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ABSTRACT

Aspect-oriented programming techniques extend object-oriented programming with new methods

to modularize concerns that otherwise would be non-modular. For example, logging concerns are

typically scattered across a system but using aspect-oriented techniques they can be localized into

a single high-level module. These techniques typically take modular high-level code and statically

transform it into non-modular intermediate code.

The contribution of this work is the design and implementation of a flexible and dynamic

intermediate-language (IL) model. The main motivation for the design of this IL model is to sup-

port a variety of dynamic aspect-oriented language constructs that are proposed in recent literature

such as CaeserJ’s deploy, history-based pointcuts, and control flow constructs. Our IL model provides

a higher level of abstraction compared to traditional object-oriented ILs as a compilation target for such

constructs, which makes it easier to provide efficient implementations of these constructs. We demon-

strate these benefits by providing an industrial strength implementation for our IL model, by showing

translation strategies from dynamic source-level constructs to our improved IL, and by analyzing the

performance of the resulting IL code. Our evaluation using the SPEC JVM98 and Java Grande bench-

marks shows that the overhead of supporting a dynamic deployment model can be reduced to as little

as ∼1.5%, when compared to the unmodified VM.
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CHAPTER 1. Introduction

Aspect-oriented programming (AOP) [24] techniques offer software designers improved methods

to separate certain types of concerns in a system. For example, consider a thread pooling concern that

returns a new thread from a previously allocated pool of threads. If this concern were added to an

existing program, every call to allocate a new thread must be replaced with a call to the thread pool.

These calls most likely are scattered throughout the program. Using AOP techniques, this change could

be implemented in a modular fashion by using declarative constructs to identify thread creation and to

replace those allocations with calls to the thread pool. The thread pooling concern is thus localized into

a single module, allowing for easier evolution.

The declarative constructs to identify points where threads are created and replace them with calls

to a thread pool are static AO constructs. These constructs can be statically composed with the orig-

inal code to produce the desired result. Certain constructs have a more dynamic nature to them. For

example, these constructs might rely on the dynamic control flow of a program and can’t easily be

statically composed with the original code, without requiring additional logic. These dynamic con-

structs have received a lot of attention in the past 3-4 years of aspect-oriented programming litera-

ture [2, 6, 7, 8, 15, 19, 20, 35, 36, 40, 41].

A number of use cases for dynamic AO constructs have also appeared e.g. in runtime monitoring,

runtime adaptation to fix bugs or add features to long running applications, runtime update of dynamic

policy changes, etc. Such use cases drive the need for more dynamic aspect-oriented (AO) language

constructs. Consider for example a long-running web application that suddenly shows performance

degredation while allocating threads. Using dynamic AO constructs, one could apply the thread pooling

concern previously mentioned to temporarily solve the problem while investigating the underlying

issue. Once the underlying issue is resolved, the thread pooling concern could be dynamically removed.
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Some proposals for dynamic AO features have investigated support for these constructs by trans-

lating them to static constructs [9, 15, 40]. For example, Stolz and Bodden propose translating LTL

formulas into AspectJ code [40]. This translation generates automata to check if formulas are satis-

fied, updating state for each proposition at certain points of the program using generated advice. At

the points where state may change, the AspectJ code adds additional logic to update the automata and

check the satisfiability of the formulas.

In some cases, a finer-grained deployment model enables simpler implementations e.g. in the

case of temporal assertion checking using aspects, advice representing the following propositions need

not be checked until the preceding, enabling proposition(s) are found true [10, 40]. Such transla-

tions demonstrate the need for a more flexible deployment model [8, 15]. In particular, the need to

dynamically adapt the set of join points intercepted at a finer-grained level then currently available is

demonstrated for existing dynamic constructs such as history-based pointcuts [10, 40] and cflow [9, 15].

1.1 Contributions

In this work, we propose an intermediate-language (IL) model that supports finer-grained runtime

deployment at the level of advice-like constructs. The rationale for supporting such constructs at the

intermediate-language level is to provide a higher level of abstraction as a compilation target for dy-

namic aspect-oriented language constructs, compared to object-oriented intermediate language models,

thereby simplifying the support for such constructs. Such support at the intermediate-language level

can be used as a building block for a variety of dynamic constructs in high-level aspect-oriented lan-

guages.

Our intermediate-language model, which we call Nu, extends the object-oriented intermediate-

language model with two new atomic deployment primitives, bind and remove, and a point-in-time

join point model [29]. The effect of these primitives is to manipulate advising relationships. For the

purpose of this paper, by advising relationship we mean a many-to-one relation between join points

and a delegate. If a point in the execution of a program and a delegate are in an advising relationship,

the execution of the join point is extended by the delegate. The effect of the bind primitive is to

dynamically create such an advising relationship. The effect of the remove primitive is to destroy an
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advising relationship. Our intermediate-language model has the following properties:

• It is simple. Only two new primitives are added to the object-oriented intermediate-language

model.

• It is flexible enough to be able to accommodate the requirements of a broad set of dynamic and

static source language constructs such as AspectJ’s statically deployed aspects [23], CaesarJ’s

deploy [30], control flow constructs such as AspectJ’s cflow and history-based pointcuts [2, 40].

• It provides a higher level of abstraction as a compilation target for dynamic aspect-oriented lan-

guage constructs.

• It allows compilers to maintain the conceptual separation present in the source code in the object

code as well. Nu supports what Bockisch et al. have called structure-preserving compilation [8].

The intermediate code now mirrors the design, which among other things is important for the

efficiency of incremental compilers [7, 37] and dynamic adaptation.

An important consideration for such dynamic models is the performance overhead of supporting

them. Previous research results have shown that support for such dynamic aspect-oriented models

outside the virtual machine (VM) can be prohibitively expensive [6, 36]. Following Bockisch et al. [8],

we argue that efficient support is possible for such constructs by utilizing extra information available

inside the VM. To that end, we discuss strategies that contribute to near negligible overhead for Nu’s

runtime flexibility.

In summary, this work makes the following contributions:

• a simple, flexible, and dynamic intermediate-language model;

• an implementation of the Nu model as an extension of the Sun Hotspot Java Virtual Machine

(Hotspot JVM) [34], which serves to show the feasibility of supporting the proposed model in a

production level virtual machine;

• a caching technique to reduce amortized join point dispatch overhead for dynamic deployment

models;
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• an implementation in a VM for the point-in-time join point model [29]; and,

• an analysis of techniques to optimize our highly dynamic deployment model.

In the following section, we describe our intermediate-language design. Our implementation strat-

egy to support the Nu intermediate-language model in the Hotspot JVM is discussed in Section 3. A

novel caching scheme is discussed in Section 4. We evaluate the performance of our VM in Sec-

tion 5. Section 6 illustrates the potential utility of the intermediate-language design by showing strate-

gies to support a variety of dynamic and static aspect-oriented constructs by translating them into our

intermediate-language model. Section 7 discusses related work. Section 8 discusses future work and

Section 9 concludes.
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CHAPTER 2. Nu: A Dynamic AO IL Model

The key requirement for our IL model is to remain simple, yet flexible enough to be able to support

both dynamic and static constructs in AO source languages. This section introduces the join point

model adopted by our approach. We then illustrate new primitives using an example.

2.1 Nu’s Join Point Model

One central concept in common AO approaches is the notion of a join point. A join point is defined

as a point in the execution of a program. For example, in AspectJ [23], the “execution of the method

Hello.main()” in Figure 2.1 is an example of a join point. This join point may possibly occur at a

location in the source code, popularly referred to as the shadow of the join point [17]. The shadow of

the example join point is marked in Figure 2.1.

// Source Code
public class Hello {

static void main(String[] arguments) {
System.out.println("Hello");

}
}

// Intermediate Code
static void main(java.lang.String[]);

/* AspectJ join point shadow for "execution of method Hello.main" starts here */
getstatic #2; //System.out
ldc #3; //String Hello
invokevirtual #4; //Method println

/* AspectJ join point shadow ends here */
return

Figure 2.1 Illustration of the AspectJ Join Point Model

Instead of AspectJ’s join point model, we adopted a finer-grained join point model for Nu, proposed

by Masuhara et al. [29]. Masuhara et al. call the join point model of AspectJ-like languages a region-
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in-time model since a join point in these languages represents duration of an event, such as a call to a

method until its termination. They propose a join point model called the point-in-time model in which a

join point represents an instance of an event, such as the beginning of a method call or the termination of

a method call [29]. They show that this model is sufficiently expressive to represent common advising

scenarios.

