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ABSTRACT

We present a web-based Program Analysis Collaboratory (PAClab)
tool that helps researchers to obtain realistic program benchmarks
using user-defined selection criteria. Based on selection criteria,
PAClab identifies relevant projects and its programs from open-
source repositories, obtains those programs, and if necessary per-
forms sound program transformations to adapt them to the targeted
verification tool. PAClab makes the resulting program benchmarks
available for download. PAClab is designed as a scalable, modular,
and parametrizable tool that takes advantage of a computer cluster
to handle multiple user requests.

CCS CONCEPTS

+ Computing methodologies — Distributed programming
languages; - Theory of computation — Program analysis.
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1 INTRODUCTION

Program benchmarks play an important role in program verification
research. Properly designed benchmarks can accelerate develop-
ment of new verification tools, strengthen empirical evaluations of
theoretical advancements implemented in existing verification tools,
and even compare performances of different verification tools as
done in the SV-COMP competition. While synthetic program bench-
marks are instrumental to test verification tools [3, 9], researchers
tend to prefer realistic benchmarks comprised of real-world pro-
grams. Moreover, depending on the specific verification task, those
programs should include specific features. For example, a verifier
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that identifies memory safety of arrays should use benchmarks
containing array-manipulating programs. Generally, the definition
of an ideal benchmark depends on the verification task, maturity
of the verification tools, and the context of evaluations, e.g., testing
of new features of a verifier or tuning it for a competition.

With such multi-faceted requirements posed on ideal bench-
marks, it is challenging to construct a benchmark from open-source
programs, even with the help of mining repository tools. Tools
such as Boa [1] or RepoReaper [5] can query large open-source
repositories such as GitHub to find projects that contain programs
with desirable features, which potentially could become benchmark
programs. However, program verification researchers would have
to download and build these candidate projects and then deter-
mine whether a particular part of a program could be included in a
benchmark, and if so then scope the program for a targeted verifier.

Automating real-world application compilation and running
static analyses on them is challenging. Ongoing research efforts to
address these challenges have resulted in projects such as 50K-C [4]
and Hermes [7] that attempt to develop such automated techniques
and frameworks. However, while allowing program analysis re-
searchers to submit analyses for evaluation and retrieve the eval-
uation results, due to their complexity such frameworks limit the
researchers’ direct access to benchmark source code. For some re-
searchers that might pose a challenge since it is common, especially
when developing novel techniques, to reason about the correctness
of the analysis results by examining benchmark source code.

Motivated by these challenges, we developed an alternative
methodology that is based on the rationale that the code of the en-
tire project might not be relevant or scalable for analyses evaluation.
That is, it might just be a few Java class files out of the entire project
that have interesting behavior to analyze, explore, and benchmark.
Hence, instead of compiling an entire project we attempt to extract
relevant programs from it and apply sound transformations to re-
move dependencies they might have on other project components,
while preserving relevant program behaviors. In this case, program
analysis researchers can obtain more manageable, easily compilable
source code to perform benchmarking. We perceive our approach as
complimentary to 50K-C [4] and similar projects, since it provides
intermediate steps in the effort to scale evaluations by filling the
gap in incremental analysis evaluations between toy programs and
complete real-world applications.

We implemented our approach in a web-based Program Analysis
Collaboratory (PAClab) tool, which is an instance of our vision for
Software Engineering Collaborates [8]. Utilizing a user’s criteria for
benchmark selections, PAClab (1) identifies relevant projects and
programs from open-source repositories, (2) downloads them from
the repositories, (3) through a series of source code transformations
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Figure 1: PAClab’s architecture and workflow for a user session. Solid arrows represent the direction of PAClab’s workflow
and dashed arrows represent PAClab’s interaction with users and external resources.

adapts them to a targeted verification environment, and (4) makes
them available for download as a compressed archive file.

While developing PAClab we focused on preserving as much of
the original structure of the programs as possible. Thus, PAClab pre-
serves the directory structure of a program, source code identifiers,
and program comments. In addition, PAClab allows researchers
to disseminate their benchmarks by sharing the benchmark result
URL, which besides the benchmarks archive file, also contains the
selection criteria used to generate that benchmark. Such preserva-
tion of benchmarks’ provenance could facilitate reproducibility of
evaluations and could make it possible for researchers to report fail-
ures found during verification back to the open-source developers.

