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This dissertation presents a comprehensive body of research on authentication

and message integrity verification for emerging wireless networks, focusing on secret-

free and physical layer security techniques across diverse, challenging, and uncon-

ventional environments. It comprises four first-author contributions that span un-

derground wireless systems, over-the-air (OTA) channels, vehicular communications,

and nanoscale molecular networks.

The first contribution, Soil-Assisted Trust Establishment for Underground Wire-

less Networks (STUN), introduces a physical-layer trust bootstrapping protocol that

achieves authentication and message integrity without pre-shared secrets. Leveraging

underground-to-air propagation laws and trusted relay nodes, STUN resists active

signal injection attacks and demonstrates security comparable to the unbalanced oil

and vinegar cryptographic scheme, with practical applicability to underground agri-

cultural IoT deployments.

The second contribution, RF Fingerprint-Based Location Authentication for Over-

the-Air and Underground Wireless Networks (LAOUWN), proposes a robust loca-

tion authentication framework based on channel impulse response (CIR) features

and deep learning. It employs convolutional neural networks (ResNet-18/34/50) en-

hanced with transfer learning and adversarial domain adaptation, achieving over 90%

authentication accuracy across diverse testbeds. The system demonstrates complete



resistance to advanced adversaries including Friis-based and ray-tracing-enhanced at-

tackers whose success rate is reduced to random guessing.

The third contribution, VET: Autonomous Vehicular Credential Verification using

Trajectory and Motion Vectors, presents a lightweight, privacy-preserving authen-

tication protocol for vehicular networks. VET verifies credential legitimacy using

trajectory similarity and motion-based trust metrics (TMVs), achieving a 97% true

positive rate under benign conditions and a 99.9% detection rate against remote

signal-manipulating adversaries. It remains agnostic to wireless channel variability

and scalable to multi-attacker scenarios.

Finally, a Systematization of Knowledge for Security in Molecular and Nano-

Communications surveys current threats and defense mechanisms in nanoscale net-

works. It identifies critical gaps such as the lack of structured taxonomies, active

threat mitigation, and cross-layer integration and proposes novel solutions, including

bio-inspired cryptographic models and enhanced error correction strategies.

Together, these contributions advance the field of physical-layer security by deliver-

ing robust, practical, and hard-to-forge mechanisms for secure communication in next-

generation emerging wireless networks, especially in unconventional and resource-

constrained settings where traditional cryptographic approaches fall short.
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CHAPTER 1

Introduction

The rapid integration of wireless networks across agriculture, transportation, bi-

ological systems, and beyond has created vast opportunities for scalable, intelligent,

and real-time applications. From buried sensors in smart farms [151,181], to swarms of

autonomous vehicles [46, 77], and nanoscale molecular communication [39, 57], these

systems are transforming how data is collected, processed, and acted upon. How-

ever, they are also increasingly exposed to adversarial threats that exploit credential

leakage [25, 71], physical inaccessibility [52], and limitations of cryptographic solu-

tions [48, 174]. In many of these environments, such as underground deployments,

low-power ad-hoc networks, and bio-nano systems, traditional security primitives fall

short due to their reliance on pre-shared secrets, computational overhead, or lack of

location verification capability [105, 109, 176]. This dissertation addresses these limi-

tations by developing authentication and message integrity mechanisms that rely on

secret-free, hard-to-forge physical-layer properties across diverse and unconventional

settings.

In agricultural Internet of Things (Ag-IoT) networks, buried sensors transmit vi-

tal data on soil moisture, precipitation, and temperature through underground wire-

less channels to aboveground gateways. Commercial systems like GroGuru [64] and

SoilScout [172] exemplify the benefits of this approach by shielding sensors from en-
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vironmental damage and minimizing operational costs [64, 172]. However, recent cy-

berattacks on Ag-IoT infrastructures, including WiFi jamming, spoofing, and signal

injection, underscore the urgent need for scalable, lightweight, and secure communica-

tion protocols [30,187]. Traditional methods such as Over-the-Air Activation (OTAA)

and Activation by Personalization (ABP) remain vulnerable to jamming and replay

attacks and require secret management [13,156]. To overcome these shortcomings, this

dissertation introduces Soil-Assisted Trust Establishment for Underground Wireless

Networks (STUN), a scalable trust bootstrapping protocol that leverages the hard-

to-replicate properties of underground wireless propagation [127]. STUN achieves au-

thentication and message integrity without pre-shared secrets and proves resilient to

signal injection and collusion-based attacks, offering security guarantees comparable

to post-quantum cryptographic schemes such as Unbalanced Oil and Vinegar [83,127].

Beyond soil-based systems, verifying a device’s physical location is essential in

over-the-air and underground networks. RF fingerprinting based on Channel Impulse

Response (CIR) emerges as a compelling solution, enabling location authentication

without relying on prior shared keys or passwords. CIR features encode fine-grain

spatial and temporal properties of the wireless channel that are difficult to replicate

from different positions, even with identical hardware [86, 102]. This dissertation

presents Location Authentication for Over-the-Air and Underground Wireless Net-

works (LAOUWN), a machine learning-based system that uses CNN models such as

ResNet-18/34/50, enhanced with transfer learning and adversarial domain adapta-

tion, to achieve over 90% accuracy in location verification. LAOUWN demonstrates

resistance to both empirical Friis-based attackers and ray-tracing-enhanced adver-

saries, showing that spoofing attacks from physically separate locations degrade to

random guessing [87,101]. Experiments conducted using BPSK signals and USRP de-

vices confirm the robustness of this approach across varying environments, distances,
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and device combinations.

In vehicular networks and autonomous systems, secure communication is vital for

ensuring motion coordination, collision avoidance, and geofencing compliance. Yet,

cryptographic credentials alone are insufficient to prevent ghost vehicles or spoofed

location messages [25,71]. This dissertation introduces Veracity Evaluation using Tra-

jectory and Motion Vectors (VET) [126], a location-and-motion-based authentication

framework that evaluates the consistency between a node’s claimed trajectory and

its motion vectors estimated from physical-layer observations. Unlike prior schemes

that require multiple verifiers or static channel conditions, VET operates with a sin-

gle verifier and remains agnostic to wireless channel assumptions [15,176]. It utilizes

frequency-of-arrival measurements and random sampling to estimate position and ve-

locity, offering immunity against signal manipulation attacks. Experimental results

using software-defined radios show that VET can detect spoofing attempts with 99.9%

accuracy, even under adversarial conditions.

Finally, the dissertation turns to molecular and nano-communication systems,

which are gaining traction in medical, environmental, and biological domains. In

these systems, nano-machines exchange information through molecular diffusion or

biochemical signaling. Applications include targeted drug delivery, in-vivo health

monitoring, and tissue engineering [3,37]. Unlike electromagnetic systems, molecular

communication depends on chemical signals affected by temperature, fluid viscosity,

and medium composition [80, 91]. These characteristics present new security chal-

lenges such as molecular jamming, eavesdropping, signal degradation, and bit flip-

ping [32, 76]. This dissertation presents a systematization of knowledge that surveys

existing security mechanisms for molecular networks and highlights critical gaps in

confidentiality, authentication, and availability [14, 57]. It proposes novel directions

for future research, including bio-inspired authentication models, DNA-based iden-
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tifiers, enhanced error correction, and secure channel coding tailored to molecular

dynamics [146,160].