In the point-in-time model, corresponding to AspectJ’s execution join point there are three join

points: execution, return, and throw. Here, throw is when the executing method throws an exception.

These three join points eliminate the need for three different types of advice: before, after returning,

and after throwing advice. The before execution, after returning execution, and after throwing execution

become equivalent to execution, return, and throw respectively. Figure 2.2 illustrates this model. Two

join point shadows in the method Hello.main() are marked as being shadows for the join points

“execution of the method Hello.main()” and “return of the method Hello.main()”. Similarly,

corresponding to AspectJ’s call join point there are three join points: call, reception, and failure. Here,

failure is when an exception is thrown by the callee.

static void main(java.lang.String[]);
/* Join point shadow for the join point "execution of the method Hello.main" */

getstatic #2; //System.out
ldc #3; //String Hello
invokevirtual #4; //Method println

/* Join point shadow for the join point "return of the method Hello.main" */
return

Figure 2.2 Illustration of the Point-In-Time Join Point Model [29]

At this time, Nu does not support around advice (see Section 8 for more details). Interested readers

are referred to Masuhara et al.’s work [29] for more detail. We have also explicitly decided to not

support static crosscutting mechanisms, such as inter-type declarations in AspectJ [23]. These con-

structs are largely static and they can be easily supported by high-level language compilers using static

weaving techniques [11, 17].

Our adoption of this model was, in part, driven by the clarity it gives to the semantics of fine-

grained dynamic deployment. One issue that arises with the deployment of dynamic aspects is when

the aspect being deployed advises a join point that is already on the stack. With a region-in-time model,
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bind remove
Stack ..., Pattern, Delegate→ ..., BindHandle ..., BindHandle→ ...
Transition
Description Associates the execution of all join points Eliminates the advising relationship

matched by Pattern to invoke Delegate represented by BindHandle
Exceptions NullPointerEx: NullPointerEx:

thrown if any argument is null thrown if the BindHandle is null
IllegalArgumentEx: IllegalArgumentEx:
thrown if the stack is malformed thrown if the BindHandle is stale

Table 2.1 Specification of Primitives in Nu

it is not very clear whether this new aspect should advise the join point already on the stack and the

problem is often left to the semantics of the virtual machine [22]. For example, assume that an aspect

a is deployed during the execution of a method m. This aspect contains an after advice that intercepts

the join point “execution of m”. Note that in the region-in-time model we are still in the scope of the

join point “execution of m”. The question is whether to invoke a when m returns. Using a point-in-time

model, this problem is avoided since a join point is never on the stack.

2.2 New Primitives: BIND and REMOVE

Our IL model adds only two primitives to the object-oriented IL: bind and remove. The informal

specifications including stack transitions and exceptions that might be thrown are shown in Table 2.1.

As described previously, the effect of these primitives is to manipulate what we call advising relation-

ships.

An example is given in Figure 2.3. For ease of presentation, the corresponding high-level language

code is shown. In this figure and in the rest of the presentation, special forms of bind(..) and remove(..)

will be substituted where the intermediate-language primitives would normally appear. In the source

code, a notation such as id = bind(p,d) represents generating two push instructions for the pattern

p and the delegate d followed by generating the bind primitive, followed by a store instruction to store

the result in id. Furthermore, remove(id) represents an instruction to push id on the stack followed

by a remove primitive.

Figure 2.3 shows the code for class AuthLogger. The objective is to record the time of
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public class AuthLogger {
protected static BindHandle id = null;
protected static Pattern loginPat;
protected static Delegate logDel;
static {

/* create new Method and Execution objects */
Method m = new Method("*.login");
loginPat = new Execution(m);
logDel = new Delegate(AuthLogger.class,

AuthLogger.class.getMethod("log", new Class[0]));
}
public static void enable() {

if (id == null)
id = bind(loginPat, logDel);

}
public static void disable() {

if (id != null) {
remove(id);
id = null;

}
}
public static void log() {

// record the time of login
}

}

Figure 2.3 Bind and Remove in an Example Program

execution of any method named login in the system. Moreover, one should also be able to enable and

disable the authentication logger during execution. To implement this logger, we need to specify the

intention to select all methods with the name login. In the Nu model, one would create a pattern to

represent this intention.

2.2.1 Patterns in Nu

A pattern is an object of type Pattern. It is created by instantiating a set of classes provided by

the Nu standard library. It is first-class, in that it can be stored, passed as a parameter, and returned

from methods. Like strings in Java, patterns are immutable; their values cannot be changed after they

are created.

Table 2.2 shows some commonly used patterns available in our implementation. The basic pat-

terns on the left (numbered 1–4) serve to select all join points (JPs) related to methods, constructors,

fields, etc. For example, the pattern object returned by new Method("*.login") can be used to
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Basic Patterns Selected JPs
1. Method Method-related JPs
2. Constructor Constructor-related JPs
3. Initialization Static initializer-related JPs
4. Field Field-related JPs
Patterns 5-10 take a pattern of type 1, 2, or 3
as argument. Patterns 11-12 take a pattern of
type 4 as argument.

Filters Selected JPs
5. Execution Method executions
6. Return Method returns
7. Throw Method throws
8. Call Method calls
9. Reception Method receptions
10. Failure Method failures
11. Get Field gets
12. Set Field sets

Table 2.2 Patterns Available in Nu’s Standard Library

select execution, return, throw, call, reception, and failure join points for all methods named “login”.

The filter patterns on the right (numbered 5–12) expect one of the basic patterns as an argument and

further narrow down the set of matching join points. For example, if we want to match the “execu-

tion of any method named login” we would have to first create the Method pattern discussed before.

We would then pass this instance as an argument to the constructor of the Execution class. The

resulting instance is the pattern for “execution of any method named login.” In the example shown in

Figure 2.3, the static initializer of class AuthLogger creates this pattern and stores it in the static

field loginPat so that it can be used for enabling the logger using the bind primitive.

2.2.2 The bind primitive

The bind primitive expects two values on the stack: a pattern (discussed previously) and a delegate.

The delegate is a first-class, immutable object of type Delegate. Both these types are part of Nu’s

standard library, which is an integral part of Nu’s virtual machine implementation. The pattern serves

to select the subset of join points in the program. The delegate points to a method that provides the

additional code that is to execute at these join points. Two exceptional conditions apply:

• If the top two items of the stack do not contain well-formed objects, i.e. a pattern and then a

delegate, an exception of type IllegalArgumentException is thrown.

• Additionally, If either of the top two items of the stack are null, an exception of type

NullPointerException is thrown.
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In Figure 2.3, the static initializer of class AuthLogger creates a delegate to the method

AuthLogger.log() and stores it in the static field logDel so that it can be used for enabling

the logger using the bind primitive. The enable() method uses the bind primitive to create an advis-

ing relationship between the join points matched by the pattern loginPat and the delegate logDel,

which enables logging of authentication attempts in the system. After the bind primitive finishes, the

pattern and the delegate are popped off of the stack and a unique identifier, described in Section 2.2.3,

is pushed on to the stack.

The bind primitive dynamically creates an advising relationship between the join points matched

by the pattern and the supplied delegate. On completion of a bind, when a join point executes each

delegate supplied with a pattern that matches that join point will intercept its execution. Delegates are

invoked in the same order in which they were bound. Delegates are invoked at most once per join point

(for reasons described in Section 6.3).

Future language extensions may allow ordering constructs; however, at this time we believe they are

not necessary since compilers generating Nu intermediate code could re-order the bind calls (for exam-

ple when modeling the static deployment model of AspectJ and implementing the declare precedence

construct).

Upon completion of a call to bind, the delegate will intercept any join point that executes and

matches the associated pattern. This behavior is intentional. Consider a tracing aspect, which will

output a trace at the entry and exit of a method. If a bind primitive is used to enable the tracing, we

want it to take effect immediately (thereby tracing the method exit of the method containing the bind

primitive).