To summarize PAClab has the following unique features

o It selects programs based on the project-level metadata as
well as on source code-level structure.

o It obtains current versions of open-source code and provides
provenance of the resulting benchmarks.

o It automatically makes extracted program files compilable
outside their host projects.

e It provides users with a web-based UI for cohesive interac-
tions with PAClab’s backend components.

In the next section we discuss the tool’s architecture and general
workflow for using PAClab while highlighting the implementation
aspects of its components. We also describe the tool’s UI, that
allows users to seamlessly interact with PAClab and share their
benchmark results. Then we discuss the potential impacts of PAClab
on software engineering research and finally we conclude.

2 ARCHITECTURE AND WORKFLOW OF
PACLAB

Figure 1 presents an overview of PAClab’s architecture and work-
flow for a single user session. PAClab is composed of a front-end

component users interact with and several back-end components.
The front-end is a web application that allows users to submit their
selection criteria, monitor the session’s progress, and obtain the re-
sults. PAClab’s back-end includes six main components: Discovery,
Retrieval, Filter, Auditor, Transformer, and Finalizer. Their sequential
actions result in a downloadable compressed archive of program
benchmarks and a URL of the session, which are presented to users
through the web-based UL

Workflow Using the UI users submit selection criteria for project
metadata, the target code’s desirable features, and transformation
targets. When users submit criteria, PAClab creates a new project
selection session and invokes several backend components and
passes appropriate selection criteria to each of them. First, the
Discovery component uses the project selection criteria to query
data sources such as Boa [1], GHTorrent [2], RepoReapers [5], etc.,
to discover candidate projects matching the project selection criteria
and obtain URLs for those projects. Next, using the obtained URLs
the Retrieval component manages cloning and updating of remote
Git projects. The self-loop on Retrieval indicates PAClab first checks
its local cache before cloning remote repositories.

Once PAClab has source code of all the candidate projects, it in-
vokes the Filter component and passes the location of the candidate
projects and the user-specified code-specific selection criteria for a
method, e.g., the number of expressions of a particular type. Filter
extracts source code files that satisfy those requirements. Then the
Auditor component checks whether those files require additional
transformations to be suitable for the targeted tool. For example,
this component checks whether the extracted program is compil-
able. If Auditor determines that no additional transformations are
required, then it writes the source file into the session’s benchmark
location. Otherwise, PAClab invokes the Transformer component
and requests specific transformations. Upon completing transfor-
mation tasks, Transformer verifies resulting source code files are
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indeed suitable for the targeted verification task and records them
into the session’s benchmark location.

The last step in PAClab’s workflow archives and compresses the
session’s benchmark data and via the Ul provides it to the user for
download. In addition, the URL of a project selection session and re-
sulting benchmark programs can be shared with other researchers,
either by directly sharing the session URL or via a box where users
provide emails of people to share with.

Implementation The front-end is implemented as an open-source
Django Python project! running on Ubuntu 16.04 on a quad-core
3Ghz Xeon with 16GB ram. To use PAClab, users visit the website?
and create accounts. Users are then able to create a project selection.
On this page PAClab provides a predefined set of project filters,
such as the minimum number of commits or files the project should
contain and users can specify values for each filter. These criteria
are used to select the initial set of candidate projects.

The back-ends run on 15 identical servers as the front-end. The
PAClab back-end servers run several daemons watching for new
project selection sessions initiated by users. When PAClab detects
a user’s request, then it connects to a project data source to request
projects matching the user’s criteria. The Retrieval component is
implemented as a Python script that processes Git URLs not already
cached on the cluster and clones them locally. PAClab can run this
component on multiple back-end servers to ensure scalability of the
tool. Note that the backend currently uses Boa [1] to find potential
projects matching the criteria. Boa’s dataset is from 2015, so the
obtained project list does not include projects newer than 2015. It
then clones the GitHub projects that still exist and verifies each
project’s current metadata still passes the selection criteria. Thus,
the cloned source code data remains current (not from 2015).

The source code-level back-end components operate on the
source-code’s abstract syntax tree (AST), which is Eclipse JDT’s API
for both static code analysis and code manipulation. The Filter com-
ponent? makes use of several AST visitors to determine wether each
source code files in obtained projects match code-specific selection
criteria. Currently, PAClab filters by an expression type, which is
currently set to integer types. Since extracted programs are not
necessary compilable outside of their projects, PAClab cannot rely
on Eclipse JDT to resolve an expression type, and hence, determine
whether a particular selection source code criteria are satisfied.

