SURE, but can
you give up
modular

redefine Q
reasoning

__ foryou.
Developer |

| really need to

separate my

crosscutting
concerns.

Language
Expert 1

| desperately
need to separate
my crosscutting
concerns.

| DON’T THINK SO!
Didn’t you hear
that AOP is BAD for

reasonin

SO | AM
STUCK!

Developer

Language
Expert 2

£ Ptole

my

Balances expressiveness and modular reasoning
for aspect-oriented software development.

Hridesh Rajan, Gary T. Leavens, Sean Mooney, Rex D.
Fernando, Robert Dyer, and Mehdi Bagherzadeh

ptolemy.cs.iastate.edu

"T'utoral Outline

“*Why Ptolemy? What problems does it solve?
'I'wo precursors

» Implicit Invocation and Aspect-orientation

“*Ptolemy and how it solves these problem:s.

“*Main Language Features
Declarative, typed events (join points in AO terms)
Declarative, typed event announcement (no AO term)
Declarative, typed event registration (advising in AO terms)

Quantification based on event types (same as the AO term)

ptolemy.cs.iastate.edu

"T'utoral Outline

“*Modular Verification Features
Translucid Contracts (no AO term)

“*Where to use Ptolemy Features?
vs. Aspect-orientation,

vs. Implicit Invocation
“*State of Tools
“*Opportunities to Contribute

+ Conclusion

ptolemy.cs.iastate.edu

One shall not have to choose between reasoning and separation.

WHY PTOLEMY?

ptolemy.cs.iastate.edu

AR
Il IlIIIII |

-
—
—_—
ES
—
E—
C—
—
Dem—
S
ro—
—
[ss——4
———.

Color-coded representation of about 19K LOC at ASML.: different colors represent different concerns in the system.
Courtesy: Bruntink, Deursen and Tourwé
ptolemy.cs.iastate.edu

Need for Improved Separation

**Some concerns hard to modularize

“*Number of proposals: Units [Flatt and Felleisen],
Mixin [Bracha and Gook], Open Classes [Clifton

et al.], Roles [Kristensen and Osterbye], 1raits
[Scharli et al.], Implicit Invocation [Garlan,
Notkin, Sullivan et al.], Hyperslices [Ossher and
Tarr|, Aspects [Kiczales et al.], etc

*s*Shows that there is a real need

ptolemy.cs.iastate.edu

T'wo stmilar 1deas

“*Implicit invocation (IT) vs. Aspect-orientation (AO)

N/

** ... both eftective for separation of concerns

%*... both criticized for making reasoning hard

II criticized 1n early/late 90’s

AQ criticized in early 2000’s

“*Ptolemy is designed to
combine best 1ideas from II and AO

... and to make reasoning easier

ptolemy.cs.iastate.edu

[JHotDraw — Gamma et al.]

RUNNING EXAMPLE

ptolemy.cs.iastate.edu

Flements of a Drawing Editor

“*Elements of drawing
Points, Lines, etc
All such elements are of type Fig
“*Challenge I: Modularize display update policy

Whenever an element of drawing changes — Update

the display
“*Challenge II: Impose application-wide restriction

No element may move up by more than 100

ptolemy.cs.iastate.edu

Figure Elements

1 abstract class Fig {
2 }

“*Fig — super type for all figure elements

e.g. points, lines, squares, triangles, circles, etc.

ptolemy.cs.iastate.edu

Point and 1ts 'Two Events

1. class Point extends Fig {

2 int x;

3 int y;

4 void setX(int x) {

5 this.x = x;

6 }

7

8 void makeEqual (Point other) {
9 if(!other.equals(this)) {
10 other.x = this.x;

11 other.y = this.y;

12 }}}

/7

% Changing Fig is different for two cases.