Taken together, the contributions in this dissertation present a coherent vision

for advancing authentication and message integrity in unconventional wireless sys-

tems. By leveraging physical-layer characteristics such as CIR, frequency-of-arrival,

and environmental coupling, this work provides robust, cryptography-independent

security mechanisms that remain viable even in adversarial, resource-constrained, or

physically inaccessible environments. These approaches not only reduce reliance on

traditional key management but also offer spatial and temporal guarantees that raise

the bar for adversaries. The proposed solutions represent foundational advancements

in securing next-generation wireless networks.

1.1 Motivation

The proliferation of wireless technologies across diverse domains such as under-

ground agricultural networks, over-the-air (OTA) communications, autonomous ve-

hicular systems, and molecular communication has enabled real-time, distributed

sensing and control. These advancements underpin critical infrastructure ranging

from smart farming and intelligent transportation to bio-nano healthcare applica-

tions. However, with the rise of connectivity comes an increasing risk of adversarial

attacks. In many of these settings, conventional cryptographic techniques face de-

ployment barriers due to limited computational resources, lack of pre-shared secrets,

or the physical inaccessibility of nodes. This motivates the exploration of physical-

layer properties as an alternative security primitive for authentication and message

integrity, particularly in unconventional and resource-constrained environments.
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1.2 Problem Statement

Traditional authentication and integrity mechanisms rely heavily on pre-shared

keys, digital certificates, or trusted third parties. These approaches are not always

viable in emerging wireless scenarios where:

• Devices are deployed in inaccessible locations (e.g., buried sensors or embedded

nano-machines).

• Communication occurs over dynamic or unknown environments (e.g., soil, air,

or biological tissue).

• Network entities are mobile and operate in ad hoc, decentralized configurations

(e.g., autonomous vehicles).

• Resource constraints preclude the use of heavyweight cryptographic protocols.

• Spoofing and signal manipulation attacks can bypass credential-based verifica-

tion.

These challenges necessitate new methods that do not depend on secret exchange

or computational hardness assumptions but instead exploit inherent physical-layer

characteristics for robust, passive, and scalable authentication.

1.3 Research Objectives

This dissertation aims to address the above challenges by designing and evaluating

a suite of authentication and message integrity protocols for unconventional wireless

networks. The specific objectives are
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1. Develop a physical-layer trust bootstrapping protocol for underground wireless

networks that utilizes hard-to-forge soil propagation properties, resulting in a

scalable and secret-free alternative to conventional key exchange (STUN).

2. Design a deep learning-based RF fingerprinting system using Channel Impulse

Response (CIR) features to verify device locations across OTA and under-

ground environments, and evaluate its robustness against realistic adversaries

(LAOUWN).

3. Create a trajectory-based message authentication scheme for vehicular networks

that leverages motion vectors and frequency-of-arrival features to prevent ghost

vehicle attacks and verify physical claims even with only one verifier (VET).

4. Conduct a systematization of knowledge (SoK) for molecular and nano commu-

nication systems, identifying emerging threats and limitations of current secu-

rity schemes, and proposing bio-inspired and context-aware solutions tailored

to the chemical communication paradigm.

5. Demonstrate the feasibility and effectiveness of each proposed system through

real-world experiments using software-defined radios (SDRs), simulated adver-

sarial attacks, and rigorous statistical evaluations.

Together, these contributions aim to shift the security paradigm from secret-based

mechanisms to secret-free authentication, enabling resilient and low-overhead trust

establishment in emerging wireless systems using hard-to-forge physical layer proper-

ties.
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CHAPTER 2

Related Work

Security in emerging wireless networks spanning underground sensor systems, OTA

authentication, vehicular trust, and nanoscale molecular communication faces unique

challenges. This section reviews related efforts across these domains, highlighting

gaps our work addresses.

2.1 Underground Wireless Networks

Security for underground wireless sensor networks (WUSNs) remains underdevel-

oped. SPRIDE [189, 190] employs homomorphic encryption to protect location pri-

vacy, but lacks authentication and integrity mechanisms for underground-to-over-the-

air communication. Traditional cryptographic key exchanges like Diffie-Hellman [48]

are vulnerable to man-in-the-middle attacks over public channels.

Out-of-band (OOB) solutions use audio, visual, or tactile channels for secure pair-

ing [110,184], but require additional hardware and are impractical for buried deploy-

ments. In-band schemes like helper-aided pairing [62] and signal cancellation [130] are

mostly OTA-specific and do not model the unique soil propagation behaviors [52,149].

Our STUN protocol fills this gap by exploiting path loss asymmetry and soil decorre-

lation for secure, secret-free trust establishment in underground Ag-IoT deployments.
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2.2 RF Fingerprinting and Location Authentication

RF fingerprinting leverages physical-layer features such as IQ imbalance, oscillator

offset, or transient emissions to identify devices [29, 74]. While effective for device

authentication [18,43], these methods do not account for environmental context and

are susceptible to spoofing.

Location-based authentication instead exploits spatially unique channel character-

istics like channel state information (CSI), CIR, and received signal strength (RSS).

CSI and CIR-based systems [26,101] have shown promise in indoor/outdoor localiza-

tion but are rarely extended to underground settings, where soil permittivity, mois-

ture, and temperature significantly affect propagation [50,150].

Our LAOUWN framework applies deep learning over CIR fingerprints to authen-

ticate node locations in both OTA and underground environments, using ResNet

CNNs, fine-tuning, and adversarial domain adaptation to achieve domain-robust per-

formance.

2.3 Autonomous Vehicle Trust and Veracity

In vehicular ad hoc networks (VANETs), cryptographic credential verification

alone is insufficient: attackers may possess valid credentials or compromise them [71].

Secure position and motion verification methods such as Doppler shift [153, 176] or

time-of-arrival-based distance bounding [69] require trusted multi-verifier setups or

rich multipath assumptions that do not hold in all environments.

Out-of-band solutions using radar, LiDAR, or camera-based verification [97, 109]

suffer from hardware cost, privacy concerns, and susceptibility to spoofing. Our VET

framework verifies trajectory and motion vectors (TMVs) using a single verifier, even
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in line-of-sight (LoS) and non-line-of-sight (NLoS) conditions, enabling scalable, in-

band physical authentication against spoofed vehicular behavior.

2.4 Security in Molecular and Nano Communication

Molecular communication (MC) systems rely on chemical signal propagation in

biological media, introducing noise, delay, and non-determinism not present in tradi-

tional wireless networks [57]. Existing surveys focus on signal modulation [90], energy

efficiency [1], or biomedical applications [39], but largely overlook robust security.

Bio-inspired security methods, including those modeled after immune system re-

sponses, are beginning to emerge [53, 105]. However, gaps remain in formal threat

modeling, authentication techniques, and secure molecular coding. Our work provides

a comprehensive systematization of MC security, proposing secret-free, context-aware

solutions suited for the nanoscale domain, such as targeted drug delivery and in-vivo

networks.

