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ABSTRACT
Mining Software Repositories (MSR) has recently seen a focus to-
ward ultra-large-scale datasets. Several tools exist to support these
efforts, such as the Boa language and infrastructure. While Boa
has seen extensive use, in its current form it is not always possi-
ble to perform the entire analysis task within the infrastructure,
often requiring some post-processing in another language. This
limits end-to-end reproducibility and limits sharing/re-use of MSR
queries. To address this problem, we use the notion of views from
the relational database field and designed a query language and
runtime infrastructure extension for Boa that we call materialized
views. Materialized views provide output reuse to Boa users, so
that the results of prior Boa queries can be easily reused by others.
This allows for computing results not previously possible within
Boa and provides for increased sharing and reuse of MSR queries.
To evaluate views, we performed two partial reproductions of prior
MSR studies utilizing Boa’s dataset and infrastructure and compare
our results to the prior studies. This shows the usability of the new
infrastructure, allowing analyses in Boa that were not previously
possible as well as providing a previously hand created gold dataset
for identifier splitting as a reusable view for other MSR researchers.
We also verified the caching behavior using the queries from one of
the case studies. The results show that caching works as expected
and can drastically improve runtime performance.

CCS CONCEPTS
• Software and its engineering→ Distributed programming
languages; • Computing methodologies → Distributed pro-
gramming languages.
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1 INTRODUCTION
There are many tools designed to help Mining Software Repository
(MSR) researchers more easily mine open source projects, such
as World of Code [19], Boa [6–8], GHTorrent [11], Sourcerer [18],
and PyDriller [25]. Among these existing tools, Boa is the only
tool that provides its own domain specific query language, a web-
interface built for easily submitting queries and viewing results,
and ultra-large-scale datasets based on several open-source soft-
ware repositories such as GitHub and SourceForge. Boa’s datasets
consist of snapshots of these software repositories. Boa queries are
automatically transformed into distributed Hadoop MapReduce [5]
programs and run on a small cluster. The language provides fea-
tures such as visitors to allow users to more easily analyze the
source code stored in the repositories. Boa programs are designed
to analyze a single project at a time, and send data to aggregators
for the final output.

Despite its benefits, Boa has some limitations. For example, if
a query needs to use the result of a prior global analysis (e.g., the
average/median/etc across all projects in the corpus) users have
only two options. They can either take the result of the prior query
and hard code it into a second Boa query, or they can use another
language/tool and post-process the result of the first query. This
limits the ability to use Boa as an end-to-end analysis tool. It also
has the side effect of limiting re-use across users.

To address this problem, we introduce the notion of materialized
views into the Boa language and infrastructure. A view in the rela-
tional database world is the result of a stored query. A materialized
view is a static snapshot of a view, cached by the database for per-
formance reasons. Views can be used in future queries and shared
across users. A materialized view in Boa is very similar in concept:
it is the statically cached result of a prior Boa query, which is re-
usable in future queries. We provide a simple language extension
to support the notion of declaring and using views in the query
language and extend the runtime infrastructure. The runtime relies
on the open-source Apache Oozie [15] workflow scheduler. Each
user-defined view is transpiled into an Apache Hadoop MapReduce
program. The compiler generates workflows based on the depen-
dencies among the views and schedules them with Oozie. If a view
already has cached output, the workflow skips executing it.

To evaluate views in Boa, we partially reproduced two prior MSR
studies [10, 14] using Boa’s new view features and compare our
results to the prior works. We also evaluate the caching behavior to
ensure caching works as expected, and execution times are faster
with caching enabled. The results of these evaluations show the new
infrastructure for views works and is useful for creating real-world
MSR analyses. The views created for the studies are shareable with
the community, thus demonstrating the re-usability of a view.

In the next section, we introduce Boa and motivate the problem
via a simple example. In Section 3, we propose our solution called
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views, and work through an example problem solved using the
new view syntax. We then partially reproduce two case studies
to show the usefulness of the new language features in Section 4.
Prior research related to views and MSR mining tools are discussed
in Section 5. Finally, we conclude the paper in Section 6.

2 BACKGROUND AND MOTIVATION
In this section, we first provide background about the Boa language
and infrastructure [6–8]. Then we discuss some limitations with
the Boa infrastructure and motivate a solution to the problem.

2.1 Overview of Boa
Here we give an overview of Boa’s language and infrastructure, by
first looking at the query language via a simple example and then
explaining how that query executes.
Boa’s Query Language The Boa language supports five prim-
itive types: int , f loat , bool , strinд, and time and five compound
types: tuple , array, map, set , and stack . Boa also provides a
set of domain-specific types such as Project, CodeRepository,
and Revision as well as nine AST types such as Declaration,
Statement, and Expression.

Boa queries take a single Project as input, process it, and gener-
ate output using output variables. The output variables aggregate
multiple output values from all projects to generate the final re-
sult. Some example aggregators are: sum, set collection, mean,
maximum(N), and top(N).

1 p: Project = input;

2 FixingFileCount: output sum[string][string] of int;

3 visit(p, visitor {

4 before rev: Revision ->

5 if (isfixingrevision(rev.log))

6 foreach (i: int; iskind("SOURCE_", rev.files[i].kind))

7 FixingFileCount[p.id][rev.files[i].name] << 1;

8 });

Figure 1: Example Boa query counting number of times
source files appear in bug-fixing revisions.

As an example, consider the query shown in Figure 1 that counts
the number of times source files appear in bug-fixing revisions. The
input for the query is given the alias p and defined on line 1. The
output for the query is named FixingFileCount and uses the sum
aggregator on line 2. Lines 3–8 declare a visitor and visits the entire
input tree. The visitor declares what action to take when reaching
nodes of a given type. For example, on line 4 the visitor will run the
code on lines 5–7 when first reaching any node of type Revision,
before visiting the children of that node.