% Actual abstract event inside makeEqual is the true branch.

ptolemy.cs.iastate.edu

Reiss’92, Garlan and Notkin’92

IMPLICIT INVOCATION

ptolemy.cs.iastate.edu

Key Ideas 1n 11

%* Allow management of name dependence
when “Point’s coordinates changes” update Display
... but Point shouldn’t depend on Display

... complicates compilation, test, use, etc
% Components (subjects) declare events
e.g. when “Point’s coordinates changes”
provide mechanisms for registration
... and for announcement
% Components (observers) register with events
e.g. invoke me when “Point’s coordinates changes”
% Subjects announce events

e.g. when “Point’s coordinates changes”

“change 1n coordinates” event announced

ptolemy.cs.iastate.edu

II: Components Declare Events

1 abstract class Fig {

2 List changeObservers;

3 void announceChangeEvent (Fig changedFE) {

4 for (ChangeObserver o : changeObservers) {
5 o.notify(changedFE);

6 }

7 }

8 void registerWithChangeEvent (ChangeObserver o) {
9 changeObservers.add(o);

10 }

11 }

12 abstract class ChangeObserver ({
13 void notify(Fig changedFE);
14 }

ptolemy.cs.iastate.edu

II: Components Announce Events

class Point extends Fig {
int x; int y;

void setX(int x) {
this.x = x;

announceChangeEvent (this);

1

2

3

4

5

6 }
7 void makeEqual (Point other) {

8 other.x = this.x; other.y = this.y;
9 announceChangeEvent (other) ;

10 }

11 }

% Event announcement explicit, helps in understanding

% Event announcement flexible, can expose arbitrary points

ptolemy.cs.iastate.edu

II: Component Register With Events

class Update extends ChangeObserver {
Fig last;
void registerWith(Fig fe) {
fe.registerWithChangeEvent (this);

1
2
3
4
> }

6 void notify(Fig changedFE) {
7 this.last = changedFE;

8 Display.update();

9

1

0 }

% Registration explicit and dynamic, gives flexibility

% Generally deregistration is also available

ptolemy.cs.iastate.edu

II: Disadvantages

“* Coupling of observers to subjects
volid registerWith(Fig fe) {
fe.registerWithChangeEvent (this);
}

“* Lack of quantification

void registerWith(Point p){
p.registerWithChangeEvent (this);

}
volid registerWith(Line 1) {

l.registerWithChangeEvent(this);

ptolemy.cs.iastate.edu

II: Disadvantages

“* No ability to replace event code

class MoveUpCheck extends .. {
void notify(Fig targetFE, int y, int delta) {
if (delta < 100) { return targetFE }
else{throw new IllegalArgumentException()}

}

ptolemy.cs.iastate.edu

Kiczales et al. 97, Kiczales et al. 2001

ASPECT-BASED SOLUTIONS

ptolemy.cs.iastate.edu

Key Stmilarities/Ditterences with 11

— CC.

“*Events = “join points™
AQO: pre-defined by the language/ 1I: programmer

AQO: Implicit announcement/ II: explicit

“*Registration = Pointcut descriptions (PCDs)
AQO: declarative

“*Handlers = “advice” register with sets of events

“*Quantification: using PCDs to register a handler
with an entire set of events

ptolemy.cs.iastate.edu

00 4 & O s W N -

Aspect-based Solution

aspect Update {

Fig around(Fig fe)
call(Fig+.set*(..)) && target(fe)
|| call(Fig+.makeEg*(..)) && args(fe)/{
Fig res = proceed(fe);
Display.update();

return res;

ptolemy.cs.iastate.edu

Advantages over 11

“*Ease of use due to quantification

“*By not referring to the names, handler code
remains syntactically independent

ptolemy.cs.iastate.edu

Limitations: Fragihty & Quantification

% Fragile Pointcuts: consider method “settled”
1 Fig around(Fig fe)
2 call(Figt.set*(..)) && target(fe)
3 || call(Fig+.makeEg*(..)) && args(fe)({
4 ...
% Quantification Failure: Arbitrary events not available

1l Fig setX(int x){
2 if (x.eg(this.x)) { return this; }

3 /* abstract event change */
4 else { this.x = x; return this; }
5

ptolemy.cs.iastate.edu

Limitattions: Context access

¢ Limited Access to Context Information

Limited reflective intertace (e.g. “thisJoinPoint” in AJ)

Limited Access to Non-uniform Context Information

1 Fig around(Fig fe)

2 call(Figt+.set*(..)) && target(fe)