Across underground, vehicular, OTA, and molecular domains, existing authen-

tication and message integrity frameworks remain fragmented, often tied to crypto-

graphic assumptions [48,174], trusted infrastructure [71], or costly out-of-band modal-

ities [97, 110, 184]. These limitations become especially pronounced in adversarial or

resource-constrained settings such as buried Ag-IoT nodes [148,181], high-mobility ve-

hicular networks [46,176], or nanoscale biological systems [53,105]. Prior approaches

typically emphasize either device identity using RF fingerprints [29,43] or physical po-

sitioning [69,153], but fail to account for environmental variability, attacker proximity,

or domain transferability. In contrast, this dissertation proposes a cohesive suite of

secret-free, physical-layer-based mechanisms for location authentication and message

integrity verification. Collectively, these frameworks demonstrate that robust, scal-
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able, and passive authentication can be achieved through environment-coupled signal

features, without reliance on pre-shared secrets or additional hardware.
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CHAPTER 3

Soil Assisted Trust-Establishment For Underground Wireless

Networks

To realize secure communication in underground agricultural environments, it

is imperative to understand the unique physical and architectural characteristics

of the wireless underground medium. This chapter presents STUN, a novel trust-

establishment protocol that leverages hard-to-forge underground propagation char-

acteristics to achieve in-band authentication and secure key establishment. Before

detailing the protocol design, we introduce the foundational models that guide our

approach specifically, the system model, adversarial capabilities, and characteristics

of the underground-to-over-the-air wireless channel. These models set the stage for a

principled security framework tailored to the constraints and opportunities of wireless

underground networks.

3.1 Model and Preliminaries

In this section, we first define STUN’s system and adversarial models, followed by

the preliminaries of underground wireless channels. We begin by presenting Table 5.1,

which summarizes the frequently used notations in this paper.
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Figure 3.1: Several underground nodes Li securely bootstrap with the gateway A
assisted by the trusted node Ti in the presence of an adversary M .

3.1.1 System Model

As shown in Fig. 3.1, the system model consists of four types of nodes: (1) Gateway,

A, (2) Trusted nodes, T = {Ti : i ∈ I}, where I is the index set of trusted nodes,

and (3) Sets of legitimate nodes, Li = {Lij : j ∈ Ji}, where Ji is the index set of

legitimate nodes for each trusted node Ti, and (4) an active advisory, M .

Gateway (A): The aboveground gateway coordinates, captures, and authenti-

cates the data transmitted by the deployed nodes. Functioning as a tower, it receives

messages from the underground legitimate and trusted nodes. The gateway is respon-

sible for authenticating the data received from these legitimate nodes. Moreover, the

gateway is located within the farm under the user’s control.

Trusted Nodes (T): The trusted nodes {T1, T2, . . . , T|I|} have high battery and

computation power, enabling them to perform cryptographic functions efficiently.

These nodes, deployed underground, collectively cover the entire farm in a sector-

based deployment with a maximum sector size dumax, as shown in Fig. 3.2. A trusted

channel between Ti and A is established using a shared secret KATi
, and transmissions

are secured with authenticated encryption AE(·) [20]. This can be implemented as

encrypt-then-MAC for symmetric cryptography or as a sign/encrypt/sign scheme for
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Table 3.1: Table of Notations

Notation Description

A Gateway
T Set of trusted nodes, T = {Ti : i ∈ I}
I Index set of trusted nodes
Li Set of legitimate nodes, Li = {Lij : j ∈ Ji}
Ji Index set of legitimate nodes for each trusted node Ti

M Adversary
duxy Underground path length between x and y
dux Underground depth of node x
daxy Aboveground path length between x and y
αu
x Underground attenuation constant at node x

βu
x Underground phase shift constant at x

η OTA attenuation constant
ϵax OTA permittivity constant
ϵux Underground permittivity constant
µx Relative permeability
P tx
x Transmit power of node x

P rx
xy Received power at node x from y

Gx Antenna gain of the node x
PLu Underground pathloss
PLa Over-the-air pathloss
PLρ Refraction loss
mx Message transmitted by node x
τ Threshold for detection of adversarial node among Ti and Lij

τ ix Threshold for identifying outlier received signal strength (RSS) for Ti

dumax Maximum sector size

public key cryptography. The protocol, designed for a single Ti, can scale to multiple

T nodes to ensure complete farm coverage.

Legitimate Nodes (Li): The nodes {Li1, Li2, . . . , Li|Ji|} are deployed under-

ground within the user’s control and are within the communication range of at least

one trusted node. These legitimate nodes collect and transmit data directly to A

through a wireless channel. The deployment of the legitimate nodes is randomized,

subject to application requirements, covering the entire farm area as depicted in Fig.



14

𝐿11

𝐿13

𝐿14

𝐿12

𝑇1

𝑑𝑚𝑎𝑥
𝑢

𝑇2

𝑇3

𝑇7

𝑇6

𝑇5

𝑇4

A

𝐿21

𝐿22

𝐿23

𝐿24

𝐿61 𝐿64

𝐿62
𝐿63

𝐿51
𝐿54

𝐿52

𝐿53

𝐿71
𝐿74

𝐿72
𝐿73

𝐿31 𝐿32

𝐿33
𝐿34 𝐿41 𝐿42

𝐿43

𝐿44

Figure 3.2: Several underground Trusted nodes Ti ∈ T with the over-the-air gateway
A deployed in the field in a hexagonal sector pattern.

3.2.

3.1.2 Threat Model

An active adversary (M), controlling one or more colluding devices, operates out-

side the trusted farm’s perimeter, such as on adjacent roads, without entering the

fields1. The adversary aims to spoof messages and bootstrap at A by posing as a

rogue node.

The adversary employs signal injection attacks, including overshadowing attacks,

which require only 6dB stronger signal for LPWAN technologies [156]. While M

knows the communication protocol, they lack physical access to the nodes and cannot

perform jamming or physically block signals (e.g., via a Faraday cage).

There are two types of attackers with advanced capabilities considered in this

scenario.

1Trespassing is assumed to be deterred by law enforcement.
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Type 1 Adversary: This adversary attempts to inject its signal simultaneously

at both A and Ti.

Type 2 Adversary: Type 2 adversary can deploy colluding aboveground and

underground wireless nodes in addition to the capabilities of Type 1M . By leveraging

these additional nodes, the Type 2 adversary can achieve the required received signal

strength (RSS) at both A and Ti.

3.1.3 Preliminaries: Underground-to-Air Wireless Channel Model

We present the underground-to-OTA channel model, essential for the security

protocol due to the channel’s inherent unpredictability [52]. This study focuses on

underground nodes communicating with an aboveground gateway. In underground

communication, electromagnetic wave propagation experiences significant attenuation

influenced by soil properties such as soil composition and soil moisture, which lead

to higher permittivity than in air [51]. Moreover, variations in soil moisture alter the

resonance characteristics of underground antennas, leading to additional loss. Fur-

thermore, the soil-air interface, through which the waves propagate, cause reflection

and refraction, impacting the received signal.