Inside the visit statement contains an if statement, checking if
the current revision is a bug-fixing revision. If the check returns
true, we iterate the source files in the revision and count each file
through an emit-statement. Each emission creates a key-value pair.
In this case, the first string index in the emit statement captures the
project id, and the second index denotes the file name. An integer 1
is sent to the output variable FixingFileCount, counting the file
has appeared once.

Boa’s Runtime Infrastructure MapReduce is a programming
model for batch processing large datasets using a distributed cluster.
The model contains four steps: splitting input, mapping, shuffling,
and reducing. In the first step, the input is split into records and
each record provided as input to a mapper function. Users provide
custom mapper functions that take a single record, process it, and
output zero or more key-value pairs. After mappers generate output,
the shuffle phase occurs where the key-value pairs are sorted by
key, then grouped together based on keys, and each unique key and
all its associated values given as input to a reducer function. In the
last step, the reducer function aggregates the data and produces
key-value pairs as the final output.

Once a Boa query is submitted, the query will be turned into a
Boa job associated with a unique job number. During the compile
time, the query will be translated into a MapReduce program in
Java. The whole Boa query will be turned into a map operation,
and the aggregators from the output variables will be used in the
reducer in the reduce phase. In Boa, the MapReduce program will
be executed on a Hadoop cluster.

Figure 2 demonstrates the process of the MapReduce program
based on the query in 1 is executed. The goal of the query is to
count the number of times files appear in bug-fixing revisions. The
input consists of project snapshots. In the splitting phase, the inputs
are split in the project base, and each mapper would work on a
project from the dataset, producing a key-value pair for each emit
statement. In the example, the key consists of a project id and
a file name, and the value is a number 1. In the shuffling phase,
the pairs with the same key are grouped together and sent to the
reducers. Each reducer will apply a given aggregator sum to the
pairs, summing up the numbers for the file and produces a new
key-value pair. At the end of the process, the output generator
writes each pair into a row and append all output from the reducers
into one output file.

The MapReduce model contains high scalability and provides an
efficient solution of data mining. Due to the fact that MapReduce
operates on a distributed system, it can store and distribute large
amount of data among the cluster. MapReduce is efficient because
each server on the cluster operates in parallel. Despite of the com-
munication overhead between servers, as long as the task is not
distributed to too many servers, MapReduce can process terabytes
of data within minutes.

2.2 Problem: Supporting An End-to-end
Mining Task

Even though Boa provides a great platform for the researchers to
mine software repositories and answer MSR research questions,
Boa is limited and insufficient to be used to solve more complex
research questions. Due to the fact that each Boa query is turned
into a MapReduce program, Boa will not help much if the research
question requires several mapping or reducing operations to be
resolved. Even if the users can write multiple Boa queries to run
multiple MapReduce programs, not only the current input choices
are limited, the structure and the format of the outputs has no
re-usability in Boa. The users can only run the first MapReduce
program in Boa, and then using other data analysis tools to perform
further analysis on the query outputs.
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Boa Dataset

Input

Project 1

Project 2

Project 3

Splitting Mapping Reducing Final Output

o[PID_1][Apple.java], 1
o[PID_1][Orange.java], 1
o[PID_1][Apple.java], 1

Project 4

o[PID_1][Apple.java], 1
o[PID_1][Apple.java], 1

Shuffling

o[PID_2][Apple.java], 1
o[PID_2][Apple.java], 1

o[PID_4][Apple.java], 1
o[PID_4][Orange.java], 1
o[PID_4][Banana.java], 1
o[PID_4][Banana.java], 1

o[PID_1][Orange.java], 1

o[PID_2][Apple.java], 1
o[PID_2][Apple.java], 1

o[PID_4][Apple.java], 1

o[PID_4][Orange.java], 1

o[PID_4][Banana.java], 1
o[PID_4][Banana.java], 1

o[PID_1][Apple.java], 2

o[PID_1][Orange.java], 1

o[PID_2][Apple.java], 2

o[PID_4][Apple.java], 1

o[PID_4][Orange.java], 1

o[PID_4][Banana.java], 2

o[PID_1][Apple.java] = 2
o[PID_1][Orange.java] = 1
o[PID_2][Apple.java] = 2
o[PID_4][Apple.java] = 1
o[PID_4][Orange.java] = 1
o[PID_4][Banana.java] = 2

Figure 2: The MapReduce program when the example query in Figure 1 executes. The Mapping column represents the map
function (the query provided by the user). The Reducing column represents input/output for the reduce function (output
aggregator). The MapReduce framework handles the rest.

Boa Other Tools

1b. Download 2b. Download

3a. Analysis 
Task

3b. Output

1a. Analysis 
Task

2a. Analysis 
Task

Step 1a Compute the fixing file
counts, fixing revision
counts (FRC), and aver-
age FRC across projects

Step 1b Download Boa output
through Boa API

Step 2a Filter projects based on
common MSR criteria

Step 2b Download Boa output
through Boa API

Step 3a Generate list of poten-
tially buggy files

Step 3b Output final result

Figure 3: A set of tasks to find source code containing poten-
tial bugs through bug-fixing revisions. The first two steps
can be performed in Boa, but the remaining steps have to be
performed with post-processing the output.

Many of the research questions contain assumptions and re-
quired filtering. One possible MSR research question is to find the
buggy files by examining past bug fixing behavior [22]. Bug-
fixing revisions are the revisions that fix bugs. The solution can help
the company or the project team to identify potential buggy source
code for extra code review. To solve the problem, one solution is
to filter out the projects we are not interested in, and then find the
source code files appear the most among the bug-fixing revisions.
To solve this research question, the whole process can be seen in
Figure 3. The steps are shown on the right.