3 || call(Fig+.makeEg*(..)) && args(fe){
4 ...

ptolemy.cs.iastate.edu

Limitations: Pervasive Join Point Shadows

111

ol.ml(a.el (), b.e2());
02.m2(c.e3(), x);

|

N
X

8 Join Points

% Tor each join point shadow, all applicable aspect should be considered (whole-program analysis)

’c ptolemy.cs.iastate.edu

Ptolemy (Claudius Ptolemaeus), fl. 2d cent. A.D., celebrated Greco-
Egyptian mathematician, astronomer, and geographer.

olemy

ptolemy.cs.iastate.edu

Evolution of the Ptolemy Language

Hyper) Aspect)
[Ossher, Tarr, [Kiczales et al.
Harrison 2001] 2001]

XPI
[Sullivan et al.

[Rajan and Sullivan

2003, 2005]
XPI - Aspect]

[Griswold et al.
2006]

© Ptolemy

ptolemy.cs.iastate.edu

Design Goals of Ptolemy

“* Enable modularization of crosscutting concerns, while
preserving encapsulation of object-oriented code,

“* enable well-defined interfaces between object-oriented
code and crosscutting code, and

“* enable separate type-checking, separate compilation, and
modular reasoning of both OO and crosscutting code.

ptolemy.cs.iastate.edu

First and foremost

“* Main feature is event type declaration.

“* Event type declaration design similar to API design.
What are the important abstract events in my application?
When should such events occur?

What info. must be available when such events occur?

“* Once you have done it, write an event type declaration.

ptolemy.cs.iastate.edu

Declaring an Event Type

F'1g event Changed {
Fi1g fe;

Event Type
Declaration

ptolemy.cs.iastate.edu

4

0

\/
0’0 L)

4

0

*

Declaring an Event Type

F'1g event Changed {
Fi1g fe;

Event Type
Declaration

Event type 1s an abstraction.

Declares context available at the concrete events.

Interface, so allows design by contract (DBC) methodology.

ptolemy.cs.iastate.edu

Announcing Events in Ptolemy

Subject

1 class Fig {bool isFixed;}
2 class Point extends Fig{
3 int x, y;
4 Fig setX(int x) {
5 anrniounce Changed (this) {
6 this.x = x; return this;
7 }
8 }
9 1}
Event
Announcement

“* Explicit, more declarative, typed event announcement.

ptolemy.cs.iastate.edu

More Event Announcements

Subject

class Point extends Fig{

Fig moveUp (int delta) {
announce MoveUpEvent (this) {
this.y += delta; return this;

}
}

Event
Announcement

“* Explicit, more declarative, typed event announcement.

ptolemy.cs.iastate.edu

Advising Events

“*No special type of “aspect” modules
“*Unified model from Eos [Rajan and Sullivan 2005]

/ class DisplayUpdate { \

_ /

34 ptolemy.cs.iastate.edu

Quantification Using Binding Decls.

“*Binding declarations
“*Separate “what” from “when” [Eos 2003]

/ class DisplayUpdate { ﬂ\\\

Quantification

\\\ihen Changed do update;
| -

35 ptolemy.cs.iastate.edu

Dynamic Registration

“* Allow dynamic registration

“*Other models can be programmed

class DisplayUpdate { ﬂ\\\

void DisplayUpdate () { register (this) }

Fig update (Changed next) {

Registration

}

\Q\ihen Changed do update; 4///

Quantification
36 ptolemy.cs.iastate.edu

Controlling Overriding

+ Use invoke to run the continuation of event

“* Allows overriding similar to Aspect]

class DisplayUpdate {

Registration
void DisplayUpdate () { register (this)}

Fig update (Changed next) {
System.out.println (“Before Invoke"); Running
next.invoke () ; continuation of

Display.update() ;
System.out.println (“After Invoke"); the event

}

when Changed do update; e L.
Quantification

37 ptolemy.cs.iastate.edu

Exercise 0: Get the distribution

“*Go to the URL to download Ptolemy1.2 Beta)
http://ptolemy.cs.1astate.edu/ptolemy-asel 1.zip

to download the zip file ptolemy-ase-11.z1p

“*Unzip the contents at a convenient location, while
preserving 1its directory structure

“*Start Eclipse and change your workspace to

$Download Location$S/pyc/workspace

ptolemy.cs.iastate.edu

I'xercise 1: Figure Editor Example

“*Browse code in 00-FigureExample Project
“*[a]Open file FEChanged.java

Note return type and context variables of event
declaration FEChanged

“* [b]Open file Point.java
Note event announcements in setX, setY, moveBy

Note different context in method makeEqual.