The language is defined with a per-thread semantics. This means that bind and remove primitives

only affect advising relationships on the same thread that they were called from. This semantics is

selected to avoid the need to make groups of bind/remove calls atomic (note, however, that individual

calls are atomic). The termination of a thread causes all associations created by that thread to be

automatically removed, since reaching a join point in the context of that thread is no longer possible.
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2.2.3 Bind handles

The unique identifier returned by a bind primitive is an immutable object representing the advising

relationship. This unique identifier is an object of opaque type BindHandle, which is also part of

Nu’s standard library. A type is opaque if there is no way to find out its representation, even by printing.

This identifier may only be created by the virtual machine.

2.2.4 The remove primitive

The remove primitive expects the unique, immutable identifier representing the advising relation-

ship on the stack. It destroys the advising relationship corresponding to the identifier. An example is

shown in Figure 2.3, where the disable() method uses the remove primitive to destroy the advis-

ing relationship corresponding to the BindHandle instance stored in the static field id, effectively

ceasing logging.

If the supplied identifier is null, an exception of type NullPointerException is thrown.

If the BindHandle instance is stale, i.e. if the advising relationship corresponding to the supplied

identifier is already removed, an IllegalArgumentException is thrown.
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CHAPTER 3. Prototype VM Implementation

We have extended the Sun Hotspot Java virtual machine (or Hotspot for short) to support the bind

and remove primitives. In our prototype implementation, we mimic these instructions as native methods

inside the VM. In the rest of this section, we describe the relevant aspects of Hotspot, our extensions,

and a comparison of their runtime performance that serves to support our claim that it is feasible to

support Nu in an industrial-strength VM implementation without significant performance degradation.

In Section 3.4 we describe the dispatch at join points. Section 3.3 describes the implementation specific

details for the bind and remove primitives. A novel caching mechanism is described in Section 4.

Section 5 details our evaluation of the implementation.

3.1 Our VM Implementation Strategy

Hotspot uses mixed-mode execution for faster performance [1]. The key idea is that there are often

no gains achieved by compiling the entire program to produce native code before running it [1, 34].

The compilation efforts are focussed on performance critical methods [34]. The insight is based on

Hölzle and Ungar’s work on adaptive optimization of Self [21].

There are three modes of bytecode execution: an interpreter, a fast non-optimizing compiler and

a slow optimizing compiler. Hotspot uses runtime profiling to identify a set of performance-critical

methods in the Java program. For the parts that are performance critical, the adaptive optimizing

compiler produces optimized native code.

Previous studies of Java programs, for example by Krintz et al. [26], show that up to 57% of the

methods loaded by the VM are never executed. These studies, the results on adaptive optimization [21],

and the highly dynamic nature of our intermediate-language model led us to our implementation strat-

egy that normally we should dispatch advice using a method-dispatch table like strategy instead of
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using bytecode rewriting and/or native code insertion and removal at join point shadows.

3.2 VM Implementation Overview

Figure 3.1 shows an overview of the components modified to implement the Nu virtual machine.

The Hotspot interpreter was modified by adding additional assembly code for advice dispatch (JP Dis-

patcher). The standard Java Runtime Environment (JRE) has additional Java classes added to it for the

Nu pattern library. The VM has additional C++ code added to handle bind and remove calls as well as

perform pattern matching at join points. The caching mechanism described in Section 4 adds additional

data to the methodOop class as well as a global counter. Additionally it adds code into the classloader

to initialize the cache. More details about the caching mechanism are in Section 4.

Figure 3.1 Overview of Nu’s VM Implementation

3.3 Handling Bind/Remove Calls in Nu’s VM

The modified VM handles bind calls by storing the pattern and delegate objects into a list. There

is one list for each type of join point and the pattern indicates which join point type(s) it applies to.

It also performs some simple sanity checks (like verifying neither object are null, if the delegate is

non-static then an instance object was passed in, etc). The VM then stores the pair into all applicable

lists, generates and returns a unique BindHandle to the caller. The BindHandle is an instance of
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the immutable Java class BindHandle, which may only be instantiated by the VM.

For remove calls, the modified VM simply removes the pattern/delegate pair matching the passed

in BindHandle from all lists. Any join point that previously cached the delegate will lazily, on its

next execution, recognize the cache is invalid and remove the delegate from its local cache.

The class file processor was modified to initialize data structures used at each join point. These data

structures consist of several flags for use in caching, a local cached delegate list, and storage for the

join point’s static reflective information (which is created lazily upon first use). The class file processor

already accesses the bytecode of potential join point shadows, so no additional iterations were needed

for initializing these data structures.

3.4 Advice Dispatch in Nu’s VM

Our current VM implementation provides an advice dispatch mechanism at each join point. The

focus of the prototype presented in this paper is to optimize this dispatch mechanism. This mechanism

handles matching the join point to existing patterns and invoking any corresponding matched delegates.

We take advantage of the stub-generation code of Hotspot, adding in additional code to perform our

advice dispatch.

The stub-generation code in Hotspot uses an assembler to generate generic stubs for the entry and

exit of Java methods. These stubs include a check to see if a compiled version of the method exists and

if so, directly jump to the compiled code. If not, the stub will continue executing inside the interpreter.

We inserted an advice dispatch mechanism in these stubs. Our advice dispatch mechanism performs

three checks, implemented as three mov, three cmpl, and three jcc assembly instructions. These

assembly instructions, shown in Figure 3.2, are directly emitted in the assembly code stubs generated

by the VM.

The first check is a filtering check to prevent JRE and Nu runtime join point shadows from being

advised.

The second check is a cache validation check that determines if the cached pattern-matching re-

sults for the join point shadow are valid. If the results are not valid, an incremental pattern match is

performed for the join point shadow and the pattern-matching results are cached. Caching is described
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movl eax, methodOop.counter

// methodOop.counter == -1?
cmpl eax, -1

// If yes, this JP is filtered
jcc equals, ContinueJP

movl ecx, globalCounter

// methodOop.counter == globalCounter?
cmpl eax, ecx

// If yes, cache is valid
jcc equals, InvokeDelegates

call_VM incrementalMatcher

InvokeDelegates:
movl eax, methodOop.cache.head

// cache.head == null?
cmpl eax, 0

// If yes, there are no cached delegates
jcc equals, ContinueJP

// invoke the cached delegates
...

ContinueJP:

Figure 3.2 The advice dispatch assembly code

in detail in the next section.

The third check determines if there are any cached delegates that need to be invoked at this join

point shadow, pending check of any dynamic residues. If the check passes, the delegates are invoked,

otherwise the join point shadow execution continues. This code is designed to maximize the use of

branch prediction algorithms implemented by most modern processors. If a join point is executed

frequently, these checks will be optimized away by the (correct) branch prediction, minimizing the

dispatch overhead.
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CHAPTER 4. Caching technique in Nu’s VM

Matching a join point with a list of bound patterns at runtime is an expensive operation that is a

separate research topic on its own; however, caching techniques can be used to reduce the amortized

cost of this operation. To that end, we have implemented a two-level caching algorithm for dynamic

matching in our advice dispatch mechanism. Following the terminology of the computer architecture

community, hereon we refer to these two caches as the L1 cache and L2 cache. A join point shadow

match result being present or not present in a cache is referred to as a hit or miss respectively.

The L1 cache is maintained at the join point shadow in the form of a list of references to the

(delegate, pattern) pairs that have already matched with that join point shadow. In the previous section,

the cache validation check that we described pertains to the L1 cache. The L2 cache for each join

point kind is maintained inside the pattern matcher in the form of a hash map from the join point

shadow signatures to a list of current patterns that potentially match that signature. The L1 cache helps

avoid calls to the incremental matcher. The L2 cache is inside the matcher and helps avoid duplicate

matching. Similar to L1 and L2 caches inside a processor, a L1 hit is the least costly operation, followed

by a L2 hit.