In order to determine expression type Filter implements the
InferType visitor that infers a type of expression e based on its
usage context when elements of e cannot be resolved. For example,
if e is the right-hand side of a binary expression that has a variable
with an integer type on its left-hand side, then the algorithm infers
that e’s type is also an integer type. Using the results of InferType,
Filter traverses the program’s AST to keep methods that satisfy
code selection criteria and removes the AST nodes of methods
that do not satisfy those criteria. The filtered source code becomes
benchmark candidates.

The Auditor component inspects each benchmark candidate to
determine whether it should be transformed or used in its cur-
rent form. By default, Auditor compiles each benchmark and if

!https://github.com/bgsu-pal/paclab-www/
Zhttps://paclab.dev/
3https://github.com/bgsu-pal/paclab- transformer
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compilation fails then the candidate benchmark is marked for trans-
formation, otherwise copies it to the final benchmark location.

Transformer, the program transformation component3, is cur-
rently configured to target an intra-procedural program analysis A
over integer expressions for a given class file P that is compilable
in a type system I'1 with the set of types T;. P might have several
Java classes defined in it, i.e., it defines Tp types. In addition, the
evaluation environment for the analysis A has its local type system
I, with the set of types T, in which we would like P to be compil-
able. Thus, T1 N Ty 2 Tp, that is, the local type system can resolve
the types defined in P.

The transformation algorithm makes use of several AST visitors
including InferType, which it executes first. The second visitor
iterates over P’s statements and if it neither can resolve nor infer in-
teger type of one of its expressions then Transformer removes such
statement because it causes P not to compile and yet does not affect
A’s reasoning over targeted types. When the visitor cannot resolve
an expression but InferType infers its type, then Transformer sub-
stitutes this expression for a pre-defined integer expression. Since
an intra-procedural analysis safely over-approximates method in-
vocation or access to fields, we define all those expressions with
inter-procedural elements to be evaluated to any abstract value,
i.e., T. For the default setting the expression r.getNextInt() is
used in the substitution and the algorithm also creates Random r =
new Random() and adds it into the current method’s AST. For Sym-
bolic PathFinder (SPF) [6] the algorithm instantiates new symbolic
expression Debug.makeSymbolicInteger("x@"). Note that the al-
gorithm determines the “smallest” unresolved sub-expressions of e
by traversing e’s AST in the reverse pre-order.

After this step P has no unresolved expressions, i.e., the lo-
cal type system can resolve all P’s expressions. Next, the algo-
rithm removes unused parameters, fields and variables, updates
method’s return type (if its type is not in I;). Consequently, all
unresolved super-types of classes defined in P are also removed
so are unresolved imports. The last step is to add necessary
imports such as java.util.Random for the default setting and
gov.nasa. jpf.symbc.Debug for the SPF setting.

Before writing the modified P into the final benchmark location
Transformer checks whether P is compilable in I';. The compiler
errors of uncompilable code are written in a special log that guide
the future development of Transformer. To our knowledge the ability
to automatically make Java classifies compilable outside of their host
project is a unique capability of PAClab.

PAClab’s Finalizer component is a Python script on the web-
server that locates all transformed candidate projects and generates
a single ZIP file. This archive is then available for download via a
link on the UL

User Interface The Ul provides a user with the selection criteria
page where she can add parameters to the predefined filter criteria
for selecting input projects (Fig. 2). The user can use “+” and “-”
buttons to add and remove selection criteria filters, respectively.
Upon submission the Ul displays the progress of the project
discovery and cloning processes together with the project selection
criteria. When project selection phase is completed the UI displays
information as in Fig. 3, which includes relevant data about this
process, including how many projects were discovered (by Boa),
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Project Selection
Selection Submitted: 1 day, 14 hours ago
Submitted By: rdyer

Dataset Origin: GitHub

Selection Criteria

Input Dataset: GitHub v
Filter: - [Minimum number of committers (5 .

Filter: [y ber of it 100

/aximum number of commits v o Projects: 195,759
htor: Projects Cloned: 154,532
Filter:  [aximum number of source files v][50 .

