
Jigyasa Chauhan
Thesis Defense

AN EMPIRICAL STUDY ON THE CLASSIFICATION
OF PYTHON LANGUAGE FEATURES USING

EYE-TRACKING

Committee:
Dr. Robert Dyer
Dr. Bonita Sharif

Dr. Rahul Purandare

2

Python paradigms and features

Python is a multi-paradigm programming language and
currently one of the most popular languages.

Imperative assignment, logical operations, …
Procedural def, return, calls, …
Object-Oriented class, inheritance, with, …
Functional lambda, for loops, iterators, …

3

Related Work

• Peng et al. found that developers choose certain features more than
others to perform a task with Python project (2021)[3]

• Floyd et al. found that if a developer learns imperative style of
coding, then it is harder to switch to OO paradigm (1979)[5]

• Shrestha et al. found that prior learning of a previous language can
hinder the grasping of a new language (2020)[4]

• Alexandru et al. studied how developers lack an understanding of
Python definitions and use them over GitHub and StackOverflow
(2018)[2]

4

Previous Work

• Dyer and Chauhan 2022, explored over 100K+ Python projects from
GitHub and classified Python paradigms using a query. They found
that functional paradigm was used significantly less than procedural
and object-oriented paradigms[1]

• Therefore, we were interested to investigate how Python developers
classify Python paradigms.

5

Motivation

Help the people in
education sector by
teaching and training
developers with
Python paradigms and
features.

Training Python
developers with new
language paradigms
and features, required
to perform certain
tasks in the industry.

Researchers trying to
understand Program
Comprehension. Also,
the Python community
that has been
maintaining Python, can
understand how
developers use Python
features.

RESEARCH QUESTIONS

7

Research Questions

1. How difficult is it for developers to classify the predominant Python
paradigm?

2. How accurately do developers classify the predominant paradigm in
Python code?

3. Do developers fixate their gaze on specific Python language features
when classifying predominant paradigms?

4. Does the predominant paradigm affect how long developer’s take
to debug logical errors?

5. Does the predominant paradigm affect a developer’s ability to
debug logical errors?

CL
AS

SI
FI

CA
TI

O
N

BU
G

 LO
CA

LI
ZA

TI
O

N

8

Solution

We needed to investigate developer’s behavior with collecting
surveys and analyzing time data using Python libraries.

We needed eye-tracking to understand developer’s behavior
with respect to classification and bug localization Python
paradigms.

We needed to interview Python developers to understand their
approach and methodology towards Python paradigms.

STUDY DESIGN AND APPROACH

10

Tools and Software

Boa to search for tasks

Eclipse IDE for viewing Python code

Tobii TX300 eye tracker (60 Hz)

iTrace plugin and toolkit

11

Participants

• 29+2 participants
(removed 1 due to no Python experience and
1 due to poor eye tracking calibration)

• More than 85% were CS majors
• All participants had at least 1 year of experience in Python

12

Task Categories

Task Category 1 – Classification of paradigms
• Small code (1-15 statements)
• Medium code (16-30 statements)
• Large code (31-45 statements)

Task Category 2 – Bug localization in different paradigms
• Cube of a number
• Factorial of a number
• Largest number
• Palindrome number

13

Survey + Task questionnaires (Google forms)

Eye-tracking data (XML files and database by iTrace toolkit)

Audio only interview (audio files à transcribed text on index cards)

Data Collection Methods

14

Study Flow

Post-questionnaire

Interview

Task Category 2 (Bug Localization)

Interview

Task Category 1 (Classification)

Training

Pre-questionnaire

15

Training Example for Classification (Task 1)

(code listing taken from [1])

Paradigms
func: functional
oo: object-oriented
imp: imperative
proc: procedural

class MyNumbers: # func oo

x = 1 # oo imp
def m(self): # oo

def m3(): # oo
return 1 # oo proc

y = m3() # oo proc
return y # oo

def __iter__(self): # func oo
self.x = 1 # oo
return self # oo

def __next__(self): # func oo
y = self.x # oo
self.x += 1 # oo
return y # oo

x = MyNumbers() # oo

RESULTS: Qualitative

17

Post-questionnaire Data

How would you rate your programming in Python?