“*Everywhere else context variable changedFE is bound to
this, but in this method it is bound to other.

ptolemy.cs.iastate.edu

I'xercise 1: Figure Editor Example

“* [c]Open file DisplayUpdate.java
Note the binding declaration
» when FEChanged do update

Note the register statements
»register (..)

> It registers the receiver object to listen to events mentioned in
the binding declarations

ptolemy.cs.iastate.edu

EXTENDED EXAMPLE

ptolemy.cs.iastate.edu

IFxpressions and Operations

ASTNodes Eval

ey E:e==>¢e
(lambda (v) . e)
| (e e)

Checker

T|-e:t

e:=..

true | false | Num Printer
e==e|e<=e

e&&ele’||'e

e+e|le*e|e—e

ptolemy.cs.iastate.edu

Goal: Separation of Concerns

ASTNodes Eval

E:e==>¢’

e:=v
(lambda (v) . e)
| (e e)

Checker

T|-e:t

| true | false | Num
|e==e|e<=e
|e&&e|e’||’ e
|le+e|e*e|e—e

Printer

ptolemy.cs.iastate.edu

Goal: Separation of Operations

AST Nodes Eval

ey E:e==>¢
(lambda (v) . e)
| (e e)

Checker

T|-e:t

| true | false | Num Printer
|e==e | e<=e
|e&&e|e’||’ e

|le+e|e*e|e—e

¥y
o
| =
()
>
LLl
—
)
<

ptolemy.cs.iastate.edu

Enabling modular verification

CONTRACTS IN PTOLEMY

ptolemy.cs.iastate.edu

DEMO

ptolemy.cs.iastate.edu

Conclusion

¢ Motivation: intellectual control on complexity essential
Implicit invocation (II) and aspect-orientation (AO) help

... but have limitations

“* Ptolemy: combine best ideas of Il and AO
Quantified, typed events + arbitrary expressions as explicit events
Translucid contracts

% Benefits over implicit invocation

decouples observers from subjects

ability to replace events powerful

“* Benefits over aspect-based models
preserves encapsulation of code that signals events

uniform and regular access to event context

robust quantification
% Last but not least, more modular reasoning

ptolemy.cs.iastate.edu

Opportunities to Contribute

“*Language design efforts

Ptolemy# to come out in June, testing
underway (Extension of C#)

'Transition to less front-end changes (for Ptolemy])

“*Verification efforts
More expressive support for embedded contracts
Practical reasoning approaches for heap ettects

Better verification error reporting

ptolemy.cs.iastate.edu

Opportunities to Contribute

“*Case study efforts — compiler supports metrics
Showcase applications, examples for Ptolemy

Comparison with other languages/approaches

“*Infrastructure efforts
Support in Eclipse, other IDEs

Better error reporting, recovery
“*Language manuals, descriptions,...
All are welcome!!!

Open source MPL 1.1 License

ptolemy.cs.iastate.edu

SURE, but can
you give up
modular

redefine Q
reasoning

__ foryou.
Developer |

| really need to

separate my

crosscutting
concerns.

Language
Expert 1

| desperately
need to separate
my crosscutting
concerns.

| DON’T THINK SO!
Didn’t you hear
that AOP is BAD for

reasonin

SO | AM
STUCK!

Developer

Language
Expert 2

£ Ptole

my

Balances expressiveness and modular reasoning
for aspect-oriented software development.

Hridesh Rajan, Gary T. Leavens, Sean Mooney, Rex D.
Fernando, Robert Dyer, and Mehdi Bagherzadeh

ptolemy.cs.iastate.edu