Projects Retained: 91,216

Maximum number of commits: 100

Dataset Generated: 19 hours ago

Figure 2: Project selection.

how many were cloned, and how many of those cloned projects
passed the criteria. While not shown here, if she wishes, the user
can download selected projects as a zip file.

Next the Ul enables the green button on the top right corner
that takes the user to the page to enter code and transformation
selection criteria. The current implementation supports integer
types (I) and three structural code selection criteria: the minimum
number of expressions of I type, the minimum number of condi-
tionals with predicates over I type expressions and the number of
arguments with I type in a method. Also, there are two targeted
transformations: DEF (default) and SPF (for Symbolic PathFinder).
Fig. 4 displays the final UI page containing the code selection and
targeted transformation parameters as well as the results of this
final phase. The user can download the compilable benchmark
dataset as a zip file.

Users can share generated project selections and project trans-
forms via their unique URLs. Also, they can utilize a share box
feature to email the links to the specified email addresses.

3 POTENTIAL IMPACT OF PACLAB

Because parametrization is inherent to PAClab’s design, the tool
can assemble various benchmarks for different verification envi-
ronments and tasks, hence benefiting verification researchers in
several ways. For example, PAClab can supply a scoped set of pro-
gram benchmarks suitable for testing new verification tools or
novel verification techniques of existing tools, thus enabling an
agile test-driven development of verification software or a light-
weight way to explore feasibilities of new verification ideas. As a
tool or a technique becomes more stable, researchers can gradually
change PAClab’s selection criteria to include additional programs.

We also expect PAClab to significantly improve transparency
and reproducibility of empirical evaluations of verification tools.
By stating and justifying PAClab’s selection criteria used to obtain
programs, researchers clearly describe the kind of programs used
in their evaluations. However, using the same selection criteria
PAClab might produce a different set of benchmark programs due
to the dynamic nature of open-source repositories. Hence, to ensure
reproducibility, PAClab allows researchers to share the result URL
of a session. Then if other researchers want to obtain the same
benchmarks they just need to follow the link to download the
benchmarks and obtain auxiliary session data.

Figure 3: Completed selection.
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Project Transform 5ba93c1dc907499fa1672b9906cd0e13
B0

Transform Submitted: 21 hours ago
Submitted By: rdyer

Dataset Origin: selection 93a75ba546214f81b77282bce84feb69

d167770a0f864d428a0c6e9bded45a3c

2 :In PAClab integer

Transform Parameters

minifStmt: 1
target: def

Input Projects: 11
Projects Transformed: 11
Projects Retained: 11

Dataset Generated: 19 seconds ago

Generate Dataset (zip)

Figure 4: Completed transformation.

PAClab also has the potential to strengthen empirical evaluations
of verifiers. First, it can produce benchmarks containing large quan-
tities of programs, which would make empirical evaluations more
generalizable. Second, the benchmark session metadata can inform
researchers about the prevalence of particular types of programs
among open-source programs. If PAClab finds only a small frac-
tion of suitable programs, then even if such a benchmark yields a
strong empirical study its overall significance might be questioned.
Perhaps, it would give an indication that either the verification
technique should expand its breadth or it is not particularly useful.

Most importantly, in every scenario PAClab supports provenance
of program benchmarks and allows researchers to focus on develop-
ing and analyzing verification techniques instead of dedicating their
effort to searching for proper program artifacts, which is a subjec-
tive and time-consuming task. PAClab also relieves its maintainers
from the burden of continued curation of program benchmarks to
ensure the latest versions of programs are included.

Presently, PAClab is being introduced to the SPF community, in
particular to strengthen empirical evaluations in Google Summer
of Code (GSoC) projects. SPF is a popular mature symbolic execu-
tion tool which since its first publication in 2007, has around 300
citations. The tool has a large user base: the repository has 40 forks,
started by 48 users and is being actively developed.

4 CONCLUSION

Here we presented PAClab, the Program Analysis Collaboratory.
PAClab allows researchers to more easily generate benchmark pro-
grams for evaluating their program analysis techniques. The frame-
work automates many difficult and time-consuming tasks such as
locating and downloading open-source projects matching the user’s
criteria and adapting those projects through transformations for a
given verification environment. These generated benchmarks are
easily shared with other researchers, helping facilitate reproduc-
tions of prior evaluations.

While our current implementation focuses on Java projects and
has limited selection criteria, we are enhancing PAClab’s capabilities
daily as well as extend its user base.
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