Consider A, located aboveground, receiving wireless signal from an underground

node Lij, as illustrated in Fig. 3.3. The wireless signal travels a path length of

dALij
= daALij

+ duLij
, where daALij

represents the distance from the point where the

signal crosses the soil-air border to node A, and duLij
represents the vertical distance

between the underground node and the soil-air interface. The underground path

duLij
is approximately equal to the depth of the underground node duLij

since the

dominant signal takes the shortest path to exit the underground environment [52].

The deployment depth of all the underground nodes and the trusted node remains

consistent, ensuring uniform signal propagation characteristics. At the soil-air border,
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Figure 3.3: An adversary M attempts to hijack the bootstrap session between Lij

and A, while Ti performs simultaneous verification.

the signal undergoes refraction due to the changes in the propagation medium. The

power received by Lij in dB can be expressed as [52]:

P rx
LijA

= P tx
A +GA +GLij

− PLu − PLa − PLp, (3.1)

where P tx
A is the transmit power of A, Gx is the antenna gain of the transceiver x, and

PLu, PLa, PLp are the losses due to underground and OTA paths, and refraction at

the ground level, respectively in dB.

The path loss of the OTA wireless channel is given by [52]:

PLa = Ca + 10η log(daALij
) + 20 log(f), (3.2)

where daALij
is the distance between the point where the wireless channel transitions

from underground to air and node A, η is the attenuation factor, f is the center

frequency, and Ca = −147.6.

The path loss attributed to the underground channel is given by [52]:
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PLu = Cu + 20 log(duLij
) + 20 log(βu

Lij
) + ρuα

u
Lij

duLij
, (3.3)

where duLij
represents the depth of the underground node Lij, αu

x and βu
x denote

the attenuation and phase-shifting constants of the soil, and Cu = 6.4, ρu = 8.69,

respectively.

Lastly, the path loss caused by refraction can be calculated separately for air-to-

underground as follows:

PLρ,a−u = 20 log

(
r + 1

4

)
,

where r =
√
(
√

(ϵa)2 + (ϵu)2 + ϵa)/2 represents the refractive index of the soil [52].

Alternatively, for the underground-to-air link, the signal propagates perpendicularly

without refraction, resulting in PLρ,u−a = 1 [52].

3.2 Secret-Free Trust-Establishment for Underground Wire-

less Networks

We introduce STUN, a trust establishment protocol for an underground wireless

networks that leverages the unique physical propagation properties of soil for secure

in-band communication. STUN incorporates a unique PHY-layer trust verification

primitive to authenticate the legitimacy of the underground nodes, Li, and ensure

the integrity of their transmissions.

3.2.1 STUN: The Protocol

The central concept involves A coordinating the key establishment process with

each Li in their respective sectors using a time-division approach2. First, A creates

2In this work, we assume a time-division approach, whereas any medium access control approach
could be adopted without loss of generality.
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a transmission schedule for Ti and broadcasts this schedule to all trusted nodes T.

Subsequently, each Ti sends a message to coordinate all the legitimate nodes Li within

its communication range.

Once the legitimate nodes, Li, receive the coordination message from Ti, they

transmit their key primitives in a time-division manner. These key primitives are

then verified by the trusted node and the gateway to ensure their authenticity and

integrity. The trust establishment protocol consists of the following steps:

1. Initialization: The protocol begins with A transmitting a synchronization

message to Li andT. Next, A schedules all participating trusted nodes IDT1 , . . . , IDT|I| .

The gateway sends an initialization message to Ti as AEKATi
(INIT||η), where

η is a nonce. AEKATi
ensures the confidentiality and integrity of the message

using a shared key K, allowing only Ti to decrypt and verify it. All entities

agree on Diffie-Hellman (DH) public parameters: G, q, g.

2. Initialization of a sector: The trusted node, Ti, broadcasts a Ready-to-

Authenticate (RTA) message to all the underground nodes in the vicinity, Li.

3. Primitive transmission from Li: Each legitimate node, Lij ∈ Li, picks a

secret value, Xij ∈U Zq, computes the public value, zij ← gXij , and transmits

its message, mij ← {IDij, zij}.

4. Verification at Ti: Ti synchronizes with the preamble and receives all the

messages, m′
ij ∀ j = 1, . . . , |Ji|, and records the corresponding received signal

strength (RSS),

rTi
j = {rTi

j (1), rTi
j (2), . . . , rTi

j (ℓ)}. Finally, Ti performs the following verification

if

τTi
low ≤ rTi

j (κ) ≤ τTi
high; ∀ j = 1, . . . |Ji|; κ = 1 . . . ℓ.
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After successful verification, the trusted node relays mi :=

AEKATi
(m′

i1||IDi1, . . . ,m
′
ij||IDij, . . . ,m

′
i|Ji|||IDi|Ji|) to A after Li|Ji|’s transmis-

sion in a time division fashion.

5. Reception at A: The gateway, A, records RSS samples, rij =

{rij(1), rij(2), . . . , rij(ℓ)}, while receiving m′′
ij. Further, A records the RSS sam-

ples, rTi
= {ri(1), ri(2), . . . , ri(ℓ′)}, while receiving m′

i.

6. Verification at A: The gateway decrypts m′
i to obtain m′

ij||IDij ∀ j =

1, . . . , |Ji| and verifies its integrity using the corresponding verification function.

A rejects all received messages if verification fails. Further, A verifies m′
ij

?
=

m′′
ij ∀ j = 1, . . . , |Ji|; and rejects if the verification fails. Finally, A computes:

Γij = {γij(1), γij(2), . . . , γijℓ}, γij(κ) =
ri(κ)

rij(κ)

∀ j = 1, . . . , |Ji|. The gateway accepts m′′
ij if τlow ≤ γij(κ) ≤ τhigh; ∀ κ = 1 . . . ℓ,

j = 1, . . . , |Ji|.

7. Primitive transmission from A: Following successful verification, A picks

a secret value, XA ∈U Zq, computes the public value, zA ← gXA , and transmits

as mA ← {IDA, zA}.

8. Key establishment: After reception of the message, Lj computes the pair-

wise keys as KAij ← (zA)
Xij and A computes as KAij ← (zij)

XA . Immediately

following the key agreement, Lij and A engage in a key confirmation phase,

initiated by Lij. This can be done by executing a two-way challenge-response

protocol [28].

9. Repeat for all sectors: All the above steps are repeated for i = 1, . . . , |I|. If
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any of the steps fail for a legitimate node, Lij, is detected at any of the entities,

and the steps are repeated for the node. Otherwise, the gateway, A, notifies the

user of the successful completion of the trust establishment.

STUN employs the Diffie-Hellman key exchange protocol [48] for trust establish-

ment, enabling pairwise key generation in star topologies and group key creation

for mesh networks to support secure group operations [27]. If trust establishment

steps like key confirmation fail, it may indicate adversarial activity or communication

issues. The affected node can notify a trusted node to retry the process, maintain-

ing protocol integrity. Persistent failures may require human intervention to address

potential security breaches.