Cache Hit/Miss Overhead of join point dispatch
L1 hit Cost of equality test (local-bind-counter == global-bind-counter)
L2 hit Incremental-Match(Join point, List of patterns)
L2 miss Match(Join point, List of patterns)

Table 4.1 Cache Hits/Misses and Their Respective Costs

Our algorithm for detecting an L1 cache hit/miss is as follows. Each join point shadow contains a

counter that is initialized to zero, when the class containing the join point shadow is loaded. There is

also a global counter for each join point kind initialized to zero when the VM is initialized. The global
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counter for a join point kind is incremented on bind / remove operations, if the bound / removed pattern

may match that join point kind. Global counters are never decremented so that the local caches always

know if they are current.

Patterns internally maintain the information about possible join point shadow kinds that may match

during their construction using an iterative scheme. All patterns maintain a fast-match flag. All concrete

patterns such as Execution, Call, etc, statically assign values to this flag that represent matching

their specific join point shadow kinds. All dynamic patterns such as This, Target, etc, match

selective join point kinds. When constructed, all And/Or composite patterns retrieve the fast match

flags from inner patterns supplied as arguments to their constructors and set their own fast match flag

to the logical and/or of their inner pattern’s flag. This scheme is an adaptation of the fast-match

technique used by the standard AspectJ compiler (ajc) during compilation [17].

At advice dispatch time, the check for L1 cache hit/miss is simply an equality test between the local

counter for the join point shadow and the global counter for that join point kind. At join point match

time, the local counter is reinitialized to the current value by the join point matcher. We suspect that

better checking techniques might be possible; however, we were able to implement this check using two

mov, one cmpl, and one jcc instruction and therefore we did not investigate further in this direction.

When a join point shadow incurs an L1 cache miss, the pattern matcher is called to perform incre-

mental pattern matching. The overhead of calling the incremental pattern matcher is the cost of an L1

cache miss. The L2 cache is the incremental matcher and refers to a simple technique of only matching

patterns that have not already been matched. The join point stores the bindHandle of the last pattern

it was matched against. When an incremental match is performed, it only performs matching against

patterns with newer bindHandles. The incremental match must also check the list of delegates in the

L1 cache to verify none have been removed and if so they are taken out of the join point’s L1 cache. At

the end of the incremental match, the join point’s L1 cache is set to valid, by setting the local counter

in the L1 cache to the global counter’s value and storing the last matched bindHandle in the L2 cache.
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CHAPTER 5. Runtime Performance of Nu’s VM

To evaluate the runtime performance of our implementation of Nu, we evaluated the performance of

the system in the case where no bind calls have occurred to determine the join point dispatch overhead

of our VM implementation. We used two standard Java benchmarks for our evaluation: SPEC JVM98

and Java Grande Framework (JGF). Since we are advocating modifying a production level VM, it is

important that the modifications do not significantly affect the performance of existing applications. To

measure the overhead in these cases, we ran the SPEC JVM98 and JGF method benchmarks with no

bind/remove calls. We measured the performance of the unmodified JVM, our initial implementation of

Nu, and our current implementation of Nu as described in this paper. All measurements were performed

on a dual 2.2GHz XEON server with 2GB memory.

Figure 5.1 Comparison of Join Point Dispatch Times Using the JGF Benchmark
(larger bars are better)
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JVM Nu (initial) % of JVM Nu (current) % of JVM
Same Instance 16.765E6 3.194E6 19.05% 16.105E6 96.06%
Same Sync. Instance 4.497E6 2.148E6 47.77% 4.518E6 100.45%
Same Final Instance 15.709E6 2.961E6 18.85% 15.537E6 98.90%
Same Class 16.032E6 2.801E6 17.47% 14.554E6 90.78%
Same Sync. Class 4.613E6 2.108E6 45.71% 4.457E6 96.63%
Other Instance 15.571E6 2.921E6 18.76% 15.055E6 96.68%
Other Abs. Instance 14.240E6 3.002E6 21.08% 15.181E6 106.61%
Other Class 15.449E6 2.817E6 18.24% 15.909E6 102.98%
Average 12.859E6 2.744E6 21.34% 12.664E6 98.48%

Table 5.1 Comparison of Join Point Dispatch Times Using the JGF Benchmark
(larger is better)

The results for the JGF method benchmarks are shown in Figure 5.1 and Table 5.1. Since the

JGF method benchmark repeatedly executes simple methods to obtain the average number of method

calls per second, this is where our caching implementation really shows up. Our initial version had to

perform matching on each method call (even though there were no binds). With caching in place, this

match is performed once. Our implementation went from 21.3% to 98.5% of the method calls achieved

by the unmodified JVM.

The results for the SPEC JVM98 benchmark are shown in Figure 5.2 and Table 5.2. This benchmark

measures the time to execute a set of realistic applications. These results were similar to the JGF

benchmark. Our implementation went from a 37% execution time overhead to about 1.5% overhead.

JVM Nu (initial) % of JVM Nu (current) % of JVM
check 0.052 0.052 100.90% 0.057 109.86%
compress 127.853 186.968 146.24% 129.068 100.95%
jess 28.086 48.199 171.61% 28.974 103.16%
db 66.346 66.915 100.86% 66.237 99.84%
javac 36.140 48.190 133.34% 36.636 101.37%
mpegaudio 105.596 130.548 123.63% 107.212 101.53%
mtrt 22.651 57.652 254.52% 23.812 105.13%
jack 24.188 26.556 109.79% 24.232 100.18%
Average 51.364 70.635 137.52% 52.028 101.29%

Table 5.2 Comparison of Join Point Dispatch Times Using the SPEC JVM98
Benchmark (smaller is better)

5.1 Cache Performance

To measure the penalty for a cache miss, we created a synthetic benchmark. This benchmark

determined the baseline performance of calling a method (which has already had its cache initialized).
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Figure 5.2 Comparison of Join Point Dispatch Times Using the SPEC JVM98
Benchmark (smaller bars are better)

It then creates a number of advising relationships which do not advise the method being measured. We

then call the method and measure its performance. This process is then repeated 10,000 times and the

results averaged. The results are shown in Table 5.3. Note that the measured performance indicates a

linear relationship to the number of patterns already bound.

Number of Patterns 0 64 128 192 256
Time (µs) 0.001 1.959 4.030 6.514 8.721

Table 5.3 Cache Benchmark Results

5.2 Bind/Remove Performance

To measure the performance of the bind and remove primitives, we created another synthetic bench-

mark. This benchmark contains one class with a method that will be matched by patterns in bind calls.

The benchmark starts with an initial number of pattern/delegate pairs bound. This number was varied

from 0 to 2048 and set in NUM. It then measures (separately) bind and remove calls and determines

their averages. This benchmark was run 30 times for each value of NUM. The results showed that
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performance for both primitives was independent of the number of existing advising relationships.

The average time taken by the bind and remove primitives was 11 µs and 3.4 µs with a variance of

approximately 3 µs and 1 E−4µs respectively.

5.3 Delegate Invocation in Nu’s VM

Due to the lack of delegates in Java, our initial implementation made use of the reflection API

and Java Native Interface (JNI) methods. Users passed in strings representing the name of a class and

the name of the delegate method and the runtime created a reflection Method object representing the

specified delegate. This object was then passed into bind calls. JNI methods available inside the VM

were then used to invoke the delegate where necessary.

Our current strategy still makes use of the reflection API Method class for passing in a delegate

to bind calls. The bind implementation makes use of data structures already available inside the VM

to keep track of information regarding the delegate, such as class, instance, method, etc. When the

VM initially loads, template code for invoking delegates is generated inside the method stubs. This

code makes use of the stored information about the delegate, avoiding the need to use expensive JNI

methods.

