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Design Issues
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➢Design debt emerges naturally as systems evolve. E.g., (1) poor modularity, (2) tight 
coupling, (3) excessive complexity, etc.

Erode maintainability and drive 

costs up. ​



Resolving Design Issues
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Runs static-analysis tools 

(e.g., PMD) 

High-level

 Identify the Design Issue



Resolving Design Issues
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Runs more program analysis 

tools, visual diagrams, read 

documentation, etc…

Call Graph

Program Dependency 

Graph

 Understand the Code in 

Context



Challenges
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High-level rule violations

o  (High-Level Detection such as “God Class” ≠ Actionable Localization )

 High cognitive load for developers

 Time consuming process 
 

We already have a workflow of resolving the 

issues from developers



 Limited context → can’t attend to or reason over large connected contexts

 LLMs lack built-in understanding of structural artifacts → struggle with 
PDGs, ASTs, Call graphs, etc.

 
 Need structured inputs to reason effectively

 Why LLMs Can’t Yet Solve This
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Contributions
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 Multi-Agent Design Issue Localization Framework 

 Natural Language Representation of Program Analysis Outputs

 Context-Aware Prompting 

Cooperative agents orchestrating analysis, understand the 

codebase and localization issues.

Summarized static analysis → LLM-readable insights.

Refactoring-type and code analysis-driven prompt 

customization.



Overview of Approach
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Design Issue 

Analysis Agent

➢Uses static-analysis tools (e.g., PMD) to flag coarse-grained 
smells (God Class, High Coupling, etc.)

➢Maps each violation into structural design issue types

  God Class

  High Coupling

➢Passes structured violation summaries to downstream agents 
(Planning, Program Analysis)

Modularity

➤ Infers the design rationale behind each violation to guide localization planning
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Overview of Approach
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Program Analysis 

Agents

➢ Run lightweight, targeted analyses to extract 
structural cues from the codebase, e.g.,:

oFan-in / Fan-out metrics

o  Class coupling degrees 

➢Provide summaries tailored for LLM consumption

oAvoids sending large graphs or raw ASTs

➤   Passes compact, LLM-interpretable natural-language summary  
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Prompt Builder 

Agent

➢Synthesizes a structured prompt for LLMs from upstream 
outputs  

oUses the detected design issue + analysis summaries

➢Fills a 3-part dictionary:

o  Query — refactoring intent in question form  

o  Code Snippet — full relevant code  

o  Analysis Summary — reasoning over the metrics and 
structural cues

➤ Improves localization precision by grounding the LLM in structural reasoning
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Experimental setup
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➢Dataset Construction Process

Refactoring 

Commits

Detect Design 

Smells

Filtering 

Criteria
Gold Set



Experimental setup
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➢Baseline Comparison: 
o  Comparison against naive LLM prompting method

➢Evaluation Metrics: 
o  Exact-match accuracy at varying ranks (EM@1, EM@5, EM@10)



Research Questions
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RQ4: What is the time and budget to localize design issues?

RQ3: (Ablation Study) How does each component in LOCALIZEAGENT contribute to the 
performance of localizing issues?

RQ2: How sensitive is LOCALIZEAGENT under different API settings when suggesting design 
issues refactoring?

RQ1: How effective is LOCALIZEAGENT on localizing design issues?



RQ1 Results – Recall
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LocalizeAgent significantly improves design issue localization, 

achieving higher top-k recall than naive prompting, especially for 

modularity violations.



RQ4 Results – Runtime and Cost
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LocalizeAgent offers a cost-effective and time-efficient solution, 

completing localization tasks with low API usage and minimal 

latency. 



Conclusion
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Thank you!

Please scan the QR code to read the full paper 

or to access the tool

Full Paper: Codebase:
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