3.2.1.1 Securing Downlink (A-to-Li) communication

In the protocol outlined in Section 3.2.1, underground nodes (Lij) do not explicitly

verify the authenticity of gateway messages (mA) during the key confirmation process.

An adversary (M) impersonating the gateway would disrupt the session with the

legitimate gateway (A), triggering protocol failure and user notification. Trusted

nodes (Ti) are employed to enable explicit message verification. After A validates

messages from Lij nodes, it sends an authenticated and encrypted version (m′
A) to

Ti using a shared key (KATi
). Simultaneously, A broadcasts the plaintext message

(mA) to all Lij nodes and their respective Ti nodes. Each Ti verifies the authenticity

of mA by comparing it with m′
A. Depending on the result, Ti broadcasts a success or

failure message. While adversaries could exploit this to perform a DoS attack, such

scenarios are outside the scope of this work.
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3.2.1.2 Size of Ti’s Sector

The size of the sector for Ti is determined by the maximum possible distance,

denoted as dumax, between the trusted node, Ti, and the legitimate nodes, Li. We

employ the underground path loss model given by (3.3) to calculate this distance.

Considering the assumption that the legitimate nodes, Li, have lower capabilities

and transmit at lower power compared to Ti, this determines the communication

range of the sector. The size of Ti’s sector can be calculated using (3.3), yielding the

following expression:

dumax =
20W

(
αu
xρue

XK
)

αu
xρu log(10)

. (3.4)

where K = log(10)/20 is a constant multiplier, and X = [log(10−Cu)+PLu log(10)−

20 log(βu
x)]/20 is an intermediate variable that encapsulates the logarithmic and path

loss dependencies.

3.2.2 Selection of Thresholds

Now, we first theoretically describe selecting the thresholds utilized in Steps 3 and

5 of STUN:

3.2.2.1 Thresholds for Ti

The detection thresholds at trusted nodes (Ti) for identifying outlier RSS values are

determined using the Median Absolute Deviation (MAD) method, a robust measure

less sensitive to outliers compared to standard deviation [96]. The thresholds are

defined as:

τTi
low = r̃Ti

j − ζ ∗ ν, τTi
high = r̃Ti

j + ζ ∗ ν, (3.5)
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Figure 3.4: (a) Power received at the trusted node from three Li, and (b) RSS ratio
at A of power received from Ti to power received from Li.

where r̃Ti
j is the median of all the RSS samples, ζ controls the strictness of the outlier

rule, and ν is MAD

ν = b ·
˜
|rTi

j − r̃Ti
j |, (3.6)

where ·̃ is the median of all the samples over all the nodes, and b = 1/Q(0.75) =

1.4826. Empirical results [202] in Fig. 3.4(a) illustrate that the RSS received at Ti

from three underground nodes. We observe that the RSS is relatively stable over time

and that the τTi
low = 2.512× 10−7mW and τTi

high = 6.309× 10−7mW, due to high path

loss of the underground communication.

3.2.2.2 Thresholds for A

To calculate the threshold for the gateway, the power received from the trusted

node, Ti, is divided by the power received from the legitimate node, Li. The threshold
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can be expressed as:

τ = 20 log(duTi
)− 20 log(duLij

) + 20 log(βu
Ti
)− 20 log(βu

Lij
) + ρuα

u
Ti
duTi
− ρuα

u
Lij

duLij
,

(3.7)

where duTi
is the underground depth of the trusted node, duLij

is the underground depth

of Lij, and αu
x and βu

x are the parameters due to soil characteristics. The aboveground

distance to the gateway A cancels out due to the proximity of the underground node.

Since variations in the OTA path loss may affect the accuracy of this calculation, an

adjustment factor δlow and δhigh are introduced. Two thresholds are then defined as:

τlow = τ − δlow, τhigh = τ + δhigh. (3.8)

Empirical results in (Fig. 3.4(b)), illustrate that the RSS ratio between signals from Ti

and Li remains close to 1 over time. The calculated thresholds τlow = 0.9 and τhigh =

1.160, indicate less than 10% error due to underground fading. This confirms the

protocol’s effectiveness in mitigating the impact of underground channel variability

on OTA communication.

3.3 Security Analysis of STUN

We analyze the security of STUN against the adversary defined in Section 3.1.2.

In an attempt to pair with the gateway A, the adversary can compute zM := gXM

mod p where XM is uniformly chosen from the set Zq. Then compiling and injecting a

message mM := {IDM , zM} to the gateway A. However, for A to accept the message,

the adversary must pass the verification of Steps 4 and 6 at Ti and A, respectively,

in STUN’s verification. We will first analyze a Type 1 adversary followed by a Type
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2 adversary.

3.3.1 Type 1 Adversary

A Type 1 M , is a remote aboveground entity outside the farm injecting mM at

power P tx
M to A and Ti as shown in Fig. 3.3. M has to compute the power P tx

M to

defeat Step 4 and Step 6 simultaneously. In the next proposition, we evaluate the

adversary’s capability to compute the transmit power P tx
M . It should be noted here

that M does not have a visual channel to Ti and Li to know their actual locations

underground. We present the proof for single and multiple T.

Proposition 1. A Type 1 aboveground adversary M simultaneously injecting mes-

sages at Ti, as well as A, can be detected with certainty if the distance between M

and A does not satisfy

10η log(daMA) = Ca + Cu + PLρ,a−u + ρuα
u
Lij

duLijTi
+ η10 log(daATi

)

+ η10 log(daMTi
) + 20 log(βu

Ti
)− 20 log(βu

Lij
)

+ 40 log(duTi
)− 20 log(duLijTi

) + 20 log(f),

where daxy is the aboveground distance between x and y, duxy is the underground

distance between x and y, dux is the underground depth of x, αu
x and βu

x are the

underground attenuation constant and phase shifting constants for transmission from

x, respectively, η is the OTA attenuation constant, and δ = δa ± δu, where δa is

the relaxation introduced by the outlier evaluation technique and δu is the relaxation

introduced due to the threshold selection.

Proof. A Type 1 adversary M injecting its message from an aboveground location

will need to pass the verification of Steps 4 and 6 for A to accept and bootstrap M.
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We evaluate the strategy ofM to compute the transmit power independently for steps

4 and 6, and then we evaluate the effect of one step on the other. Using (3.1), (3.2),

(3.3), and Step 4, the transmit power required by M for passing the verification in

Step 4. The power received at Ti from Lij is given by for Cu = 6.4 and antenna gains

GX

P rx
TiLij

= P tx
Lij

+GLij
+GTi

− Cu

− 20 log(duLijTi
)− 20 log(βu

Lij
)− ρuα

u
Lij

duLijTi
. (3.9)

Moreover, the power received from M at Ti is given by for Ca = −147.6

P rx
TiM = P tx

M +GM +GTi − Ca − Cu − 10η log(daMTi
)− 20 log(f)

− 20 log(duMTi
)− 20 log(βu

Ti
)− ρuα

u
Ti
duMTi

− PLρ,a−u. (3.10)

In Step 4, Ti accepts M ’s signal if (3.9) and (3.10) are satisfied with some relaxation,

which gives M ’s transmit power as

P tx
M = P tx

Lij
+GLij

−GM + Ca − 20 log(duLijTi
) + 20 log(duMTi

)

− 20 log(βu
Lij

) + 20 log(βu
Ti
) + ρuα

u
Lij

duLijTi
− ρuα

u
Ti
duMTi

+ 10η log(daMTi
) + 20 log(f) + PLρ,a−u ± δa, (3.11)

where daxy is the aboveground distance between x and y, duxy is the underground

distance between x and y, αu
x and βu

x the underground attenuation constants and

phase shifting constants for x, respectively, η is the OTA attenuation constant, and

δa is the relaxation for the outlier evaluation technique.

