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MOTIVATION

Using APIs without formal 
specifications can put software 
systems at safety and security risks.  
Formal specifications help in producing 
cost effective, secure and reliable 
systems.

PROBLEM

➢ Post-conditions not widely 
available for common APIs

➢ Writing specifications is:
○ Effort intensive
○ Time consuming
○ Cost intensive
○ Difficult!

➢ Automation is needed!

Evaluation Plan

➢ Use ultra-large-scale open-source 
software repositories to 
automatically infer postconditions for 
existing APIs

➢ Key Insight: an API’s original 
postcondition(s) occur more 
frequently than project- or code- 
specific postconditions

➢ Boa's existing infrastructure coupled 
with above approach addresses all 
the problems

➢ Steps involved:
○ API Finding
○ (new) Post-condition inference
○ Normalization
○ Inference
○ Filtering
○ Ranking

➢ Evaluation set-up
○ Ultra-large GitHub data set in the 

Boa infrastructure
○ Use Java Modeling Language’s 

hand-coded post-conditions as 
Ground-Truth

➢ A mined post-condition is considered 
correct in relation to a ground truth if:
○ it exactly matches with one of the 

API’s post-conditions; or
○ it is not present in ground-truth but 

manually verified to be correct; or
○ it is not-yet defined but 

semantically equivalent to an 
existing post-condition; or

○ it is not-yet defined but implied by 
a post-condition.

➢ Nguyen et al. [FSE’14]
○ Mined API pre-conditions using 

consensus approach

➢ Chang et al. [VMCAI’11]
○ Mined conditions using dependence 

graphs

➢ Kremenek et al. [OSDI’06]
○ Used factor graph to infer 

specification from programs

➢ Ammons et al. [POPL’02]
○ Mined formal specifications using 

machine learning

➢ Ernst et al. [ICSE’99]
○ Discovered invariants from 

execution traces using dynamic 
techniques

o = API(...);
... // code that does not modify o
if (o > 5) {
...
throw new Exception();

}

FindAPI(stmt, 
api)

Set s = ∅

s = s ∪ lhs(stmt)

lhs(stmt) ∈ s s = s / lhs(stmt)

isCall(stmt) && 
vars(args(stmt)) ∩ s ≠ ∅

Preconditions of stmt
are possible postconditions 

of api

for stmt in m
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o = API(...);
... // code that does not modify o
anotherMethodWithPreconditions(o);

FindAPI(stmt, 
api)

Set s = ∅

s = s ∪ lhs(stmt)

isIfStmt(stmt) &&
s’ ∈ s such that s’ is in the 

condition of stmt && 
bodyThrowsEx(stmt)

stmt possible postcondition 
of api

for stmt in m
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Approach 1:
Finding throws clauses

Approach 2:
Using Preconditions

Image based on Nguyen et al. [FSE’14]