18

Pre-questionnaire Data

How often do you program in Python?

More than 50% use Python frequently!

19

Post-questionnaire Data

How important is it for you to code in a specific programming paradigm?
For example: Functional, Object oriented, Procedural

More than 60% think paradigms are
important!

20

Task 1 Questionnaire

Self-identified approach used to classify the predominant paradigm

RESULTS: Quantitative

Results: Task Category 1 (Classification)

23
Time taken to classify predominant paradigm for Task 1

RQ1: How difficult is it for developers to classify the predominant
Python paradigm?

24

RQ1: How difficult is it for developers to classify the predominant
Python paradigm?

Time taken to classify predominant paradigm for Task 1 by size: small, medium, large

25

RQ1 Result Summary

• We found that participants classify all paradigms in a similar time.
• We see no correlation between different length of the code and time

taken to classify.

26

RQ2: How accurately do developers classify the predominant
paradigm in Python code?

27

RQ2: How accurately do developers classify the predominant
paradigm in Python code?

More than 85% were confident!

28

Task 1 – Judgements vs Confidence Levels

Not Confident: 0 Slightly Confident: 1 Moderately Confident: 2 Confident: 3 Very Confident: 4

RQ2: How accurately do developers classify the predominant
paradigm in Python code?

FUNCTIONAL PROCEDURALOBJECT-ORIENTED

29

Task 1 – Judgements vs Confidence Levels

Not Confident: 0 Slightly Confident: 1 Moderately Confident: 2 Confident: 3 Very Confident: 4

RQ2: How accurately do developers classify the predominant
paradigm in Python code?

FUNCTIONAL OBJECT-ORIENTED PROCEDURAL

30

Task 1 – Judgements vs Confidence Levels

Not Confident: 0 Slightly Confident: 1 Moderately Confident: 2 Confident: 3 Very Confident: 4

RQ2: How accurately do developers classify the predominant
paradigm in Python code?

FUNCTIONAL OBJECT-ORIENTED PROCEDURAL

31

Fixations of four participants for functional task classification

RQ3: Do developers fixate their gaze on specific Python language
features when classifying predominant paradigms?

32

RQ3: Do developers fixate their gaze on specific Python language
features when classifying predominant paradigms?

Gazes on all mixed task token types by all participants

33

Discussion

Comparing fixations for Procedural paradigm (Task 1)

Incorrect judgement Correct judgement

34

Discussion

Comparing fixations for Procedural paradigm (Task 1)

Incorrect judgement Correct judgement

“… def() I think I chose to
be functional…”

“.. I saw def is a function so
procedural. But also, for
loops which are more
functional, so I saw a lot of
functional going on inside
also”

Results: Task Category 2 (Bug Localization)

36

RQ4: Does the predominant paradigm affect how long developer’s
take to debug logical errors?

Time taken for Bug Localization (Task Category 2)

paradigmparadigm

37

RQ4: Does the predominant paradigm affect how long developer’s
take to debug logical errors?

Time taken for Bug Localization (Task Category 2)

paradigmparadigm“I went through the for loop if it
is calculating properly because
we have to get the factorial of
but here factorial is initialized to
zero which is going to give zero
for all iterations. al is initialized to

zero which is going to give zero for all iterations.

“The functional paradigms
are harder for me to
understand when I'm
debugging, because
functional paradigms quickly
change objects so fast” al is initialized to zero which is going to give

zero for all iterations.”

38

RQ4: Does the predominant paradigm affect how long developer’s
take to debug logical errors?

Confidence Levels for Logical Debugging (Task 2)

More than 50% were confident with
debugging!

39

RQ5: Does the predominant paradigm affect a developer’s ability to
debug logical errors?

Effect of paradigm on correctness and debugging

40

Comparing fixations for Factorial mixed paradigm (Task Category 2)

Discussion

Correct Judgment Incorrect Judgment

CONTRIBUTIONS
AND

CONCLUSION

CONTRIBUTIONS
AND

CONCLUSION

CONTRIBUTIONS
AND

CONCLUSION

CONTRIBUTIONS
AND

CONCLUSION

CONTRIBUTIONS
AND

CONCLUSION