Now, for evaluating the capability of Type 1 M in defeating Step 6, we compute
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the power received by A:

P rx
AM = P tx

M +GM +GA − Ca − 10η log(daMA)− 20 log(f). (3.12)

Then the power received by the gateway from Ti is:

P rx
ATi

= P tx
Ti

+GA +Gi − Ca − Cu − 10η log(daATi
)

− 20 log(f)− 20 log(duTi
)− 20 log(βu

Ti
)− ρuα

u
Ti
duTi

. (3.13)

Equating (3.13) and (3.12) and equating to the threshold (3.7), we compute the

transmission power to pass Step 6 as:

P tx
M = P tx

Ti
−GM +GTi

− Cu

− 10η log(daATi
) + 10η log(daMA)

− 20 log(duTi
)− 20 log(βu

Ti
)− ρuα

u
Ti
duTi
± δu, (3.14)

where δu is the relaxation introduced due to the threshold selection. Now, for the

adversary to pass both the verification simultaneously, the transmit power in (3.11)

should equate to the transmit power in (3.14). Equating (3.11) and (3.14) and approx-

imating duMTi
≈ duATi

≈ duTi
to depth of the node, we compute the distance between

the adversary and the gateway as:

10η log(daMA) = Ca + Cu + PLρ,a−u + ρuα
u
Lij

duLijTi

+ η10 log(daATi
) + η10 log(daMTi

)

+ 20 log(βu
Ti
)− 20 log(βu

Lij
)

+ 40 log(duTi
)− 20 log(duLijTi

) + 20 log(f), (3.15)
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where δ = δa ± δu, and assuming P tx
Lij

+GLij
− P tx

Ti
−Gi = 0, or the power transmit-

ted by the legitimate and trusted node is the same, and the antenna gains are the

same. Therefore, a Type 1 adversary at daMA of the gateway can defeat STUN by

transmitting from an aboveground location.

When several trusted nodes are installed on the farm and transmit information to

a single A, numerous legitimate nodes are also deployed in a single/multiple node(s)-

to-single trusted node arrangement in each sector to cover the entire farm. Each

trusted node is connected to at least one legitimate node, and all the nodes are

transmitting their signal to A, where Lij ∈ Li and Ti ∈ T. We provide empirical

results to visualize this distance in Section 3.4.3.1. Our experimental results show

that an adversary would require an infeasibly high transmission power of ≈ 106W,

and the adversary needs to be positioned at a very far distance reaching about ≈ 5Km

range to execute this attack, making such an attack impractical.

3.3.2 Security Against a Rogue Gateway

An aboveground Type 1 M attempts to inject mM at one or more legitimate

nodes (Lij), emulating a rogue A. The adversary, typically located outside the farm’s

perimeter, is assumed to be closer to the legitimate node than the trusted node,

resulting in lower attenuation to Lij. The adversary’s message (mM) is simultaneously

received by both Lij and the corresponding trusted node (Ti) in the same underground

environment. For mM to be reliably received at Ti, the SNR at Ti must equal the

SNR at Lij. To analyze this, the power received by the trusted node (P rx
TiM

) and

the legitimate node (P rx
LijM

) from the adversary is evaluated. The conditions under

which P rx
TiM

is greater than or equal to P rx
LijM

are derived, considering the adversary’s

transmission power (P tx
M ) and its relative proximity to Lij compared to Ti.
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Proposition 2. An aboveground Type 1M attempting to pair with any underground

node Lij as a rogue gateway can be detected with certainty when located at a distance

given by:

10η log(daMTi
)− 20 log(duTi

)− 20 log(βu
Ti
)− ρuα

u
Ti
duTi

≥ 10η log(daLijM
)− 20 log(duLij

)− 20 log(βu
Lij

)

− ρuα
u
Lij

duLij
,

where daxy is the aboveground distance between x and y, and dux is the underground

depth of x. βu
Lij

and αu
Lij

are the attenuation and phase-shifting constants, for each

node Lij, respectively.

Proof. In an attempt to force a legitimate node Lij with itself, the adversary M

injects their message mM with transmit power P tx
M to over overshadow A’s message

mA. For evading detection, mM should be received at Lij and simultaneously not

received at the corresponding Ti. We consider the best case for the adversary where

the legitimate node is closer to the adversary than the trusted node, as shown in

Fig. 3.3, such that the attenuation from the adversary to the legitimate node is lower

than the trusted node.

We compute the power received by Lij from M given by

P rx
LijM

= P tx
M +GM +GLij

− Ca − Cu − 10η log(daLijM
)

− 20 log(f)− 20 log(duLijM
)− 20 log(βu

Lij
)

− ρuα
u
Lij

duLijM
− PLρ,a−u, (3.16)

where P tx
M is the transmit power by M , Gx is the antenna gains of the transceivers,
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PLρ,a−u is the air-to-underground path loss, daxy is the above ground distance between

x and y, duxy is the underground distance between x and y, f is the center frequency,

αu
x, β

u
x are the underground attenuation and phase shift constant from x.

Next, we compute the power simultaneously received by the corresponding trusted

node Ti from M , given by

P rx
TiM

= P tx
M +GM +GTi

− Ca − Cu − 10η log(daMTi
)

− 20 log(f)− 20 log(duMTi
)− 20 log(βu

Ti
)

− ρuα
u
Ti
duMTi

− PLρ,a−u, (3.17)

where P tx
M is the transmit power by M , Gx is the antenna gains of the transceivers,

PLρ,a−u is the air-to-underground path loss, daxy is the above ground distance between

x and y, duxy is the underground distance between x and y, f is the center frequency,

αu
x, β

u
x are the underground attenuation and phase shift constant from x.

For the Type 1 adversary to be detected, the message mM should be received

simultaneously at Ti and Lij, as the detection is performed at Ti. This happens with

certainty if the received power received P rx
TiM
≥ P rx

LijM
, or Ti receives higher power

than Lij. This is under the assumption both Ti and Lij are in similar underground

environment such as SNR at Ti is greater than or equal to that of Lij. Now from

(3.17) and (3.16); P rx
MTi
≥ P rx

LijM
gives:

P tx
M +GM +GTi

− Ca − Cu − 10η log(daMTi
)− 20 log(f)

− 20 log(duMTi
)− 20 log(βu

Ti
)− ρuα

u
Ti
duMTi

− PLρ,a−u

≥ P tx
M +GM +GLij

− Ca − Cu − 10η log(daLijM
)− 20 log(f)

− 20 log(duLijM
)− 20 log(βu

Lij
)− ρuα

u
Lij

duLijM
− PLρ,a−u. (3.18)
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Now we can simplify the numerator if we assume GTi
= GLij

, this is a valid as-

sumption with the most underground sensors equipped with similar wireless modules.

