scale Python test-to-focal dataset

• Provides comprehensive mappings between test
methods and focal methods for Python.

• Dataset is publicly available, supporting further research,
test generation, and tool development.

• Future Directions

• Support more testing frameworks, beyond pytest and unittest.

• Refine heuristics to improve the handling of atypical naming schemes and edge
cases.

https://go.unl.edu/pymethods2test

9

https://go.unl.edu/pymethods2test

	Slide 1: pyMethods2Test: A dataset of Python tests mapped to focal methods
	Slide 2: Problem: How to map Python tests to focal methods?
	Slide 3: Problem: How to map Python tests to focal methods?
	Slide 4: Problem: How to map Python tests to focal methods?
	Slide 5: Applications
	Slide 6
	Slide 7: Solution
	Slide 8: Solution
	Slide 9: Solution
	Slide 10: Solution
	Slide 11: Solution
	Slide 12: Sample test metadata (math_ops.test.json)
	Slide 13: Sample focal metadata (math_ops.focal.json)
	Slide 14: Sample focal metadata (math_ops.focal.json)
	Slide 15: Sample focal metadata (math_ops.focal.json)
	Slide 16: Sample focal metadata (math_ops.focal.json)
	Slide 17: Context for LLMs
	Slide 18: Context for LLMs
	Slide 19: Conclusion

