N

SGHOOL OF COMPUTING

pyMethods2Test:

A dataset of Python
tests mapped to focal
methods

|driss Abdelmadijid
Robert Dyer

Problem: How to map Python tests to focal methods?

Test file (test_math_ops.py) Focal file (nath_ops. py)
import unittest def square(n):
from math_ops import square, cube, MathUtils return n * n
def cube(n):
class TestMathOps(unittest.TestCase): return n ** 3
def test square(self):
self.assertEqual(square(2), 4) class MathUtils:
self.assertEqual(square(-3), 9) def factorial(self, n):
if n ==
def test fact(self): return 1
utils = MathUtils() return n * self.factorial(n - 1)
self.assertEqual(utils.factorial(@), 1) def multiply(self, a, b):
self.assertEqual(utils.factorial(5), 120) return a * b

Problem: How to map Python tests to focal methods?

Test file (test_math_ops.py)

Focal file (math_ops. py)

import unittest
from math_ops import square, cube, MathuUtil

class TestMathOps(unittest.Tes
def test square(self):
self.assertEqual(square(2), 4)
self.assertEqual(square(-3), 9)

def test fact(self):
utils = MathUtils()

self.assertEqual(utils.factorial(@), 1)
self.assertEqual(utils.factorial(5), 120)

def square(n):
return n * n

def cube(n):
return n ** 3

class MathUtils:
def factorial(self, n):
if n ==
return 1
return n * self.factorial(n - 1)

def multiply(self, a, b):
return a * b

Problem: How to map Python tests to focal methods?

Test file (test_math_ops.py)

Focal file (math_ops. py)

import unittest
from math_ops import square, cube, MathuUtil

class TestMathOps(unittest.Tes
def test square(self):
self.assertEqual(square(2), 4)

self.assertEqual(square(-3), 9)
def test fact(self):

utils = MathUtils()

self.assertEqual(utils.factorial(@), 1)
self.assertEqual(utils.factorial(5), 120)

def

def

square(n):
return n * n
cube(n):
return n ** 3

class MathUtils:

def factorial(self, n):
if n ==
return 1
return n * self.factorial(n - 1)

def multiply(self, a, b):
return a * b

Applications

/\’5

For Researchers:
Mining test smells, testing design
patterns, test code styles, etc.

For Developers:

Could be used to train/fine-tune LLMs
for automated test generation, fault
localization, etc.

For Educators:
Real-world test examples for teaching
and evaluation.

Key Statistics

Repositories: 88,846
Files:
e Total: 18,517,737
e Test files: 1,289,630
Classes: 36,222,490
Methods:
e Total: 222,020,293
e Test methods: 22,662,037

Mapped Focal Methods: 2,198,378

Data Format (JSON)

File data includes: Focal data includes:
e File paths, File paths,
e module name, e identified testing framework,
e methods, e test method locations,
e classes, e line numbers,

¢ |line numbers, and
¢ indentation level.

Test data also includes:
e testing framework,
e non-library imports, and
e test methods.

¢ indentation, and
e import statements.

Solution

Test file (test_math_ops.py) Focal file (nath_ops. py)
import unittest def square(n):
from math_ops import square, cube, MathUtils return n * n
def cube(n):
class TestMathOps(unittest.TestCase): return n ** 3
def test square(self):
self.assertEqual(square(2), 4) class MathUtils:
self.assertEqual(square(-3), 9) def factorial(self, n):
if n ==
def test fact(self): return 1
utils = MathUtils() return n * self.factorial(n - 1)
self.assertEqual(utils.factorial(@), 1) def multiply(self, a, b):
self.assertEqual(utils.factorial(5), 120) return a * b

Solution

M. Tufano, S. K. Deng, N. Sundaresan, and A. Svyatkovskiy, “Methods2Test: A dataset of focal methods mapped to test cases,”

MSR 2022.

Test file (testl_math_ops I py)

Focal fiIeI(mat h_opsl py)

import unittest
from math_ops import square, cube, MathUtils

class TestMathOps(unittest.TestCase):
def testself):
self.assertkqual(square(2), 4)
self.assertEqual(square(-3), 9)

def test fact(self):
utils = MathUtils()

self.assertEqual(utils.factorial(@), 1)
self.assertEqual(utils.factorial(5), 120)

defn):
return n * n

def cube(n):
return n ** 3

class MathUtils:
def factorial(self, n):
if n ==
return 1
return n * self.factorial(n - 1)

def multiply(self, a, b):
return a * b

Solution

Test file (test_math_ops.py) Focal file (nath_ops. py)
import unittest def square(n):
from math_ops import square, cube, MathUtils return n * n
def cube(n):
class TestMathOps(unittest.TestCase): return n ** 3

def test square(self):
self.assertEqual(square(2), 4)
self.assertEqual(square(-3), 9)

def testself): return 1
utils = MathUtils() return n * self.factorial(n - 1)

self.assertEqual(utils.factorial(@), 1) def multiply(self, a, b):
self.assertEqual(utils.factorial(5), 120) return a * b

Solution

Test file (test_math_ops.py)

