
A Preliminary Study of
Quantified, Typed Events

Robert Dyer1, Mehdi Bagherzadeh1, Hridesh Rajan1 and Yuanfang Cai2

1Iowa State University 2Drexel University
{rdyer,mbagherz,hridesh}@cs.iastate.edu yfcai@cs.drexel.edu

March 16, 2010

Motivation
Benefits in a Nutshell

Evaluation
Summary

Background
An Example in AspectJ
An Example in Ptolemy

Ptolemy: What, Why?

I Ptolemy1 adds quantified, typed events to OO languages
1 Well-defined interfaces between base & crosscutting code
2 Separate type-checking, modular reasoning

I Combines aspect-oriented (AO) and implicit invocation (II)
I Solves problems with AO and II:

I AO: quantification failure, fragile pointcuts, limited context
information

I II: coupling of observers, no replacement of event code, no
quantification

1Rajan and Leavens - ECOOP’08
Dyer, Bagherzadeh, Rajan and Cai 2 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Background
An Example in AspectJ
An Example in Ptolemy

This Paper: Why, How, and What?

I Motivation: Why use Quantified, Typed Events2?
I Approach: MobileMedia case study3

I Evaluation: Change impact and Design value analysis
I Software engineering metrics: makes implicit coupling in

AO explicit and decreases change impact
I NOV analysis: Ptolemy needs ITDs (so we added it)

2Rajan and Leavens - ECOOP’08
3Figueiredo et al - ICSE’08

Dyer, Bagherzadeh, Rajan and Cai 3 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Background
An Example in AspectJ
An Example in Ptolemy

Running Example : Figure Editor

I Elements of drawing
I Points, Lines, etc
I All such elements are of type FElement

I Challenge: Modularize display update policy
I Whenever an element of drawing changes —
I Update the display

Dyer, Bagherzadeh, Rajan and Cai 4 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Background
An Example in AspectJ
An Example in Ptolemy

Point and its two Events
class Point implements FElement {

int x; int y;
void setX(int x) {
this.x = x;

}
..
void makeEqual(Point other) {
if(!other.equals(this)) {
other.x = this.x;
other.y = this.y;

}}}

I Changing FElement is different for two cases.
I Actual abstract event inside makeEqual is the true branch.

Dyer, Bagherzadeh, Rajan and Cai 5 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Background
An Example in AspectJ
An Example in Ptolemy

Aspect Modularizing Display Updating

aspect Update {
around(FElement fe) :
execution(Point.set*(..)) && this(fe) ||
(execution(Point.make*(..)) && args(fe)
if(!fe.equals(this(fe)))) {
proceed(fe);
Display.update();

}}

I Enumeration required of two different joinpoints.
I Had to use if pointcut to get to the real event.
I Alternative is to refactor makeEqual (refactoring doesn’t

always creates meaningful abstractions).

Dyer, Bagherzadeh, Rajan and Cai 6 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Background
An Example in AspectJ
An Example in Ptolemy

Ptolemy: Declaring Event Types

void event FEChanged {
FElement changedFE;

}

I Event type is an abstraction (design this first).
I Declares context available at the concrete events.
I Interface, so allows design by contract (DBC) methodology.

Dyer, Bagherzadeh, Rajan and Cai 7 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Background
An Example in AspectJ
An Example in Ptolemy

Ptolemy: Announcing Events
class Point implements FElement {

int x; int y;
void setX(int x) {
announce FEChanged(this) {

this.x = x;
}}

void makeEqual(Point other) {
if(!other.equals(this)) {
announce FEChanged(other) {

other.x = this.x; other.y = this.y;
}}}}

I Explicit, declarative, typed event announcement.
I Provides flexibility, e.g. see makeEqual.

Dyer, Bagherzadeh, Rajan and Cai 8 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Background
An Example in AspectJ
An Example in Ptolemy

Ptolemy: Binding to Events

class Update {
when FEChanged do update;
void update (FEChanged next) {
invoke(next); //Like AspectJ proceed
Display.update();

}
public Update() {
register(this); //Allows dynamic deployment

}}

Dyer, Bagherzadeh, Rajan and Cai 9 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Background
An Example in AspectJ
An Example in Ptolemy

Research Questions

I How do these two designs compare?
I When do we see benefits of AO?
I When do we see benefits of Ptolemy?

Dyer, Bagherzadeh, Rajan and Cai 10 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

Observed Benefits of Aspect-oriented Designs

I Static crosscutting features are very useful
I Inter-type declarations (ITDs)
I Declare Parents
I Softened Exceptions

Dyer, Bagherzadeh, Rajan and Cai 11 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

Inter-type declarations (ITDs)

I Had to be emulated in Ptolemy4

I AspectJ:

public T C.field;

I Ptolemy emulation strategy:

static Hashtable fieldMap;
public static T getField(C);
public static void setField(C, T);

4Ptolemy now supports AspectJ-style ITDs
Dyer, Bagherzadeh, Rajan and Cai 12 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

Declare Parents

I Affects the type hierarchy
I Only used in revision 8
I Effects modeled similar to ITDs

Dyer, Bagherzadeh, Rajan and Cai 13 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

Softened Exceptions

I Aspects handle certain exceptions
I Softened exceptions don’t need declared thrown in the

base code

I Con: Ptolemy version still must declare those exceptions
are thrown

I Pro: Ptolemy’s exception handling code is (un)pluggable

Dyer, Bagherzadeh, Rajan and Cai 14 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

Softened Exceptions

AspectJ version:

declare soft: RecordStoreEx :
execution(public void
ImageAccessor.addImageData(..));

public void addImageData(..) throws
InvalidImageDataEx, PersistenceMechanismEx {

Without the aspect, the base code won’t compile!