Figure 5.3 Invoke Benchmark - Varying Number of Patterns
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Figure 5.4 Invoke Benchmark - Varying % Matching Patterns

To measure the performance of our delegate invocation code, we created a benchmark that repeat-

edly calls a simple test method. A delegate method that increments a static counter is then used to

create an advising relationship with our test method. A copy of the test method is created with manu-

ally inlined calls to the delegate method. The number of manually inlined calls is equal to the number

of advising relationships created using bind. We then measure both copies of the test method (one with

manually inlined calls and one with advising relationships to the delegate). A comparison to AspectJ’s

advice invocation code was not made, since most typical AspectJ compilers generate two methods at

the call site (one to get an instance of the aspect and one to call the advice method). Figure 5.3 varies

the total number of bind calls while keeping the percent that match the test method at 100%. Figure 5.4

varies the percentage of bind calls that match the test method while keeping the total number of bind

calls at 256. As can be seen from the figures, our delegate invocation technique went from around 4%

as efficient as the manually inlined version to around 82%. We believe that as we refine our technique,

our invocation mechanism should approach relatively the same efficiency as manually inlining calls to

delegate methods.
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5.4 Summary

Our current prototype implementation serves as a proof of concept of our claim that support for

the Nu IL model in production level virtual machines is feasible. Starting from our very inefficient

implementation, we have improved our join point dispatch by reducing the overhead from 37% to

1.27% for the SPEC JVM98 benchmark and increased our performance on the JGF benchmark from

21.34% of the unmodified Hotspot to 98.48% of the unmodified Hotspot. Delegate invocation improved

from around 4% as efficient as the manually inlined version to around 82% as efficient.



24

CHAPTER 6. Expressing AO Constructs in Nu

In this section, we describe strategies for compiling static and dynamic AO constructs to the Nu IL

model. The rationale for this section is to demonstrate that the IL model is flexible enough to support

static, dynamic, control flow, and history-based constructs in AO languages. Moreover, it also shows,

by giving a translation, that compilation of these constructs generates modular object code, which is an

additional benefit of the Nu model.

6.1 Compiling AspectJ Constructs

In this section, we demonstrate compilation strategies from AspectJ to the Nu IL model. The

intention here is neither to discuss AspectJ in detail nor to compare the proposed approach with AspectJ.

The intention here is to illustrate the potential utility of the Nu intermediate language model.

To illustrate the compilation strategies from AspectJ constructs to the Nu IL model, consider a

simple extension of the Hello program shown in Figure 2.1. Let us assume that we were to write an

aspect that would extend the functionality of the method main() so that instead of printing “Hello” it

prints “Hello” followed by “World” on successive lines. An aspect World that implements this simple

functionality is shown in Figure 6.1. The source code equivalent (for ease of presentation) of the Nu

object code that will be generated for this aspect follows in Figure 6.2.

public aspect World {
pointcut main(): execution(* Hello.main(..));
after() returning: main() {
System.out.println("World");

}
}

Figure 6.1 The World Aspect
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class World {
static final World ajc$perSingletonInst = new World();
static {
/* create new Method and Execution objects */
Method m = new Method("Hello.main");
Execution e = new Execution(m);
/* Delegate to the ajc$0 method */
Delegate d = ... ;
bind(e, d);

}
// Synthetic method generated for the advice
void ajc$0() {

System.out.println("World");
}
// Constructor World and helper methods hasAspect
// and aspectOf elided for presentation purposes.

}

Figure 6.2 Compiling an AspectJ Aspect to Nu IL

6.1.1 Compiling Aspects, Pointcuts and Advice

Aspects are compiled into intermediate code units in the following way: pointcuts are compiled

into pattern object instances, advice code is compiled into delegate methods, and bind primitives are

generated in a static initializer of the aspect to associate the delegate code to the join points matched by

the patterns. In the example shown in Figure 6.2, the generated object code for the method ajc$0()

contains the advice code.

The generated intermediate code for the static initializer of aspect World contains additional

code to first create an instance of the pattern Method. This instance is then used to create an instance

of the pattern Execution. After creating the pattern instances, the delegate is created. The pattern

and delegate instances are then used by the bind primitive to initiate join point interception.

An interesting property of the Nu version of the intermediate code for the aspect class World

and the base class Hello (not shown) is that they remain separate in their own object code modules.

Also, the object code for the base class Hello remains free of the aspect related intermediate code.

This shows that Nu supports what Bockisch et al. have called struture-preserving compilation [8]. The

intermediate code now mirrors the design, which among other things is important for the efficiency of

incremental compilers [7, 37].
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6.1.2 Compiling Complex Aspects

The illustrative AO application compiled in the previous section served to provide an example of

a basic translation. To preserve the semantics of an aspect in the AspectJ language, compilation of an

aspect in a real world AO application needs to account for two additional conditions: deployment as a

single unit and whole program deployment of aspects.

First, aspects are deployed as a single unit at the beginning of the program. This requirement is

addressed by generating all bind instructions for an aspect inside a transaction in the static initializer

or in a synthetic static method ajc$preClinit(). A dummy reference to all aspects is inserted in

the static initializer of the main application class as the first few instructions. This causes all aspects

to initialize before the application execution begins. In the case of libraries containing aspects, a syn-

thetic method could be generated and a requirement to call this function at initialization time could be

imposed to initialize all aspects in the library.

A strategy similar to AspectJ’s load-time weaving can also be used, where an XML file is generated

by the compiler containing the details of all aspects in the system. All such aspects are then loaded by

a custom class loader.

Second, aspects in AspectJ advise all threads in the program. In Java, when a thread is created

it must be permanently bound to an object with a run() method. When the thread starts by call-

ing Thread.start(), it will invoke the object’s run() method. The strategy to deploy aspects

for all threads in the program is to generate a set of instructions that execute between the methods

Thread.start() and the object’s run() method. These instructions are calls to the static method

ajc$preClinit() on all aspects in the program. As mentioned previously, the bind instructions

are generated in the ajc$preClinit() as a transaction. Executing this method deploys the aspects

for the new thread.

6.2 AspectJ Constructs Performance

The performance of compiling AspectJ constructs to Nu IL was measured on the Java Grande

method benchmarks. We measured four versions of a simple counting aspect: a version compiled with

the standard AspectJ compiler (ajc), two versions compiled with the AspectBench compiler (abc) [3]
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Figure 6.3 Performance Comparison of AspectJ Constructs on JGF Benchmarks
(larger bars are better)

and a version using our compilation strategies to generate Nu IL. All versions ran in interpreted only

mode, due to the Nu VM not currently supporting the Just-in-Time (JIT) compilation process.

ajc usually generates two method calls for an advice invocation, one to fetch an aspect instance and

then the actual call to the advice method [17]. The idea behind this compilation strategy is that the

JIT compiler can inline these calls. Unfortunately since we have to run in interpreted only mode, these

inlining optimizations will never be performed by the VM.

In order to study the behavior as if the advice had been inlined, we made use of the AspectBench

compiler, which has an option to enable advice inlining.

Figure 6.3 shows the results of the benchmarks. The Nu IL compiled code is faster than the AspectJ

and non-inlined abc compiled code in all cases. The inlined abc version was slower in two cases

and faster in the remaining cases. On average, it was only about 5% faster than the Nu IL version.

This shows that even with the overhead shown in Figure 5.1, our implementation of the Nu IL model

performs well for static AO constructs.
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6.3 Compiling Control Flow Constructs

Our compilation strategy for the cflow and cflowbelow constructs is similar to the ideas presented

by Hanenberg, Hirschfeld and Unland [15]. We will discuss the cflowbelow case as it is slightly more

interesting, pointing out differences from cflow as necessary. Note that in addition to these compilation

strategies, optimization strategies proposed by Avgustinov et al. [4] can also be applied.

Consider an example usage, where an aspect Counting uses the cflowbelow construct to count

the number of calls to the method Bit.Set() below the control flow of the method Word.Set().

The pointcut expression will select all calls to the method Bit.Set() that occur between entry and

exit of the method Word.Set().

Our compilation strategy for the cflow and cflowbelow constructs is as follows: first, generate two

new methods, say Enter() and Exit(), making sure that the names are unique in the class (since the

class may already contain other methods), second, bind these two methods to execute at the entry and

exit of the method Word.Set(), respectively, and third, generate code in Enter() and Exit()

to bind and remove the code to the actual advice to execute whenever Bit.Set() is called. The

stack stack is used to track multiple bind calls to Word.Set(), allowing the code to remove the

proper association. Note that since a delegate is invoked at most once per join point, binding the same

association relationship multiple times will not cause the VM to invoke the delegate multiple times at

matching join point shadows.

Some bookkeeping is required to keep track of the execution stack depth in the variable depth.