Focal file (math_ops. py)

import unittest
from math_ops import square, cube, MathUtils

class TestMathOps(unittest.TestCase):
def test square(self):
self.assertEqual(square(2), 4)
self.assertEqual(square(-3), 9)

def +p<+_Fnr+(<p1F)'
lutils = Mathutils()]

self. asser‘tEqualfactor‘ial(e) , 1)

self.assertEqual(utils.factorial(5), 120)

def square(n):
return n * n
def cube(n):

return n ** 3

class MathUtils:
def |factorial(self, n):
1t n ==
return 1
return n * self.factorial(n - 1)

def multiply(self, a, b):
return a * b

Solution

Test file (test_math_ops.py) Focal file (nath_ops. py)
import unittest def square(n):
from math_ops import square, cube,IMathUtilsI return n * n
def cube(n):
class TestMathOps(unittest.TestCase): return n ** 3
def test square(self):
self.assertEqual(square(2), 4) classIMathUtilsl
self.assertEqual(square(-3), 9) def |factorial(self, n):
1t n ==
def testlfact(self): return 1
utils = MathUtils() return n * self.factorial(n - 1)
self.assertEqual(utils}factorial(@), 1) def multiply(self, a, b):
self.assertEqual(utils.factorial(5), 120) return a * b

Sample test metadata (math ops.test. json)

"file path": "src/test_math _ops.py",
"test framework": "unittest",
"test _imports": {},
"test _methods": [
{
"method_name": "test square",
"line": 5,
"line_end": 7,
"indent": 4,
"called methods": [
"square"

"method _name": "test fact",
"line": 9,

"line_end": 12,

me nt". 4

"called methods": [
"utils.factorial™

Sample focal metadata (math ops.focal. json)

"test _math ops.py": { "test factorlal : {
"focal file": "src/math_ops.py", "line": 9,
"methods": { "11ne_end": 13,
"test square s "indent": 4,
"line" 5, "focal class": "Mathutils",
"11ne_end": 7, "focal method : q{
"indent": 4, "line": 7,
"focal class": null, "11ne_end": 10,
"focal method : { "indent": 4,
"line": 1, "name": "factorial"
"11ne_end": 2, }
"indent": 9, }
"name": "square" }
} }

}s }

Sample focal metadata (math ops.focal. json)

"tesl _ | "test factorlal : {
"focal file": "src/math_ops.py"J "line": 9,

"methods” : { "11ne_end": 13,
"test square s "indent": 4,
"line" 5, "focal class": "Mathutils",
"11ne_end": 7, "focal method : q{
"indent": 4, "line": 7,
"focal class": null, "11ne_end": 10,
"focal method : { "indent": 4,
"line": 1, "name": "factorial"
"11ne_end": 2, }
"indent": 9, }
"name": "square" }
} }

}s }

Sample focal metadata (math ops.focal. json)

"test _math ops.py": { "test factorial": {
"focal file": "src/math_ops.py", "line": 9,
"methods": { "line end": 13,
"test square": { i .
"line": 5, "focal class": "MathUtils",I
"line end": 7, "focal method": {
"indent": 4, "line": 7,
I"Focal_class": null,l "line end": 10,
"tocal method : { "indent": 4,
"line": 1, "name": "factorial"”
"line end": 2, }
"indent": 9, }
"name": "square" }
} }

}s }

Sample focal metadata (math ops.focal. json)

"test _math ops.py": { "test factorial": {
"focal file": "src/math_ops.py", "line": 9,
"methods": { "line end": 13,
"test square": { "indent": 4,
"line": 5, tfocal clacc: IMathlEilg™)
"line end": 7, "focal method": {
"indent": 4, "line": 7,
e s e p s T "line_end": 10,
"focal method": { "indent": 4,
"line": 1, "name": "factorial"”
"line end": 2, }
"indent": 9, }
"name": "square" }
} }

}s }

def test fact(self):
utils = MathUtils()

COnteXt for |—I—I\/IS self.assertEqual(utils.factorial(@), 1)

self.assertEqual(utils.factorial(5), 120)

Provide additional context to train LLMs:

global function signatures,
class method signatures,
class/instance attributes, and
the focal method body.

def test fact(self):
utils = MathUtils()

COnteXt for |—I—I\/IS self.assertEqual(utils.factorial(@), 1)

self.assertEqual(utils.factorial(5), 120)

def square(n):
def cube(n):
Provide additional context to train LLMs:
class MathUtils:
def factorial(self, n):
if n ==
return 1
return n * self.factorial(n - 1)

global function signatures,
class method signatures,
class/instance attributes, and
the focal method body.

def multiply(self, a, b):

Conclusion

* First large-scale Python test-to-focal dataset

* Provides comprehensive mappings between test
methods and focal methods for Python.

* Dataset is publicly available, supporting further research,
test generation, and tool development. E

'l

https://go.unl.edu/pymethods2test

* Future Directions
* Support more testing frameworks, beyond pytest and unittest.

» Refine heuristics to improve the handling of atypical naming schemes and edge
cases.

https://go.unl.edu/pymethods2test

	Slide 1: pyMethods2Test: A dataset of Python tests mapped to focal methods
	Slide 2: Problem: How to map Python tests to focal methods?
	Slide 3: Problem: How to map Python tests to focal methods?
	Slide 4: Problem: How to map Python tests to focal methods?
	Slide 5: Applications
	Slide 6
	Slide 7: Solution
	Slide 8: Solution
	Slide 9: Solution
	Slide 10: Solution
	Slide 11: Solution
	Slide 12: Sample test metadata (math_ops.test.json)
	Slide 13: Sample focal metadata (math_ops.focal.json)
	Slide 14: Sample focal metadata (math_ops.focal.json)
	Slide 15: Sample focal metadata (math_ops.focal.json)
	Slide 16: Sample focal metadata (math_ops.focal.json)
	Slide 17: Context for LLMs
	Slide 18: Context for LLMs
	Slide 19: Conclusion