Under the assumption that Ti and Lij are in similar underground environments, they

will experience similar OTA-to-underground pathloss. Hence we can simplify PLρ,a−u

and approximating duMx ≈ duAx ≈ log(dux) to depth of the node x which gives:

10η log(daMTi
)− 20 log(duTi

)− 20 log(βu
Ti
)− ρuα

u
Ti
duTi

≥ 10η log(daLijM
)− 20 log(duLij

)− 20 log(βu
Lij

)

− ρuα
u
Lij

duLij
. (3.19)

where daxy is the above ground distance between x and y, duxy is the underground dis-

tance between x and y, βu
Lij

and αu
Lij

are the attenuation and phase-shifting constants,

for each node Lij ∈ Li, respectively.

The inequality in Proposition 2 can be simplified using numerical methods like

the Newton-Raphson approximation [196]. In Fig. 3.5, we approximate the distances

between the adversary (M), the legitimate node (Lij), and the trusted node (Ti),

assuming duMTi
= duLijM

+ duLijTi
. Solving for these distances requires optimization

techniques, where convergence depends on factors like the initial guess (x0), tolerance

(tol), and the number of iterations (Nmax). Precision in setting tolerance and moni-

toring convergence is critical to balance computational cost and accuracy, as improper

settings may prevent convergence or lead to suboptimal results.

Figures 3.5(a) and (b) illustrate that small changes in duLijTi
significantly affect

the underground distance between M and Lij, making it difficult for M , which lacks

precise knowledge of Ti’s location, to target legitimate nodes without being detected.
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Figure 3.5: Plots of the distance of Type 1 M from the legitimate nodes against
the distance of the legitimate nodes from the trusted nodes while varying (a) the
attenuation of the legitimate nodes, and (b) the attenuation of the trusted node.
Plots of the power transmitted from the Type 1 M to the legitimate node against the
legitimate underground distances while varying (c) the attenuation αu

Ti
, and (d) the

aboveground M distance from Ti.

Similarly, Figures 3.5(c) and (d) show that even slight variations in legitimate un-

derground distances require the adversary to transmit at very high power levels to

compensate for attenuation. For instance, to avoid detection, M must be located

approximately 1 km away and transmit at an infeasible power of about 1047 W. This

supports the hypothesis that an adversary outside the farm’s limits emulating a rogue

gateway will be detected with certainty.
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Figure 3.6: A Type 2 M attempting to inject mM to highjack the bootstrap session
of Lij with A with Ti performing simultaneous STUN verification.

3.3.3 Type 2 Adversary

A Type 2 M is a remote aboveground adversary colluding with an underground

adversarial node outside the farm injecting mM transmitting at above-ground power

P tx
M , and underground P tx

M to A and Ti, respectively as shown in Fig. 3.6. M with a vi-

sual channel to A may be able to predict the channels for computing the aboveground

power P tx
M to defeat Step 6. In the next proposition, we evaluate the adversary’s ca-

pability to compute the transmit underground power P tx
M for defeating Step 4. It

should be noted here that M does not have a visual channel to Ti and Li. We present

the proof for single then generalizing for multiple T.

Proposition 3. STUN can detect a Type 2 aboveground and underground colluding

adversary M injecting message at Ti and A with certainty if at least four legitimate

nodes participate in STUN bootstrapping for every trusted node.

Proof. The colluding Type 2 adversary’s underground node in an attempt to defeat

Step 4 of STUN must overshadow all the transmissions from the legitimate nodes Li

in that sector. This is because if the adversary allows any one of the transmissions
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from Li to reach Ti, it will be the outlier and cause STUN to fail. Moreover, without

a visual channel to the legitimate nodes and not knowing the location of the target

legitimate node. M cannot just target one legitimate node. The adversary has to

compute the transmit power to overshadow all the legitimate nodes Li in a sector.

Thus, according to MAD, it can pass the thresholds set at Ti. The underground node

of the colluding Type 2 adversary has to transmit at least an underground power

P tx
M for each of Li such that its power is within the acceptable range of the other

legitimate underground nodes Li. Further, the adversary cannot just transmit a very

high power as that will be detected by other trusted nodes . As the detection in Step

4 is performed by detecting the outlier, the transmit power has to satisfy (3.11).

Therefore, the adversary has to compute its transmit power according to the equa-

tion system S to overshadow all the underground nodes in a sector:

(S)



P tx
M = P tx

Li1
+GLi1 −GM + 20 log(duMTi

)− 20 log(duLi1Ti
)

+20 log(βu
M )− 20 log(βu

Li1
) + ρuα

u
MduMTi

− ρuα
u
Li1

duLi1Ti
,

...

P tx
M = P tx

Li|Ji|
+GLi|Ji|

−GM + 20 log(duMTi
)− 20 log(duLi|Ji|Ti

)

+20 log(βu
M )− 20 log(βu

Li|Ji|
) + ρuα

u
MduMTi

− ρuα
u
Li|Ji|

duLi|Ji|Ti
,

(3.20)

The equation system S is an underdefined multivariate quadratic equation system.

It is well known that the solution of such an equation system is NP-hard [83]. More-

over, even for small values of some equations (e), the best-known algorithms perform

an exhaustive search [83]. Therefore, this type of system is known as an Unbalanced

Oil and Vinegar (UOV) signature scheme. The security of UOV systems is proved

for 3e ≤ v ≤ e(e+2)/2 [83]. Where the system has e equations and v unknowns. Out of

the total number of variables, e is known as the “oil” unknowns, and (v− e) is called

the “vinegar” unknowns. For our equation system S, we have seven variables in S

which are known to underground transmit power of the legitimate node (P tx
Lij

), gain of
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antenna (Gx), operating frequency (f), and the relaxation introduced by the outlier

evaluation technique (δa). Further, there are six variables in S which are unknown

transmit power of the underground adversary (P tx
M ), distance from the adversary to

the trusted node (daMTi
), soil parameters (permittivity constants (ϵa, ϵu), relative per-

meability (µr)) as these control the variables (αu
Lij

, αu
M , βu

Lij
and βu

M), and distance

between the legitimate node and trusted node duLijTi
. Hence, S has n + 5 number

variables for n number of equations, where n is the number of legitimate node in

our setup. Therefore, to satisfy the conditions for the UOV public cryptosystem, the

minimum number of legitimate nodes required per trusted node is four.

Hence, a Type 2 adversary cannot pass Step 4 with certainty. In addition, it is

essential to note that in practice, the underground-to-underground wireless channel

(e.g., M -Ti) has a limited communication range (i.e., less than 10m [152]). Hence,

in most practical cases, an adversary outside the farm limits to pass Step 4 will be

outside the communication range of Ti. Therefore, Type 2 attacks are practically rare

and otherwise detectable, as per Proposition 3. This is even more challenging if the

adversary wants to defeat multiple sectors because each sector contains at least four

legitimate nodes per trusted node.