Inside the advice body, a check is generated to determine if the stack depth is the same. If the stack

depth is the same, then any call being made to Bit.Set() is being performed from the initial call to

Word.Set()— we are not below the control flow of Word.Set(). In this case, the delegate simply

returns without executing the advice body. If the stack depth is larger, then we are below the control

flow of Word.Set() and may continue executing the advice body. Figure 6.4 shows the results

of the code generation for the example program described at the start of this section. As previously

mentioned, the equivalent source code is shown for ease of presentation. The only difference between

the compilation of cflow and cflowbelow is that the bookkeeping code for stack depth (highlighted in

grey in Figure 6.4) is not generated in the case of cflow.
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class Counting {
static int count;
static Call pat;
static Delegate advice;
static Stack<BindHandle> stack = ...;
static int depth;
static {

pat = new Call(new Method("Bit.Set"));
/* Delegate to the ajc$0 method */
advice = ... ;
/* Delegate to the Enter method */
Delegate delBind = ... ;
/* Delegate to the Exit method */
Delegate delRemove = ... ;

Method meth = new Method("Word.Set");
Execution exec = new Execution(meth);
Return ret = new Return(meth);
Failure fail = new Failure(meth);

bind(exec, delBind);
bind(ret, delRemove);
bind(fail, delRemove);

}
void Enter() {

if (stack.Empty())
depth = Thread.currentThread().countStackFrames();

stack.push(bind(pat, advice));
}
void Exit() {

remove(stack.pop());
}
void ajc$0() {
if (depth >= Thread.currentThread().countStackFrames())
return;

count++;
}

}

Figure 6.4 The Generated Code for cflowbelow
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class Counting {
static int count;
static Call pat;
static Delegate advice;
static BindHandle id;
static int depth;
static int counter = 0;
static {/* Same as previous impl.*/}
void Enter() {
if (counter == 0) {
id = bind(pat, advice);
depth = Thread.currentThread().countStackFrames();

}
counter++;

}
void Exit() {

counter--;
if (counter == 0)
remove(id);

}
void ajc$0() {

/* Same as previous impl.*/
}

}

Figure 6.5 Optimized Code for cflowbelow

A slightly more optimized version is shown in Figure 6.5. In this version, a counter is added

to track if we are entering and exiting the intial call to Word.Set() instead of binding every time

Word.Set() is called. While the performance of bind and remove calls was shown in Section 3 to

be small, incrementing and decrementing a counter is significantly faster, as shown in the following

section.

6.3.1 Control Flow Construct Performance

The performance of control flow constructs was measured on the JGF method benchmarks. Five

versions were measured: a version compiled with AspectJ 1.5.3, two versions compiled with abc 1.3.0

at the lowest (O0) and highest (O3) optimization levels and both code generations shown in Figure 6.4

and Figure 6.5. Once again, all benchmarks were run in interpreted only mode.

The results are shown in Figure 6.6 and demonstrate that both of our compilation strategies fair well

when compared to AspectJ and abc. Both approaches were on par with the highest level of optimization
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Figure 6.6 Performance Comparison of cflow Constructs using JGF Benchmarks
(larger bars are better)

available in abc, which uses intra-procedural analysis.

6.4 Compiling Deployment Constructs

Some aspect languages such as CaesarJ [30] provide declarative constructs for dynamic deploy-

ment, e.g. deploy and undeploy, which are naturally supported by our primitives. Figure 6.7 shows a

strategy for compiling such constructs.

The deploy and undeploy constructs are modeled by generating methods that contain the code to

bind and remove the pointcuts and delegates in the aspect. The call to deploy and undeploy in the pro-

gram is replaced by World.aspectOf().deploy() and World.aspectOf().undeploy()

respectively.

The strategies discussed in Section 6.1.2 also apply in this case. This strategy for compiling dy-

namic deployment constructs also maintains the separation of the aspect modules and base modules.
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class World {
static World ajc$perSingletonInst = new World();
static Pattern p = new Execution(new Method("*.main"));
/* Delegate to the ajc$0 method */
static Delegate d = ... ;
static BindHandle id = null;
void deploy() {

if (id == null)
id = bind(p, d);

}
void undeploy() {

if (id != null) {
remove(id);
id = null;

}
}
void ajc$0() {

System.out.println("World");
}
// Elided generated code for hasAspect() and aspectOf() helper methods

}

Figure 6.7 Compiling Dynamic Deployment Constructs

6.5 Compiling Temporal Constructs

Stolz and Bodden proposed a runtime verification framework, where the static aspect deployment

model is utilized to verify properties expressed as linear temporal logic formula over pointcuts [40, 40].

These properties are predicates over program traces, and have also been called history-based pointcuts.

Among others Douence et al. [12], Bockisch, Mezini and Ostermann [9], Walker and Viggers [42],

and Allan et al. [2] have argued for aspect language constructs of similar flavor. An example of such a

temporal property is

G(call(∗Word.set(..))→ F (call(∗Bit.set(..))))

which means that every call to the method Word.set() is finally followed by a call to the method

Bit.set(). This property contains two propositions, call to the method Word.set() and call to

the method Bit.set(). For checking such a property, Stolz and Bodden [40, 40] create aspects that

contain state variables representing the fact that a proposition has been satisfied. For each proposition

(pointcut), an advice would be created that manipulates the state variables in the aspect. The advice and

state variables together serve to model the state machine. Figure 6.8 shows the aspect for our example,
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based on Stolz and Bodden’s example [40, Fig 3.].

aspect Tcheck {
pointcut p1(): call(* Word.set(..));
pointcut p2(): call(* Bit.set(..));
int p1 = 1; int p2 = 2;
Formula state = Globally(Implies(p1, Finally(p2)));
Set<int> propSet = new Set<int>();
after(): p1() { propSet.add(p1); }
after(): p2() { propSet.add(p2); }
after(): p1() || p2() {

state = state.transition(propSet);
if (state.equals(Formula.TT)) { /* report formula as satisfied*/ }
else if(state.equals(Formula.FF)) { /* report formula as falsified*/ }
state.clear(); //reset proposition vector

}
}

Figure 6.8 Temporal Property Checking Aspect Based on [40]

A version of the temporal aspect in Nu IL model is shown in Figure 6.9. First, patterns are created

to model pointcuts and delegates to the methods are created. The first pattern and delegate is used for

the one-time bind on line 12 in Figure 6.9. The bind handle received from this bind is not stored to

allow for optimizations. The effect of the one-time bind is that afterP1() starts intercepting the join

points matched by call(* Word.set(..)), which represents the first proposition in the temporal

formula. Once the first proposition is true, i.e. the method afterP1() executes, besides managing

the logic as before, a check for the second proposition is inserted into the system. This is achieved by

the bind on line 19 in Figure 6.9. When the second proposition is satisfied, the method afterP2()

executes, which besides managing the logic as before, stops the check for the second proposition as it

is no longer necessary.

To use Hanenberg et al.’s terminology [15], Nu’s version of the aspect Tcheck affects

only the initial set of join points selected by the the pointcut call(* Word.set(..)). Af-

ter the advice on line 18 executes, it morphs to include the join points selected by the pointcut

call(* Bit.set(..)). As Bodden and Stolz pointed out, dynamically (un)deploying portions of

the temporal matching infrastructure in this manner can lead to improved runtime performance [10].



34

1 class Tcheck {
2 static BindHandle id = null;
3 static Pattern prop2;
4 static Delegate d2;
5 int p1 = 1; int p2 = 2;
6 Formula state = Globally(Implies(p1, Finally(p2)));
7 Set<int> propSet = new Set<int>();
8 static {
9 Pattern prop1 = new Call(new Method("Word.Set"));

10 prop2 = new Call(new Method("Bit.Set"));

12 /* Delegate to the Tcheck.afterP1 method */
13 Delegate d1 = ... ;
14 /* Delegate to the Tcheck.afterP2 method */
15 d2 = ... ;

17 bind(prop1, d1);
18 }
19 void afterP1() {
20 propSet.add(p1);
21 if (id == null)
22 id = bind(prop2, d2);
23 afterP1P2();
24 }
25 void afterP2() {
26 propSet.add(p2);
27 remove(id);
28 id = null;
29 afterP1P2();
30 }
31 void afterP1P2() {
32 state = state.transition(propSet);
33 if (state.equals(Formula.TT)) {
34 // report formula as satisfied
35 } else if(state.equals(Formula.FF)) {
36 // report formula as falsified
37 }
38 state.clear(); // reset prop vector
39 }
40 }

Figure 6.9 Nu’s Version of the Tcheck Aspect
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6.5.1 Temporal Construct Performance

The performance of temporal constructs was measured on the Java Grande method benchmarks.