In Step 1a, a Boa query is created to compute three outputs:
fixing file counts, fixing revision counts (FRC), and average FRC.
Fixing file count is the number of times the source files appeared
in bug-fixing revisions. FRC is the number of bug-fixing revision in
the project. Average FRC is the mean of FRC across projects. Each
metric can be computed with one MapReduce program. In Step 2a,
another Boa query is used to filter out unwanted projects, for the
researchers might not be interested in all projects from the dataset.
Since the researchers need to perform post-processing analysis
tasks on queries’ results, they will most likely utilize Boa’s client
API to download outputs, so that the researchers can process them
with external tools like Python in Step 3a. This can be a tedious
step because the researchers have to manually merge and process
Boa outputs, and eventually generate final result in Step 3b.

Among the steps, besides Step 1a and 2a, the rest of the steps are
done outside of Boa framework. Besides using Boa, the researchers
have to utilize other analysis tools to perform several steps just
to solve a research question. The process can be time consuming
and very painful. Even though the problem can be solved in other
ways, it still requires external tools to solve the problem, not to
mention if the research question requires more map and reduce
operations to be solved. The researchers might need to put more
effort to manually merge more Boa outputs. This points out that
Boa fails to provide end-to-end analysis for the users.

3 APPROACH: VIEWS IN BOA
To tackle the problem, we introduce a new feature in Boa called
materialized views. Our goal for the feature is to allow researchers
to be able to resolve any MSR research questions solely within
Boa, provide them with better modularization capabilities, and to
enable more sharing of MSR queries. The concept of views comes
from relational databases, which allow users to reuse previous
query results. We borrow that notion here, allowing users to specify
queries as views, and provide a runtime caching mechanism that
effectively makes them into materialized views.
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Fix File Count

Dataset

Fix Revision Count (FRC)

Retained Projects

Boa Query 2

Ranked Files

Output

Boa Query 3
Boa Query 1

Average FRC across Projects

Figure 4: A DAG to implement the analysis of Figure 3.

With views, all of the tasks shown in Figure 3 can now be done
in a single Boa query (aka job), or broken into multiple Boa sub-
queries written by the same or different users. Boa can now become
an end-to-end analysis tool for researchers in the MSR field. In this
section, we illustrate the design of views.

With views, Boa queries can contain multiple sub-queries. The
query in the outer-most scope is the main query. From this point
on, all Boa queries/jobs are actually views and we use the terms
interchangeably. Each view contains one or more output variable.
When a view re-uses the output from another view, we call it a
table and say the view is referencing the table.

Whenever a table from query X is referenced in query Y, a depen-
dency relationship is established between the queries. If the table in
query X is missing, query X must be executed again to generate the
table before running query Y. If somehow query X fails to generate
the table, query Y should abort immediately.

The dependencies should form a directed acyclic graph (DAG).
A valid view-referencing relationship must not contain any cycles,
otherwise during execution each query would wait on the output
from another query, forming a deadlock.

Let’s consider the example analysis to find the buggy files by
examining past bug fixing behavior. To perform this analysis
in Boa with views three Boa queries are needed. The corresponding
DAG is shown in Figure 4. The first query contains three outputs,
which are derived from step 1a in Figure 3. The second query
references two tables from query 1 and filters projects, outputting
the retained projects. The third query reuses the FixFileCount
table from query 1 and the RetainedProjects table from query 2
to rank source files for the retained projects, producing the final
output for the research question. Next we show the source code.

3.1 Views Syntax
In this section, we introduce new syntax to support views. Figure 5
shows a Boa query that implements the DAG in Figure 4. The
query contains two sub-views. Each view’s color maps to a node in
Figure 4. The blue portion is the first sub-view computing file count
and revisionmetadata. The red sub-view uses metadata and revision

1 view FixingRevision {

2 FixFileCount: output sum[string][file: string] of int;

3 FixRevisionCount: output sum[string] of count: int;

4 AverageFRC: output mean of int;

5 count := 0;

6 visit(input, visitor {

7 before n: Revision ->

8 if (isfixingrevision(n.log)) {

9 count = count + 1;

10 foreach (i: int; iskind("SOURCE_", n.files[i].kind))

11 FixFileCount[input.id][n.files[i].name] << 1;

12 }

13 });

14 if (count > 0) {

15 FixRevisionCount[input.id] << count;

16 AverageFRC << count;

17 }

18 }

19 view Filter {

20 Retained: output collection[pid: string] of int;

21 v : table of avg: int = FixingRevision/AverageFRC;

22 r: v._row;

23 v >> r;

24 visit(input, visitor {

25 before n: CodeRepository -> {

26 v2 := FixingRevision/FixRevisionCount[input.id];

27 r2: v2._row;

28 if (v2 >> r2 && r2.count > r._1

29 && len(n.revisions) >= 100)

30 Retained[input.id] << 1;

31 }

32 });

33 }

34 o: output top(5)[pid: string] of fileName: string weight count: int;

35 if (len(Filter/Retained[input.id]) > 0) {

36 v := FixingRevision/FixFileCount[input.id];

37 r: v._row;

38 while (v >> r)

39 o[input.id] << r.file weight r._2;

40 }

Figure 5: Boa query implementing the DAG in Figure 4.

counts to filter unwanted projects. The green portion shows the
main query, which ranks the file count for the retained projects.
Creating Sub-Views Since a view represents a Boa query, there
are two ways to create views. One is simply writing a Boa query,
which becomes the main view of the query. The second approach
is creating a sub-view. Line 1 and 19 demonstrate the syntax of
creating sub-views. The keyword view indicates the start of the
sub-view, which is followed by a view name and a block containing
an entire Boa query. Each view defines their own output variables.
We can create nested views as well. Defining nested views could
help users organize the view path easier for future referencing.
We will discuss more about referencing views later. Views create
a block-level scope, so variables, function, etc do not pollute the
namespace of another sub-view. When compiled, each (sub)view
is translated into a MapReduce program. We utilize a workflow
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1 view Filter {

2 Retained: output collection[pid: string] of int;

3 v := J12345/AverageFRC;

...