Dyer, Bagherzadeh, Rajan and Cai 15 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

Softened Exceptions

Ptolemy version:

public void addImageData(..) throws
InvalidImageDataEx, PersistenceMechanismEx,
RecordStoreEx {

Even though RecordStoreEx isn’t thrown by the body, it still
must be declared!

Dyer, Bagherzadeh, Rajan and Cai 16 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

I Observed Benefits of Quantified, Typed Events
I No Quantification Failure
I No Fragile Pointcuts
I Can easily advise other advice (due to symmetry)

Dyer, Bagherzadeh, Rajan and Cai 17 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

Solves Quantification Failure Problem

I In revision 2, the AspectJ version had to expose a while
loop (by refactoring of course)

I Similar problems in other revisions
I Ptolemy versions did not need to refactor those points to

expose to the aspects

Dyer, Bagherzadeh, Rajan and Cai 18 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

Example of Quantification Failure in AO

OO version:

..
while (is.read(b)) { .. }
..

AspectJ version:

..
internalReadImage(..);
..

private void internalReadImage(..) {
while (is.read(b)) { .. }

}

Dyer, Bagherzadeh, Rajan and Cai 19 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

No Quantification Failure

OO version:

..
while (is.read(b)) { .. }
..

Ptolemy version:

..
announce ReadInternalImageAsByteArrayEvent() {

while (is.read(b)) { .. }
}
..

Dyer, Bagherzadeh, Rajan and Cai 20 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

No Fragile Pointcuts

I Aspects implicitly match the base code
I Quantified, typed events make this coupling explicit
I Changes to the base code (e.g., renaming a method) can

propogate to the aspects

I AspectJ: execution(* DeletePhoto(..))

I Ptolemy: when DeletePhotoEvent do Handler

I What if DeletePhoto is renamed to RemovePhoto?

Dyer, Bagherzadeh, Rajan and Cai 21 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

Can easily advise other advice

I AspectJ allows you to advise all advice, not specific advice
bodies

I Exception handling modularity was not maintained in later
revisions for AspectJ versions

I Ex: revision 8, aspect
lancs.midp.mobilephoto.alternative.music.MusicAspect

Dyer, Bagherzadeh, Rajan and Cai 22 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Benefits of Aspect-oriented Designs
Benefits of Quantified, Typed Events

after() : addNewMediaToAlbum() {
try {
/* advice body */

} catch (InvalidImageDataException e) {
..

}
}

public void handler(AddMediaToAlbumEvent next){
announce AddNewMediaToAlbumHandlerEvent() {
/* advice body */

}
}

Dyer, Bagherzadeh, Rajan and Cai 23 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Software Engineering Metrics
Net Options Value Analysis

Overview of Change Impact AO vs. Ptolemy

I Ptolemy design limited change propagation

I Only had to change 13 event types in revision 7
I AO revisions required changing 50 pointcuts in revision 7

I No other Ptolemy revision required changing event types
I 28 pointcuts changed across 4 other AO revisions

Dyer, Bagherzadeh, Rajan and Cai 24 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Software Engineering Metrics
Net Options Value Analysis

Net Options Value Analysis AO vs. Ptolemy

R1 R2 R3 R4 R5 R6 R7 R8
0

1

2

3

4

5
OO
AO
PTL

Dyer, Bagherzadeh, Rajan and Cai 25 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Software Engineering Metrics
Net Options Value Analysis

Net Options Value Analysis AO vs. Ptolemy

R1 R2 R3 R4 R5 R6 R7 R8
0

1

2

3

4

5
OO
AO
PTL

I Ptolemy: higher NOV values for R2-R6
I AO: higher value in R6 (Ptolemy doesn’t have ITDs)
I Revisions adding ITDs: R3-R8

Dyer, Bagherzadeh, Rajan and Cai 26 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Summary of Study and Future Work

I Explicit Coupling increases from OO → AO → Ptolemy
I Despite more coupling in Ptolemy, lower change impact

I Net options value increases from OO → AO → Ptolemy

Future Work:
I Repeat the study with Ptolemy + ITDs
I Compare to other AO interface features

Dyer, Bagherzadeh, Rajan and Cai 27 Preliminary Study of Quantified, Typed Events

Motivation
Benefits in a Nutshell

Evaluation
Summary

Questions?