The same framework and formula were used for both the AspectJ and Nu versions. Once again, all

benchmarks were run in interpreted only mode. The results are shown in Figure 6.10. Once again, the

Nu IL version performed similarly to the AspectJ version.

Figure 6.10 Performance Comparison of AspectJ and Nu Versions of Temporal
Constructs (larger bars are better)
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CHAPTER 7. Related Work

Three closely related and complimentary research ideas are run-time weaving, load-time weaving

and virtual-machine support for AOP. We discuss these ideas in detail below.

7.1 Run- and Load-Time Weaving

There are several approaches for run-time weaving such as PROSE [36], Handi-Wrap [6], Eos [38,

39], etc. A typical approach to runtime weaving is to attach hooks at all join points in the program

at compile-time. The aspects can then use these hooks to attach and detach advice at run-time. An

alternative approach is to attach hooks only at potentially interesting join points. In the former case,

aspects can use all possible join points, excluding those that are created dynamically so the system will

be more flexible. The disadvantage is the high overhead of unnecessary hooks. In the latter case, only

those aspects that utilize existing hooks can be deployed at run-time, but the overhead will be minimal

for a runtime approach.

Eos uses the second model, i.e. only instrument the join points that may potentially be needed.

Handi-Wrap uses the first model, making all join points available through wrappers. PROSE indirectly

uses the first model, exposing all join points through the debugger interface. PROSE allows aspects to

be loaded dynamically without restarting the system. An additional advantage of indirectly exposing

join points through a debugger interface is that new join points (created by reflection) are registered

automatically. As observed by Popovici et al. [36] and Ortin et al. [32], however, performance in both

cases is a problem.

A load-time weaving approach delays weaving of crosscutting concerns until the class loader loads

the class file and defines it to the VM [28]. Load-time weaving approaches typically provide weaving

information in the form of XML directives or annotations. The aspect weaver then revises the assem-
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blies or classes according to weaving directives at load-time. A custom class loader is often needed for

this approach. There are load-time weaving approaches for both Java and the .NET framework. For

example, AspectJ [23] has load-time weaving support. Weave.NET [27] uses a similar approach for the

.NET framework. The JMangler framework can also be used for load-time weaving [25]. It provides

mechanisms to plug-in class-loaders into the JVM.

A benefit of the load- and run-time weaving approaches is that they delay weaving of AO pro-

grams. A contribution of our approach might also be perceived as delaying weaving, however, we view

the interface and corresponding contracts between the language designs and execution model designs

as a larger contribution of our work. The decoupling between language compilers and the virtual ma-

chine achieved by the interface provided by our IL model enables independent research in these areas.

Simpler aspect language designs and compiler implementations might be realized without spending

significant time on the optimization of the underlying AO execution models. Novel optimization mech-

anisms for the underlying execution models can be developed independent of the language design as

long as it conforms to the interface. The load-time weaving approaches do not provide these benefits.

The bind and remove primitives are similar to install and uninstall messages in AspectS [18]. The

difference is that install and uninstall messages are sent to aspects in AspectS, whereas bind and remove

can be thought of as messages sent to the virtual machine.

7.2 Virtual-Machine Support of Aspects

Steamloom [8] and PROSE2 [35] both aim to achieve an aspect-aware Java VM, to enhance the

runtime performance of AOP. Steamloom extends the Jikes Research VM, an open source Java VM [5].

Traditional approaches for supporting dynamic crosscutting involve weaving aspects into the program

at compilation. Steamloom moves weaving into the VM, which allows preserving the original structure

of the code after compilation and shows performance improvements of 2.4 to 4 times when compared

to AspectJ. It accomplishes this by modifying the Type Information Block to point methods to a stub

that modifies the existing byte code to weave in the advice. On the other hand, PROSE2 proposes an

enhanced implementation for the original PROSE approach, by incorporating an execution monitor for

join points into the virtual machine. This execution monitor is responsible for notifying the AOP engine
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which in turn executes the corresponding advice.

Steamloom has support for deploying (and undeploying) aspects as a unit. Nu’s model allows for

a finer-grained level of deployment. Aspects in Nu can be deployed in whole, or in part due to the

lower-level abstractions provided by the intermediate-language primitives. This functionality would

need to be simulated in Steamloom using conditional pointcuts.

Haupt and Schippers propose a delegation-based machine model [16] for AOP support that uses

proxy objects and delegation chains to add/remove additional functionality as needed. This model

could be considered an implementation of Ossher’s proposed machine model based on fragmented

objects [33]. Both the delegation-based model and Nu’s model aim to be targets for high-level AOP

languages, however, the implementation of Nu focuses on efficiency and production-level VM support.

The delegation-based model is slightly more flexible due to its support of introductions, which is future

work for the Nu model.

Golbeck et al. propose lightweight support in virtual machines for AspectJ [14]. A modified version

of the Jikes research virtual machine reads annotations generated by the standard AspectJ compiler

(ajc) to provide additional support for the woven aspects in the form of generating more optimized

machine code. The virtual machine itself does not perform any advice weaving and thus the language

model is quite different from that of Nu. Their approach shows potential performance benefits for

programs written with AspectJ while our approach tries to be general enough to support multiple high-

level languages. Note that both approaches allow execution of AsepctJ code compiled with a standard

AspectJ compiler.
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CHAPTER 8. Future Work

Our future investigations will focus on two key areas: language extensions and virtual machine

optimizations.

8.1 Language Extensions

Our current implementation does not support around constructs in AspectJ-like languages. Ma-

suhara et al. have proposed adding two constructs, proceed and skip, to handle around advice [29]. We

plan to add and implement similar constructs in our IL model to explore support for around advice in

our pointcut model.

Currently, our intermediate-language design does not support inter-type declarations. These con-

structs allow aspects to declare new methods or fields in another type, declare a type extends a new

class, or declare a type implements new interfaces. Inter-type declarations can be compiled to the Nu

intermediate language by directly adding the declarations to the class that it crosscuts. In cases where

the declaration affects more than one class, this will require compiling several classes. Clearly, this

strategy is not modular since a change in an aspect may affect not only the aspect’s object code, but

also the object code of each class into which the inter-type declaration is being introduced.

A more general problem is support for multi-dimensional separation of concerns and HyperJ con-

structs in the virtual machine. Fortunately, researchers are beginning to identify possible directions.

For example, recently Ossher [33] identified a runtime model based on fragmented objects as a basis,

which appears to be a promising direction for future extensions of the Nu model.
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8.2 Optimizations

We have planned several optimizations to further decrease the dispatch time of our prototype VM.

Additional optimizations for improved pattern matching and delegate invocation are also planned. In

the rest of this section, we will briefly describe these and other optimizations.

8.2.1 Further Improved Join Point Dispatch

The Hotspot VM keeps a list of tables for efficient dispatch. During VM initialization time, this

table is initialized with code buffers that contain optimized code for various different types of entry and

exit events. In our current implementation, we insert additional instructions into these code buffers.

During the execution of a program, an entry and exit is translated to jumps to different entries in these

tables as appropriate.

We plan to implement strategies to swap entries in this table such that an entry always points to the

most optimal code buffer. At VM initialization time, we will generate multiple generic code buffers,

each optimized for specific advice dispatch scenarios. For example, if we have not seen any bind

instructions yet for a join point kind, there is no need for advice dispatch condition checks. As soon

as the VM sees a bind call for a specific join point kind, it checks to see if the entry table is already

initialized to support dispatch of that join point kind. If not, it replaces the entry with the right code

buffer. These modified entries will not be generated for every join point instance, just for each join

point kind. On a remove, the VM will check to see if there are any more binds remaining in the list of a

join point kind. If there are no more binds in a list of join point kinds, the entry for that join point kind is

replaced with the original entry that does not contain advice dispatch checks. These two modifications

should further speed up the join point dispatch by eliminating the need for redundant checks.