15 }

16 o: output top(5)[pid: string] of fileName: string weight int;

17 if (len(Filter/Retained[input.id]) > 0) {

18 v: table sum[file: string] of int =

@user/FixingRevision/FixFileCount[p.id];

19 r: v._row;

20 while (v >> r)

21 o[input.id] << r.file weight r._2;

22 }

Figure 6: Boa query revised fromFigure 5, assuming the view
FixingRevision is defined as another Boa job with job id
12345 and tag name FixingRevision assigned by user user.

scheduler (such as Oozie [15]) to manage the DAG of MapReduce
programs generated. The generated workflow checks for cached
outputs before running views. We don’t expire cache entries and
leave cache expiration policy as future work.
Referencing Tables If the target table comes from the same
Boa query, we say it is an internal table. To reference an internal
table, users need to provide a relative view path (RVP) followed by
a table name. The table name is the same as the output variable
name in the view. A RVP consists of a set of view names. A RVP
can either start with the current scope or the scope of main query.
In Figure 5, the blue boxes in view Filter demonstrate RVPs to
reference tables from view FixingRevision. In this case, the RVPs
start with the scope of the main query.

If a target table comes from other query (possibly another user’s),
we say it is an external table. External tables need to be referenced
with an absolute view path (AVP) followed by a table name. An
AVP consists of a query root and a RVP. Query root represents the
address of a Boa job. There are two kinds of query root: explicit
job id and user/tag name. Job id is a unique number given to every
submitted Boa query. Tag name is a customized name users can
give to a job (note: this feature is being proposed here, but not yet
supported in the web interface).

Figure 6 shows a revised version of Figure 5, assuming the view
FixingRevision is defined in another Boa job by user user, and
the job is given a job id 12345 and a tag name FixingRevision. On
line 3, view Filter references an external table via job id to get the
fixing file counts. In the reference path, J12345 is the query root,
and AverageFRC is the table name. Since AverageFRC is defined in
the main query in job 12345, there is no RVP. When referencing
external views, RVP always starts from the scope of the main view.

Figure 6 line 18 shows an example of referencing an external
table via tag name. In this case, the query root is @user/ChurnRate.
The goal of having tag names is to allow each user to be able to
customize the queries according to different functionalities. Once a
tag is set to a Boa job, the user can update or remove the tag through
the web interface. This design allows duplicated tag names across
users but not across jobs for a single user. This is why the username
is required while referencing with tag. Unlike job numbers, having

tag names can significantly increase the readability of Boa jobs,
providing more flexibility to MSR researchers.

Tables have a type similar to their corresponding output types.
Users can explicitly give the type (or it can be inferred) as shown
in Figure 5 on line 21. The only difference is the keyword output
is replaced with table. One reason to give the type is the user
can then assign meaningful names to various columns of the table.
When traversing the table they can access individual cells using
those names. Since names are optional, they can also access the
cells positionally with syntax such as _1, _2, etc.
Table Traversals Since the size of the tables might be enormous,
instead of pre-loading the whole output file into the query at once,
our strategy is to traverse the table row by row, reading each row
into an iterator at a time. The benefit is to avoid pre-loading large
data and save space. In the future we could optimize based on actual
table size.

Each row is a tuple type, which contains the column types from
the table. Before traversing a table, we need to define an iterator
with correct tuple type. The iterator type can be extracted from
a table variable with the attribute _row. In Figure 6 line 19, the
variable r is given a tuple type from the table v. The tuple type
consists of two fields with types string and int. To read rows, we
can use the right shift operator >> to read the next row into the
iterator. The right shift operator returns a boolean value, which
can be used to indicate if a row was read. To traverse the whole
table, we can use a while loop to read in each row, such as while(v
>> r) (line 20). The values in the row can be retrieved by using
field names or positionally. An example is shown on line 21 where
a string value in the first column is extracted with field name file
and the integer in the second field is extracted with field name _2.
Table Filtering Filtering allows users to filter out unwanted
rows during traversal. Users can apply indices to perform filter-
ing. One index is used to filter a column at a time. For instance,
the first index filters the first column, and the second index filters
the second column, etc. In Figure 5 line 26, the referenced table
FixRevisionCount has two columns with types string and int.
An index [input.id] is applied to the table. This filtering guar-
antees that when a row is read from the table, the first column
must match current project id. Since the filtered column becomes a
fixed value, each filter decreases the number of columns by one. On
line 36, table FixFileCount has three columns. After filtering with
index [input.id], variable v only has the second and the third
columns from original table. If we just want drop a column, we can
use a wildcard index [_].

4 EVALUATION
To evaluate views, we reproduce two priorMSR studies and evaluate
the caching behavior on one of the studies. We believe the selected
studies are complicated enough to demonstrate the use of views.
We wrote Boa queries and utilized views to reproduce the research
entirely within Boa. We set up a Boa cluster with Hadoop version
1.2.1 and Oozie version 4.0.1, containing 1 master and 15 compute
nodes. Each identical node has a 4 core Intel Xeon 3GHz and 16GB
memory. Map and reduce tasks are given 1 core and 1 GB/each.