http://www.cs.iastate.edu/˜ptolemy/
http://ptolemyj.sourceforge.net

Dyer, Bagherzadeh, Rajan and Cai 28 Preliminary Study of Quantified, Typed Events

http://www.cs.iastate.edu/~ptolemy/
http://ptolemyj.sourceforge.net

Mobile Media
Metrics Tables

Citations
Releases Table

Release Description Type of Change
R1 MobilePhoto core
R2 Exception handling included Non-functional concern
R3 Added photo sorting Optional feature

Added editing photo labels Mandatory feature
R4 Added favorites Optional feature
R5 Allow users to keep multiple copies of photos Optional feature
R6 Added send photo to other users by SMS Optional feature
R7 Photo management made into two alterna-

tives: photo or music
One mandatory feature
into two alternatives

R8 Add video management Alternative feature

Dyer, Bagherzadeh, Rajan and Cai 30 Preliminary Study of Quantified, Typed Events

Mobile Media
Metrics Tables

Citations

Change Propagation
Coupling and Cohesion
Size Metrics

R2 R3 R4 R5 R6 R7 R8

C
om

po
ne

nt
s

Added
OO 9 1 0 5 7 17 6
AO 12 2 3 6 8 21 16
PTL 13 4 2 6 8 23 18

Removed
OO 0 0 0 0 0 10 1
AO 1 0 0 0 0 8 0
PTL 1 1 0 1 0 7 2

Changed
OO 5 8 5 8 6 12 22
AO 5 10 2 8 5 16 9
PTL 11 8 1 9 5 16 8

P
C

s

Added AO 43 6 7 2 7 19 26
Removed AO 0 0 0 0 0 0 5
Changed AO 0 8 0 16 2 50 2

Added PTL 25 9 1 5 5 9 4
Removed PTL 0 1 0 1 0 3 0
Changed PTL 0 0 0 0 0 13 0E

ve
nt

Ty
pe

s

Dyer, Bagherzadeh, Rajan and Cai 31 Preliminary Study of Quantified, Typed Events

Mobile Media
Metrics Tables

Citations

Change Propagation
Coupling and Cohesion
Size Metrics

R2 R3 R4 R5 R6 R7 R8

LC
O

O

Average
OO 6.38 10.08 10.88 8.83 10.24 12.04 11.80
AO 5.67 8.69 8.50 6.97 8.24 9.39 8.03
PTL 3.30 3.36 3.21 2.86 2.83 2.77 2.96

Max
OO 64 70 71 73 96 113 114
AO 64 94 94 64 85 109 111
PTL 84 122 122 66 66 112 153

C
B

C

Average
OO 1.46 2.00 2.36 3.17 3.30 3.54 3.96
AO 1.30 1.72 1.84 2.50 2.65 2.76 2.69
PTL 0.80 0.94 1.06 1.43 1.57 1.71 2.01

Max
OO 9 13 13 11 11 15 20
AO 9 13 12 10 13 14 14
PTL 9 14 14 12 13 14 14

Dyer, Bagherzadeh, Rajan and Cai 32 Preliminary Study of Quantified, Typed Events

Mobile Media
Metrics Tables

Citations

Change Propagation
Coupling and Cohesion
Size Metrics

R2 R3 R4 R5 R6 R7 R8
LO

C

OO 1159 1314 1363 1555 2051 2523 3016
AO 1276 1494 1613 1834 2364 3068 3806
PTL 1605 1923 2049 2374 2969 3655 4508

N
O

C

OO 24 25 25 30 37 46 51
AO 27 29 32 38 46 59 75
PTL 56 67 70 79 92 112 132

N
O

A

OO 62 71 74 75 106 132 165
AO 62 72 76 77 111 139 177
PTL 72 82 86 88 121 146 185

N
O

O

OO 124 140 143 160 200 239 271
AO 158 187 199 230 285 345 441
PTL 143 169 179 197 247 308 369

Dyer, Bagherzadeh, Rajan and Cai 33 Preliminary Study of Quantified, Typed Events

Mobile Media
Metrics Tables

Citations

1 Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna,
Mario Monteiro, Uira Kulesza, Alessandro Garcia, Sergio
Soares, Fabiano Ferrari, Safoora Khan, Fernando Castor
Filho and Francisco Dantas. Evolving software product
lines with aspects: an empirical study on design stability. In
ICSE ’08.

2 Hridesh Rajan and Gary T. Leavens. Ptolemy: a language
with quantified, typed events. In ECOOP ’08.

4 Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and
Ben Hallen. The structure and value of modularity in
software design. In ESEC/FSE ’01.

Dyer, Bagherzadeh, Rajan and Cai 34 Preliminary Study of Quantified, Typed Events

	Motivation
	Background
	An Example in AspectJ
	An Example in Ptolemy

	Benefits in a Nutshell
	Benefits of Aspect-oriented Designs
	Benefits of Quantified, Typed Events

	Evaluation
	Software Engineering Metrics
	Net Options Value Analysis

	Summary
	Appendix
	Mobile Media
	Releases Table

	Metrics Tables
	Change Propagation
	Coupling and Cohesion
	Size Metrics

	Citations

