
1

An LLM-Based Agent-Oriented Approach for Automated Code
Design Issue Localization

Fraol Batole, David OBrien Robert Dyer Tien N. Nguyen Hridesh Rajan

 fbatole@tulane.edu davidob@iastate.edu rdyer@unl.edu tien.n.nguyen@utdallas.edu hrajan@tulane.edu

47th International Conference on Software Engineering

Design Issues

2

➢Design debt emerges naturally as systems evolve. E.g., (1) poor modularity, (2) tight
coupling, (3) excessive complexity, etc.

Erode maintainability and drive

costs up. ​

Resolving Design Issues

3

Runs static-analysis tools

(e.g., PMD)

High-level

 Identify the Design Issue

Resolving Design Issues

4

Runs more program analysis

tools, visual diagrams, read

documentation, etc…

Call Graph

Program Dependency

Graph

 Understand the Code in

Context

Challenges

5

High-level rule violations

o (High-Level Detection such as “God Class” ≠ Actionable Localization)

 High cognitive load for developers

 Time consuming process

We already have a workflow of resolving the

issues from developers

 Limited context → can’t attend to or reason over large connected contexts

 LLMs lack built-in understanding of structural artifacts → struggle with
PDGs, ASTs, Call graphs, etc.

 Need structured inputs to reason effectively

 Why LLMs Can’t Yet Solve This

6

Contributions

7

 Multi-Agent Design Issue Localization Framework

 Natural Language Representation of Program Analysis Outputs

 Context-Aware Prompting

Cooperative agents orchestrating analysis, understand the

codebase and localization issues.

Summarized static analysis → LLM-readable insights.

Refactoring-type and code analysis-driven prompt

customization.

Overview of Approach

8

Design Issue

Analysis Agent

Planning Agent

Program Analysis

Agents

Prompt Builder

Agent

Ranking Agent

Localize Design

Issues

Source Code

Overview of Approach

9

Design Issue

Analysis Agent

Planning Agent

Program Analysis

Agents

Prompt Builder

Agent
Localize Design

Issues

Ranking Agent

Source Code

Overview of Approach

10

Design Issue

Analysis Agent

Planning Agent

Program Analysis

Agents

Prompt Builder

Agent
Localize Design

Issues

Ranking Agent

Source Code

Overview of Approach

11

Design Issue

Analysis Agent

➢Uses static-analysis tools (e.g., PMD) to flag coarse-grained
smells (God Class, High Coupling, etc.)

➢Maps each violation into structural design issue types

 God Class

 High Coupling

➢Passes structured violation summaries to downstream agents
(Planning, Program Analysis)

Modularity

➤ Infers the design rationale behind each violation to guide localization planning

Overview of Approach

12

Design Issue

Analysis Agent

Planning Agent

Program Analysis

Agents

Prompt Builder

Agent
Localize Design

Issues

Ranking Agent

Source Code

Overview of Approach

13

Program Analysis

Agents

➢ Run lightweight, targeted analyses to extract
structural cues from the codebase, e.g.,:

oFan-in / Fan-out metrics

o Class coupling degrees

➢Provide summaries tailored for LLM consumption

oAvoids sending large graphs or raw ASTs

➤ Passes compact, LLM-interpretable natural-language summary

Overview of Approach

14

Design Issue

Analysis Agent

Planning Agent

Program Analysis

Agents

Prompt Builder

Agent
Localize Design

Issues

Ranking Agent

Source Code

Overview of Approach

15

Prompt Builder

Agent

➢Synthesizes a structured prompt for LLMs from upstream
outputs

oUses the detected design issue + analysis summaries

➢Fills a 3-part dictionary:

o Query — refactoring intent in question form

o Code Snippet — full relevant code

o Analysis Summary — reasoning over the metrics and
structural cues

➤ Improves localization precision by grounding the LLM in structural reasoning

Overview of Approach

16

Design Issue

Analysis Agent

Planning Agent

Program Analysis

Agents

Prompt Builder

Agent
Localize Design

Issues

Ranking Agent

Source Code

Overview of Approach

17

Design Issue

Analysis Agent

Planning Agent

Program Analysis

Agents

Prompt Builder

Agent
Localize Design

Issues

Ranking Agent

Source Code

Experimental setup

18

➢Dataset Construction Process

Refactoring

Commits

Detect Design

Smells

Filtering

Criteria
Gold Set

Experimental setup

19

➢Baseline Comparison:
o Comparison against naive LLM prompting method

➢Evaluation Metrics:
o Exact-match accuracy at varying ranks (EM@1, EM@5, EM@10)

Research Questions

20

RQ4: What is the time and budget to localize design issues?

RQ3: (Ablation Study) How does each component in LOCALIZEAGENT contribute to the
performance of localizing issues?

RQ2: How sensitive is LOCALIZEAGENT under different API settings when suggesting design
issues refactoring?

RQ1: How effective is LOCALIZEAGENT on localizing design issues?

RQ1 Results – Recall

21

LocalizeAgent significantly improves design issue localization,

achieving higher top-k recall than naive prompting, especially for

modularity violations.

RQ4 Results – Runtime and Cost

22

$0.00

$0.20

$0.40

$0.60

PV-Ref IM-Ref IV-Ref MM-Ref

Claude GPT-4o Gemini 1.0

0

2

4

6

PV-Ref IM-Ref IV-Ref MM-Ref

Claude GPT-4o Gemini 1.0

LocalizeAgent offers a cost-effective and time-efficient solution,

completing localization tasks with low API usage and minimal

latency.

Conclusion

23

24

Thank you!

Please scan the QR code to read the full paper

or to access the tool

Full Paper: Codebase:

	Slide 1: An LLM-Based Agent-Oriented Approach for Automated Code Design Issue Localization
	Slide 2: Design Issues
	Slide 3: Resolving Design Issues
	Slide 4: Resolving Design Issues
	Slide 5: Challenges
	Slide 6: 🤖 Why LLMs Can’t Yet Solve This
	Slide 7: Contributions
	Slide 8: Overview of Approach
	Slide 9: Overview of Approach
	Slide 10: Overview of Approach
	Slide 11: Overview of Approach
	Slide 12: Overview of Approach
	Slide 13: Overview of Approach
	Slide 14: Overview of Approach
	Slide 15: Overview of Approach
	Slide 16: Overview of Approach
	Slide 17: Overview of Approach
	Slide 18: Experimental setup
	Slide 19: Experimental setup
	Slide 20: Research Questions
	Slide 21: RQ1 Results – Recall
	Slide 22: RQ4 Results – Runtime and Cost
	Slide 23: Conclusion
	Slide 24