Note that due to the addition of views to Boa, from this point
forward every Boa job (aka, query) is actually also a view. Any
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job can be directly re-used by another job (assuming the user has
permission to view that job) by referencing it via job number. Thus,
many of the queries described in this section may not look likes
views - but they are. We explicitly reference them via job numbers.

4.1 Case Study 1: Identifier Splitting
For certain tasks, splitting source code identifier into words is re-
quired. Many splitting algorithms have been developed. To help
the research community testing the algorithms, Binkley et al. [2]
created a dataset (so called gold set) containing 2,663 identifiers and
their split form based on 8,522 human splitting judgements. Hill
et al. [14] then performed an empirical study of different identifier
splitting algorithms (Greedy, Samurai, INTT, etc.) on that gold set.
Some splitting algorithms use hard words as input instead of the
original identifiers. Hard words are the conservative split of an
identifier based on certain points such as underscores, digits, and
the transition from lower to upper case.

4.1.1 BoaQueries. To reproduce the study, we imported the gold
set into Boa and split the identifiers by using the greedy ap-
proach [9]. The approach requires a dictionary word list, an abbre-
viation list, and a list of stop words. Stop words are words that do
not contain useful information such as a. Our dictionary contains
60,433 entries and the abbreviation list contains 90 entries from
Kevin Atkinson’s SCOWL word lists [16] (sizes 10 through 35). To
acquire better results, we defined and added a set of 27 technical
abbreviations such as str and vars to the abbreviation list. The list
of stop words was collected from Ranks1 and contains 665 entries
in the list. Therefore, there are 61,215 entries in total in the word
list for this case study. The gold set and word lists are converted
into Boa queries by several simple python scripts, emitting each
entry into a corresponding Boa output variable.

Output

Dictionary

WordLists
GoldSet WordLists/

Abbreviation
WordLists/
StopWords

GreedySplit

Words Words
ConfidenceLevel
ProgramLanguage

Gold

Accuracy

Result

Dataset

Figure 7: The DAG for splitting identifiers from gold set.

The DAG for splitting identifiers from gold set is shown in Fig-
ure 7. There are five queries (or nodes) in the DAG. The name of
the query is shown at the top of each node, which followed by
sub-view names if any. Each query contains at least one output. In
this case, the color is used to differentiate Boa query files. Among
the queries in the DAG, three of them are from the same query file
WordList.boa. The query contains two sub-views: Abbreviation
and StopWords. The shape icons are used to differentiate differ-
ent output variables. For instance, the query GreedySplit contains
1https://www.ranks.nl/stopwords

two outputs Result and Accuracy. The outputs participating in the
data flow are marked as bold. In the DAG, the query GreedySplit
references four tables, one from each query. Notice that even though
this task does not require the Boa input dataset, each query is still
fed with a Boa dataset, for the current infrastructure requires a
Boa dataset to start the MapReduce process. In the future, we could
modify the infrastructure to allow users to customize their own
input dataset for each query.

In the gold set, each entry not only contains the identifier and
split identifier, it also contains other information such as program
name and the human judgements’ confidence level for each identi-
fier. Each identifier can have up to five confidence scores, and the
confidence scores scale from 0 (a guess) to 2 (certain). The query
GoldSet is (partially) shown here:
1 Gold: output collection [id:int][original:string][program:string][

hard:string] of anno:string;

2 ProgramLanguage: output set [program:string] of language:string;

3 ConfidenceLevel: output collection [id:int] of confidenceLevel:int;

4 if (input.id == "1061331") {

5 Gold[1]["::CreateProcess"]["mozilla-source-1.1"]["Create-Process"

] << "Create-Process";

6 ProgramLanguage["mozilla-source-1.1"] << "cpp";

7 ConfidenceLevel[1] << 1;

8 ConfidenceLevel[1] << 2;

9 ConfidenceLevel[1] << 2;

...

12916 }

Since the query does not use the Boa dataset at all, we used an
if statement as a check at the beginning of the map function to
ensure the code ran only once. The string 1061331 is a random
project id from the dataset, so only the mapper node processing
that project will execute this query. Without the check, the query
would execute as many times as the input dataset size (millions of
projects), which could potentially create much overhead and also
produce incorrect results.

To import the gold set to Boa, we use three output vari-
ables to capture the information: Gold, ProgramLanguage, and
ConfidenceLevel. The output Gold contains a key, the original
identifier, the name of the program, the hard-split version of the
identifier, and the annotator-split version of the identifier. The
output programLanguage stores the language information of the
programs. The output ConfidenceLevel takes a key as the index,
and the second column is the confidence level given by a annotator.

The queryWordLists contains two sub-queries, each contain-
ing an output Words. The sub-query Abbreviation provides the
abbreviation word list and StopWords provides the stop word list.
The main view provides the dictionary word list. Instead of having
three separate views, the word lists are contained in a single view
for better modularization. Given the gold set and these word lists,
the last view GreedySplit runs the greedy algorithm.

4.1.2 Case Study Result. In the original study, Hill et al. test the
greedy splitting algorithm with different dictionary sizes: small
(50,276 entries), medium (98,569 entries), and large (479,625 entries).
The testing showed that using the large dictionary gives the best
accuracy with 60%, small gives second best with 56%, and medium
produces the worst accuracy with 51%.

After executing GreedySplit, our greedy approach produces
accuracy of 53%, which is better than the worst accuracy from

https://www.ranks.nl/stopwords
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the original study result. We believe the accuracy is reasonable
since our word list contains 61k entries, which sits between the
small/medium dictionary sizes from the original study. Also, the
differencemay come from having different words in the dictionaries,
as the greedy algorithm heavily depends on the word list.