We also plan to investigate using existing frameworks inside Hotspot to detect frequently dispatched

advice. This advice could then be inlined using either byte code reweaving or natively using Hotspot’s

JIT compilers. Hotspot’s de-optimization framework could possibly be used to remove previously

inlined advice.
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8.2.2 More Efficient Join Point Matching

The language implementation techniques for aspect-oriented quantification mechanisms, i.e.

matching join points against a (possibly large) set of pointcut predicates, have not received much at-

tention. This is primarily because most aspect-oriented approaches today employ compile-time de-

ployment of aspects, where the cost of quantification is a small percentage of total compilation time.

Recently, however, many use cases for dynamic aspect deployment have emerged [6, 8, 35, 36].

An implementation challenge for languages providing dynamic deployment constructs is to effi-

ciently determine the set of join points that are matched by the aspect being deployed (or removed).

This is primarily because in this case the cost of matching may become a significant portion of the cost

of the deployment operation.

In the future, we will look into efficient join point matching mechanisms. One direction is a decision

tree-based approach for matching join points against a set of pointcuts[13]. Unlike previous approaches

implemented in AO compilers that treat each pointcut individually, one can maintain all pointcuts in

the system in a single decision tree, which allows us to utilize more implication relationships resulting

in a faster matching process.

8.2.3 Additional Identified Optimizations

Since patterns are first-class objects available in the high-level language, they are re-usable. This

allows for possible optimizations by compilers, such as locating commonly used sub-patterns that can

be created once and re-used.

Additionally, since patterns are immutable, a virtual machine that implements the Nu model needs

not worry about a pattern instance changing after creation, which allows for the following optimizations

inside the virtual machine.

When a pattern is created, a mirror native (C++) object can be created inside the virtual machine

that will be much faster to access for pattern matching purposes, compared to accessing Java objects.

By making patterns immutable, we eliminate the requirement to maintain the consistency between the

pattern and its mirror C++ object.

For patterns that use regular expressions, at the time of their creation a deterministic finite-state
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automaton can be created and stored in the mirror native object for faster matching [31]. By making

patterns immutable, we once again eliminate the requirement to maintain the consistency between

the regular expression contained inside the pattern and its mirror deterministic finite state automaton

contained inside the C++ object. A similar strategy is feasible for bind handles, where the internal

representation of the bind handle can also be mirrored as a C++ object. The representation of the

opaque Java object can contain a pointer to its mirror C++ object and vice-versa.

During a remove, the pointer in the Java object corresponding to the bind handle can be redi-

rected to null, marking the bind handle as stale. This will allow for an easy check for stale bind

handles. Note that, if a stale bind handle is supplied to the remove primitive, an exception of type

IllegalArgumentException is thrown.

Additionally, the C++ objects for bind handles can be allocated on a separate, small heap ignored

by the standard garbage collector. Instead, a specialized and very fast garbage collector can be run

more often on this heap, which will traverse the C++ object to Java object link to check if the Java

object representing the bind handle has fallen out of scope. In other words, it will compute whether the

Java object for the bind handle can be garbage collected. If so, this means that the advising relationship

corresponding to that bind handle will never be removed in the thread’s life-time because the semantics

of the remove primitive requires the original bind handle. Such advising relationships can be safely

optimized using advice inlining techniques similar to those used by Steamloom [7, 8], which have

shown to have comparable performance to static-weaving approaches.

This optimization is likely to be helpful for static deployment of aspects. If the generated interme-

diate code for statically deployed aspects does not store the bind handle returned by the bind primitive,

the bind handle is eligible for garbage collection immediately after bind completes. Recognizing the

opportunity for such optimization allows the Nu model to remain flexible in general, but offer compa-

rable performance in cases where limited power is needed.
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CHAPTER 9. Conclusion

In this paper, we introduced Nu, an AO IL model that adds two primitives to object-oriented IL

models. These primitives are geared towards a class of AO languages called pointcut-advice languages.

Nu is motivated by the need to provide a richer compilation target for dynamic constructs compared to

object-oriented intermediate-languages. We illustrated that a variety of AO language constructs such as

static, dynamic, control flow, and trace-based can be expressed in terms of the Nu model. An additional

benefit that we observed was that representation of these constructs in Nu preserved the AO design

modularity in the object code.

We also described a prototype virtual machine implementation that supports the Nu IL model. Our

performance analysis showed that there is negligible performance degradation of method dispatch time

compared to the unmodified JVM. The speed of invoking the delegate also remains fairly close to the

manually in-lined method call because of our caching mechanisms.

Our work can also be viewed as a proposal to establish an interface and corresponding contracts

between language designs and execution model designs. This interface decouples language compil-

ers and the virtual machine potentially enabling independent research in these areas. Simpler aspect

language designs and compiler implementations might be realized without spending significant time

on the optimization of the underlying AO execution models. Novel optimization mechanisms for the

underlying execution models can be developed independent of the language design as long as they con-

form to the interface. Moreover, the effect of such optimization techniques is likely to benefit all such

language implementations; hence, the perceived benefit of improvements is likely to be greater.



44

BIBLIOGRAPHY

[1] O. Agesen and D. Detlefs. Mixed-mode bytecode execution. Technical Report TR-2000-87, IBM

Research, June 2000.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching with free variables to AspectJ.

In OOPSLA ’05, San Diego, CA, USA, 2005. ACM.

[3] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhotak, O. Lhotak, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. abc: an extensible aspectj compiler. In AOSD ’05:

Proceedings of the 4th international conference on Aspect-oriented software development, pages

87–98, New York, NY, USA, 2005. ACM Press.

[4] P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. Optimising AspectJ. In PLDI ’05, pages 117–128, New

York, NY, USA, 2005. ACM Press.

[5] B. Alpern et al. The Jikes research virtual machine project: Building an open-source research

community. IBM Systems Journal, 44(2):399–417, 2005.

[6] J. Baker and W. Hsieh. Runtime aspect weaving through metaprogramming. In AOSD ’02, pages

86–95, USA, 2002. ACM Press.

[7] C. Bockisch, M. Arnold, T. Dinkelaker, and M. Mezini. Adapting virtual machine techniques

for seamless aspect support. In OOPSLA ’06, pages 109–124, New York, NY, USA, 2006. ACM

Press.



45

[8] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual machine support for dynamic join

points. In AOSD ’04, pages 83–92, USA, 2004. ACM Press.

[9] C. Bockisch, M. Mezini, and K. Ostermann. Quantifying over dynamic properties of program

execution. In Dynamic Aspects Workshop (DAW05), 2005.

[10] E. Bodden and V. Stolz. Efficient temporal pointcuts through dynamic advice deployment. In

Workshop on Open Aspect Languages, 03 2006.

[11] K. Böllert. On weaving aspects. In Proceedings of the Workshop on Object-Oriented Technology,

pages 301–302, London, UK, 1999. Springer-Verlag.

[12] R. Douence, P. Fradet, and M. Sudholt. Trace-based aspects, pages 141–150. Addison-Wesley,

2004.

[13] R. Dyer and H. Rajan. A decision tree-based approach to dynamic pointcut evaluation. In VMIL

’08: Proceedings of the 2nd workshop on Virtual machines and intermediate languages for emerg-

ing modularization mechanisms. ACM, 2008.

[14] R. M. Golbeck, S. Davis, I. Naseer, I. Ostrovsky, and G. Kiczales. Lightweight virtual machine

support for aspectj. In AOSD ’08: Proceedings of the 7th international conference on Aspect-

oriented software development, pages 180–190, New York, NY, USA, 2008. ACM.

[15] S. Hanenberg, R. Hirschfeld, and R. Unland. Morphing aspects: incompletely woven aspects and

continuous weaving. In AOSD ’04, pages 46–55, New York, NY, USA, 2004. ACM Press.

[16] M. Haupt and H. Schippers. A machine model for aspect-oriented programming. In ECOOP,

pages 501–524, 2007.

[17] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In AOSD ’04: Proceedings of the 3rd

International Conference on Aspect-Oriented Software Development, pages 26–35, New York,

NY, USA, 2004. ACM Press.

[18] R. Hirschfeld. Aspect-oriented programming with AspectS. In M. Akşit and M. Mezini, editors,
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