
0

Using Consensus to Automatically Infer Post-conditions Jingyi Su
jsu@bgsu.edu

Mohd Arafat
marafat@bgsu.edu

Robert Dyer
rdyer@bgsu.edu

Department of Computer Science

Problem and Motivation Proposed Approach

Related

MOTIVATION

Using APIs without formal
specifications can put software
systems at safety and security risks.
Formal specifications help in producing
cost effective, secure and reliable
systems.

PROBLEM

➢ Post-conditions not widely
available for common APIs

➢ Writing specifications is:
○ Effort intensive
○ Time consuming
○ Cost intensive
○ Difficult!

➢ Automation is needed!

Evaluation Plan

➢ Use ultra-large-scale open-source
software repositories to
automatically infer postconditions for
existing APIs

➢ Key Insight: an API’s original
postcondition(s) occur more
frequently than project- or code-
specific postconditions

➢ Boa's existing infrastructure coupled
with above approach addresses all
the problems

➢ Steps involved:
○ API Finding
○ (new) Post-condition inference
○ Normalization
○ Inference
○ Filtering
○ Ranking

➢ Evaluation set-up
○ Ultra-large GitHub data set in the

Boa infrastructure
○ Use Java Modeling Language’s

hand-coded post-conditions as
Ground-Truth

➢ A mined post-condition is considered
correct in relation to a ground truth if:
○ it exactly matches with one of the

API’s post-conditions; or
○ it is not present in ground-truth but

manually verified to be correct; or
○ it is not-yet defined but

semantically equivalent to an
existing post-condition; or

○ it is not-yet defined but implied by
a post-condition.

➢ Nguyen et al. [FSE’14]
○ Mined API pre-conditions using

consensus approach

➢ Chang et al. [VMCAI’11]
○ Mined conditions using dependence

graphs

➢ Kremenek et al. [OSDI’06]
○ Used factor graph to infer

specification from programs

➢ Ammons et al. [POPL’02]
○ Mined formal specifications using

machine learning

➢ Ernst et al. [ICSE’99]
○ Discovered invariants from

execution traces using dynamic
techniques

o = API(...);
... // code that does not modify o
if (o > 5) {
...
throw new Exception();

}

FindAPI(stmt,
api)

Set s = ∅

s = s ∪ lhs(stmt)

lhs(stmt) ∈ s s = s / lhs(stmt)

isCall(stmt) &&
vars(args(stmt)) ∩ s ≠ ∅

Preconditions of stmt
are possible postconditions

of api

for stmt in m

F

T T

T

T

F

F

F

o = API(...);
... // code that does not modify o
anotherMethodWithPreconditions(o);

FindAPI(stmt,
api)

Set s = ∅

s = s ∪ lhs(stmt)

isIfStmt(stmt) &&
s’ ∈ s such that s’ is in the

condition of stmt &&
bodyThrowsEx(stmt)

stmt possible postcondition
of api

for stmt in m

F

T T

T

F

F

Approach 1:
Finding throws clauses

Approach 2:
Using Preconditions

Image based on Nguyen et al. [FSE’14]