4.2 Case Study 2: Developer Turnover
Developer turnover represents the flow of human resources in a
project. Sometimes developers switch teams, working on different
modules but staying in the same project. They are represented as
IN (Internal Newcomers) or IL (Internal Leavers). If developers are
new to/leave the project, they are EN (External Newcomers) or EL
(External Leavers). Developers are denoted as ST (Stayers) if they
stay in the same module/team. To find the impact of new/leaving
developers on project activities, Foucault et al. [10] collected devel-
oper turnover metrics on 5 open source projects and analyzed the
metrics to answer three research questions:
RQ1 Using the concepts of external newcomers and leavers at

the project level, is turnover an important phenomenon in
open-source software projects?

RQ2 Looking deeply into projects at the module level, are there
any patterns regarding the contributions of persistent, inter-
nal and external developers?

RQ3 Using the turnover metrics at the module level, is there any
relationship with the quality of the software modules?

4.2.1 BoaQueries. We partially reproduced the prior work by first
mining turnover metrics from Boa’s dataset. Three more queries
were written to answer the research questions above. The DAG for
this case study is shown in Figure 8 and contains seven Boa queries
in total. Before computing turnover metrics, we first filter out small
projects from the dataset.
ProjectCommitTime Collects the first/last commit times
(converted to integers) for each project. The output variable
LatestCommitTime takes the project id as index and provides the
last commit time. If a project does not contain any commits, the
project will not appear in the output tables. Therefore, this query
can also be used to check if a project contains any revisions at all.
ProjectDeveloperFilter For each project, this query uses a set
to track all unique committers. Then the project id is emitted to the
output variable AtLeast with different cutoff values. The output
collects project ids with at least a certain number of committers. In
this query, the number of committers is output by 10s. For instance,
if the project has 23 developers total, the project id would be emitted
to the output with indices 10 and 20.
TurnoverProjectFilter This query uses the previous two views
to filter out small projects from the dataset. In this case study, the
period length is set to 6months. The commit history has to be longer
than 2 years and each period has to contain at least 20 commits.
Furthermore, the project must have at least 20 developers working
on the project before. With these constraints, we filter out projects
that have little activities and low number of developers.
TurnoverMetrics After filtering the projects, this query com-
putes the turnover metrics. First it collects the name of the develop-
ers along with the modified module names, within each period. The
module is determined by directory structure of the changed files.

We also compute the developers’ activities in different modules per
period. The way we assess the activities is to count the number
of files changed from the developers. Then, we follow Foucault’s
approach to compute the turnover metrics (EN, EL, IN, IL, and ST)
and the turnover activities metrics (ENA, ELA, INA, ILA, and STA).
Each of them is emitted into output variables. We also compute the
number of bug-fixing revisions in each module per period.

To answer the first research question, we study the ratio of
external newcomers and leavers to all developers in the same period.
If the ratio is significantly large, it confirms that turnover is a
significant phenomenon among open source projects. Also, we
compute the stayers conversion rate to see what percentage of
developers have been stayers across the project history.
TurnoverRQ1 The query references 8 outputs from view
TurnoverMetrics. To compute the ratio of external newcomers
and leavers, we need the number of developers in each turnover
metric and the number of periods in the project. After importing
the metrics into maps, we compute the ratio for each period by
dividing the number of external newcomers and leavers by the total
of the turnover metrics for the period. For the stayers conversion
rate, we reuse the stayer table and the developer table to compute
the number of developers that have been stayers and the number of
persistent developers. After importing the developers’ usernames
into sets, we compute the stayers conversion rate for the project.
The outputs ENLratioStats and ConversionRateStats count the
frequency of the ratios and conversion rates every 0.1 level, so that
we can observe the turnover impact among the projects.
TurnoverRQ2 Computes the ratio of each turnover activity met-
ric to the total activities for each project. The query references 5
outputs from TurnoverMetrics. After reading the total activities
values from the tables, the total activity is computed. If the total
activity is zero, the project is filtered. We compute the ratio for each
metric to the total activity. The activity ratios are emit to the output
table Ratio, including the newcomer and leaver activity ratios.
TurnoverRQ3 To assess project quality, we compute the den-
sity of bug-fixing commits per module. The tables Commit_M and
BFCommit_M are referenced to compute the bug-fixing density for
each module. Spearman correlation tests are performed to compute
correlation between the turnover activity metrics (ENA, INA, etc)
and the bug-fixing commits’ density. The tests compute a correla-
tion coefficient for each period (a number from -1 to 1) representing
the perfect negative and perfect positive correlation. A 0 correlation
coefficient represents no correlation. To fully reproduce Foucault’s
approach, we also compute 95% confidence intervals of the cor-
relation coefficients for each turnover activity metrics. If the end
values of confidence interval are both either positive or negative,
then we have 95% confidence to say the turnover activity metric
has positive or negative impact on the quality of software modules.
For each activity metric, we also count the number of times it has
positive or negative correlation with bug-fixing density.

4.2.2 Case Study Results. Foucault studied the impact of devel-
oper turnover on 5 open source projects written in four different
programming languages. Here we study the impact of developer
turnover on open source projects in the Boa dataset, which con-
tains 7,830,023 projects. However, only 1,676 projects are kept after



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Che Shian Hung and Robert Dyer

1. LatestCommitTime

ProjectCommitTime

2. EarliestCommitTime

1. AtLeast

ProjectDeveloperFilter

1. TurnoverRetainedProject

TurnoverProjectFilter

1. Commit_M
2. BFCommit_M
3. PeriodCount
4. D_P
5. ST
6. ENA
7. ELA
8. INA
9. ILA
10. STA
11. ENCount
12. ELCount
13. INCount
14. ILCount
15. STCount
16. …

TurnoverMetrics

TurnoverRQ1

1. Ratio
2. ENmax
3. INmax
4. ELmax
5. ILmax
6. STmax
7. …

TurnoverRQ2

1. Correlation
2. CorrelationCI
3. ENp
4. ENn
5. …

TurnoverRQ3

Output

Output

Output
* Each query is also fed in the same Boa dataset.

1. ENLratio
2. ENLratioStats
3. ConversionRate
4. ConversionRateStats

Figure 8: The DAG for reproducing Foucault et al. [10]. Three queries on the left filter projects. Query TurnoverMetrics com-
putes turnover metrics. Three queries on the right analyze the turnover metrics to answer the RQs.
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Figure 9: Number of projects for average external ratios.

filter TurnoverProjectFilter. Since the scale of the dataset is
larger, we answer the research questions by focusing on the overall
trend of turnover metrics instead of studying the impact at the
module level for each project. However, the outputs from query
TurnoverMetrics do provide metrics at the module level.
RQ1 By observing the number of external newcomers, leavers,
and stayers, Foucault et al. found at least 80% of developers are
newcomers and leavers. Also, conversion rates for projects were
8–19%, meaning a low number of newcomers became stayers. Since
there are 1,676 projects in our dataset, we focus on the trend of
average external ratio as well as the conversion rate.

Average external ratio is the ratio of external newcomers and
leavers to all developers. The number of projects in each ratio level
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Figure 10: Number of projects at each conversion rate.

is shown in Figure 9. Most projects have a ratio from 0.2–0.4. There
are few projects having very high ratio.

The conversion rates are shown in Figure 10. Among 1,676
projects, almost 500 projects have a conversion rate between 30–
40%, and most of the project conversion rates fall between 20–50%,
which is greater than the conversion rates obtained in the original
studies. These rates are higher than the prior study.
RQ2 Through analyzing the turnover activity metrics, several
patterns are identified among the open source projects. Foucault
et al. found out that in Angular.JS, most of the activities come from
stayers and external leavers. In Ansible, all categories contributes
similar levels of activities. For the projects Jenkins, JQuery and Rails,
internal newcomers tend to contribute more activities than other
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Figure 11: Number of projects for each highest activity met-
ric. Each category contains number of projects that have the
highest total activity metric throughout project life times.

categories of developers, and external newcomers and external
leavers are more focused on certain modules and do not contribute
more than half of the module activities.

For this research question, we compare projects activities met-
rics throughout the project life times. The result of comparing each
activity metric is shown in Figure 11. Among 1,676 projects, the
stayers contribute the most in about 75% of the projects. This makes
sense as the stayers have more project knowledge compared to de-
velopers in other categories. External leavers is the smallest activity
metric among the projects, but this does not mean that external
leavers contribute less activities as the analysis only looks at the
number one metric in the projects, meaning that external leavers
can contribute the second most activities in many projects.
RQ3 After computing the correlations between turnover activi-
ties and bug-fixing density, Foucault et al. noticed that most of the
projects have a positive correlation between external newcomers’
activities and the bug-fixing density. Also, the stayers’ activities
have a strong positive correlation with the bug-fixing density. How-
ever, none of the projects’ external leavers’ activities has significant
relationship with the bug-fixing density.

In this case study, we also compute the correlations and the con-
fidence intervals between turnover activities and bug-fixing density.
Based on the confidence intervals, we count the projects having
positive and negative correlations for each turnover activity metric.
The result is shown in Figure 12. Contrary to the original study,
the stayers contribute much less bug-fixing revisions than other
metrics. However, for each metric, no more than 50 projects have
positive correlations with bug-fixing density. The stayer activities
in more than 400 projects have negative correlation. This might be
due to the high stayer activities observed from Figure 11. Given the
small number of bug-fixing revisions, the more commit activities
the developers have, the less bug-fixing density the team results.

Even though some of the results do not match the original study,
notice that we applied the analysis on 1,676 open source projects,
and Foucault et al. only focuses on 5 open source projects. The
turnover impact for a project varies on a case-by-case basis so we
believe our analysis results simply show a more general trend.

4.3 Performance Analysis on Caching Behavior
In this section, we evaluate performance and caching behavior.
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Figure 12: Number of projects having correlation with bug-
fixing revisions for each activity metric.

4.3.1 Analysis Method. With views, caching happens when the
outputs already exist for the referenced job, so there is no need
to re-execute the query jar to re-generate the outputs. Therefore,
we assume the caching performance should be better than the run-
time performance without caching. In this experiment, we use the
queries from the first case study to test the caching performance. To
test the caching performance, we designed three testing scenarios.
For each scenario, we executed query GreedySplit 10 times.

The first scenario estimates the runtime performance for running
the queries without any caching enabled, so all queries execute
on each run. The second scenario executes where the outputs for
query WordLists and its sub-queries WordLists/Abbreviation
and WordLists/StopWords are cached, and only queries GoldSet
and GreedySplit re-execute. In the third scenario we also cache
outputs for GoldSet, so only GreedySplit re-executes.

Table 1: Runtime performance for each caching scenario

Scenario Median Average Std. Dev.
1. No Caching 147.0 146.6 2.270
2. Cache WordLists 56.5 56.4 0.966
3. Cache WordLists & GoldSet 29.0 28.9 0.876

4.3.2 Analysis Result. The runtime performance for each scenario
is shown in Table 1. The first scenario is the slowest with median
147 seconds and the third scenario is the fastest with median 29
seconds. Notice that the cached job WordLists includes two sub-
queries Abbreviation and StopWords. These results verify our
assumption, that more cached queries during the run means faster
performance. This is reasonable as having more cached queries
means there are less queries to execute.

Table 2: Runtime performance for individual queries

Query Name Median Average Std. Dev.
GoldSet 21.0 21.3 0.483
WordLists 31.0 30.5 0.707
WordLists/Abbreviation 21.0 20.9 0.568
WordLists/StopWords 21.0 20.9 0.738
GreedySplit 21.0 21.2 0.422
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The runtime performances for the 5 Boa queries from case study
1 are shown in Table 2. Compare the result of the third scenario
to the performance for GreedySplit query, the performance dif-
ference (8 seconds) is the workflow overhead of running Oozie. If
we add execution times for queries GreedySplit and GoldSet and
compare to the second scenario, the workflow overhead increases
to 14.5s. Lastly, if we add up all the individual query performances
and compare to the first scenario, the workflow overhead becomes
32s. Therefore, the more queries executed in an Oozie job, the more
workflow overhead it produces. This makes sense as running more
queries means there are more workflows to process. Despite this
overhead, we believe the benefits of having views (output reuse,
modularization, and dataset sharing) outweigh the cost.

5 RELATEDWORKS
We examine related prior research along two dimensions: 1) views
in databases and 2) large-scale software repository mining.
Database Views Many works have investigated view mainte-
nance problem in databases. Srivastava and Rotem [26] presented a
parameterized approach to combine the users’ and systems’ needs
to maintain views. Gupta et al. [13] introduced the counting and
DRed algorithms formaintaining recursive and non-recursive views.
Griffin and Libkin [12] proposed an approach based on equational
reasoning to incrementally maintain the updates from base rela-
tions to materialized views. Ross et al. [23] presented a view main-
tenance plan that exploits additional views to reduce the time cost
of maintaining views. Mistry et al. [20] proposed a materialized
view maintenance plan that uses both transient and permanent
materialized views in their maintenance technique to achieve the
lowest estimated maintenance cost. Lee et al. [17] proposed optimal
delta evaluation to perform efficient incremental view maintenance
and reduce the accessing overhead to views and base relation. In
Boa all queries are deterministic, so we don’t need to worry about
view updates. Once views generate output, it is stored on the cluster
and immutable.

Other studies show how views can be used to optimize queries.
Chaudhuri et al. [3] proposed an efficient approach that optimizes
queries. The algorithm would analyze the queries and the existing
materialized views in the database. If there is a more efficient query
that utilizes views and performs the same task, the optimizer will
run the efficient query instead. However, the approach only applies
with query with no aggregates or group-by clause. For aggregated
queries, Cohen et al. [4] presented a sound but not complete al-
gorithm to optimize the query performance. Not only searching
for usable materialized views in the database, the algorithm also
utilizes the results from previous queries to rewrite the aggregate
query. In the future, we could perform similar optimizations to
modify Boa queries with existing views to enhance performance.
Repository Mining Frameworks GHTorrent [11] mirrors the
event streams from GitHub. GHTorrent uses multiple hosts to col-
lect repository data though GitHub’s API. Users can download
MySQL or MongoDB dumps for analysis. GHTorrent and Boa pro-
vide different data. Analyses using GHTorrent can be in SQL or
access MongoDB while in Boa they use Boa’s DSL. Boa automati-
cally scales analyses and with views can now provide multi-phase
analysis and sharing of intermediate queries and results.

World of Code [19] is an infrastructure for easily updating a
large collection of open source software repositories that supports
research/tools relying on version control systems (such as Git).
While similar in that both provide large amounts of open source
data and tools for researchers to analyze it, Boa views allows easily
sharing and accessing other user’s results and analyses, hopefully
leading to more shared analyses and a faster pace of research.

Software Heritage Project [1, 21] is available as downloads in
several formats or on Amazon Athena for scalable processing. The
project aims to archive open source software and development
artifacts with over 80m projects. Unlike Boa views however, users
can not easily share their analyses with each other and would have
to coordinate a shared Athena instance.

Sourcerer [18] provides a SQL database for over 18k projects,
containingmetadata and source code elements. Since it is SQL based,
many end-to-end analyses can be written using it by utilizing SQL
table joins. Sourcerer could provide a notion of views via the SQL
storage engine. However unlike Boa views, views created by one
user would not be readily available to all other users.

MetricMiner [24] is a web application that mines software repos-
itories with metrics. It runs on a cloud infrastructure. MetricMiner
is built on rEvolution, a command-line tool that clones the reposi-
tory data and stores them into a database. Once the repository is
cloned, MetricMiner automatically analyzes the data and generates
several metrics such as cyclomatic complexity and lack of cohe-
sion of methods (LCOM). The researchers can run SQL query in
MetricMiner to mine the data. MetricMiner also supports statistical
analysis on the output. To achieve better run-time performance,
each task in MetricMiner is executed asynchronously. In Boa, the
researchers can write Boa queries to compute different metrics for
each project as well. However, without view support, Boa cannot
perform statistical analyses on the aggregated data.

6 CONCLUSION
In this paper, we introduced the notion of materialized views in Boa.
Views enable query output reuse and enable modularization via sub-
queries. We designed a set of operations and functions specifically
for views, that allow users to easily specify what code is a view,
give it a name, and allow a type-safe way of referencing the output
from a prior view. To enhance runtime performance, Views cache
to prevent unnecessary query execution. Views in Boa allow users
to write MSR analyses that run at a large scale in a modular fashion.
Views are also re-usable, allowing users to share their queries and
the resulting output, so that other users can directly reuse them.

We evaluated views via partial reproductions of two prior MSR
studies: evaluating a greedy identifier splitting algorithm on a hand-
curated gold set and mining developer turnover metrics. Both
showed results similar to the prior studies. We also tested the
caching behavior and verified that performance improves with
more cached queries. In the future we plan several language ex-
tensions to ease use, as well as investigating modifications to the
web-based frontend of Boa to support views and view sharing.
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