3.3.4 Security Against a Rogue Gateway

A colluding Type 2 adversary at a distance aboveground and underground outside

the farm’s perimeter injects its signal at the legitimate nodes Li to emulate a rogue A’s

signal, as shown in Fig. 3.6. Without access to the secure channel between A-to-Ti,

the adversary has to inject the signal such that it cannot be detected by corresponding

Ti. Now we evaluate whether a Type 2 adversary can transmit underground power

P tx
M such that it is only received at Li, and not at the corresponding Ti.
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Proposition 4. An aboveground and underground Type 2 colluding adversary M

attempting to pair with underground nodes Li as a rogue gateway can be detected

with certainty when located at a distance.

20 log(duLijM
) + 20 log(βu

Lij
) + ρuα

u
Lij

duLijM
≥ 20 log(duLijTi

) + 20 log(βu
Ti
) + ρuα

u
Ti
duLijTi

.

(3.21)

where duxy is the underground distance between entities x and y, and βu
x and αu

x are

the attenuation and phase-shifting constants, respectively.

Proof. The underground node of the colluding Type 2 adversary has to transmit at

an underground power P tx
M to the legitimate nodes and must be at a distance that

is less than the distance of the legitimate nodes Lij and the trusted node Ti. The

transmit power and the distance have to satisfy (3.25) and (3.21). In the best case,

the adversary with the full knowledge of all the legitimate nodes can only be successful

when transmitting in a location less than the distance between Ti and Lij. Otherwise,

the transmission will be overhead by Ti, and a failure message will be broadcast to

other nodes. Note that the adversary does not know the exact location of Ti.

First, we compute the received power at Lij from Ti, which is given by

P rx
LijTi

= P tx
Ti

+GLij
+GTi

− (Cu + 20 log(duLijTi
) + 20 log(βu

Ti
) + ρuα

u
Ti
duLijTi

), (3.22)

Accordingly, we compute the received power at LLij
from M , which is given by

P rx
LijM

= P tx
M +GM +GLij

− Cu − 20 log(duLijM
)− 20 log(βu

Lij
)− ρuα

u
Lij

duLijM
,

(3.23)
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Since the underground power received P rx
LijTi

≥ P rx
LijM

,

P tx
Ti

+GLij
+GTi

− Cu − 20 log(duLijTi
)− 20 log(βu

Ti
)− ρuα

u
Ti
duLijTi

≥

P tx
M +GM +GLij

− Cu − 20 log(duMLij
)− 20 log(βu

Lij
)− ρuα

u
Lij

duMLij
. (3.24)

The adversary transmit power is provided by:

P tx
M = P tx

Ti
+GTi

−GM + 20 log(duLijM
) + 20 log(βu

Lij
)

− 20 log(duLijTi
)− 20 log(βu

Ti
) + ρuα

u
Lij

duLijM
− ρuα

u
Ti
duLijTi

, (3.25)

From (3.24), with the assumption that the adversary has near perfect estimates of the

transmits power and gains, which means that P tx
Ti

+ GTi
− P tx

M −GM ≈ ξ, therefore

it must be at a distance given by

20 log(duLijM
) + 20 log(βu

Lij
) + ρuα

u
Lij

duLijM
≥ 20 log(duLijTi

) + 20 log(βu
Ti
) + ρuα

u
Ti
duLijTi

.

(3.26)

where duxy is the underground distance between x and y, βu
x and αu

x are the attenuation

and phase-shifting constants, respectively.

The inequality in Proposition 4 can be simplified using the Newton-Raphson ap-

proximation [196], as illustrated in Fig. 3.7. Achieving convergence requires careful

selection of parameters like tolerance (tol), maximum iterations (Nmax), and the initial

guess (x0). For example, using tol = 10−6, Nmax = 1000, and x0 = 1 fails to converge,

even with known parameters like αu
Lij

, αu
Ti
, βu

Lij
, βu

Ti
, and duLijTi

. While higher values

can expedite convergence, they risk reducing accuracy. Thus, achieving convergence
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Figure 3.7: Plots of Type 2 M distance against the legitimate distance while varying
(a) the legitimate node attenuation, and (b) the trusted node attenuation to deter-
mine the distance of the adversary from the legitimate nodes. Plots of the power
transmitted by the underground adversary to the legitimate nodes against the legiti-
mate underground distance while varying (c) the attenuation αu

Lij
, and (d) the phase

shift constant to determine the power of M from Li.

often involves iterative optimization of these values. Therefore, an adversary must

know the trusted node’s location to perform this attack.

From Fig. 3.7(a)-(d), even with legitimate and trusted nodes separated by [0.5–2]m

and varying attenuation and phase shift constants, the adversary must transmit enor-

mous power from a farther distance. To evade detection, a Type 2 adversary must

transmit approximately 106 W from ≈ 0.5 km away, which is impractical. These find-
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ings confirm that a Type 2 adversary can only emulate a rogue gateway with precise

knowledge of underground node locations.

3.4 Performance Evaluations

We evaluate STUN using experimental data from our wireless underground outdoor

experiments in [52, 167, 168, 202]. First, we describe the experimental configuration

and evaluate STUN’s correctness and robustness.

3.4.1 Setup

Underground Testbed: We use data from outdoor experiments in [52,167,168,202]

under varying conditions of distances. In these outdoor experiments, a 433MHz dipole

antenna and an underground wideband planar antenna [180] are utilized. Wideband

planar antennas have been experimentally shown to be more suitable for underground

communication, enhancing the communication range and increasing the channel link

budget [180]. Additionally, a dipole antenna was employed for underground trans-

mission when the aboveground node distance was fixed. We kept an underground

depth of duLij
, and duTi

fixed at 0.2m, with a maximum distance of daATi
= 115m. The

distance between the underground nodes and the trusted device was kept constant at

duLijTi
= 2m. The aboveground height was kept at 1.78m and the aboveground dis-

tances of the gateway daATi
were varied at different intervals of [30, 60, 80, and 110m].

The outdoor testbed contains 13.09cm of silt clay loam soil with varying volumetric

water content (VWC) ranging from 17% to 37% dry and wet. The VWC of the soil

was kept at 37% for the most part. The transmit power ranges between [0.0032W -

0.2W] with a gain of 0.02W with a dipole antenna for the underground nodes. daATi

was shown in [202] to cover a distance as far as 115m when a long-range device is
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Figure 3.8: Plots of the maximum size of Ti’s sector against (a) the frequency while
varying volumetric water content of soil, and (b) the volumetric water content while
varying the frequency to determine the placement of the legitimate nodes.

used and move up to 200m [182]. The PLρ,a−u was observed to be 4.2063× 10−9W,

equivalent to -53dBm.

3.4.2 Correctness Evaluations

First, we evaluate the maximum range of a trusted node, Ti, to assess the area

of the sector for placement of legitimate nodes, Li. We use the information from the

underground path loss to estimate the sector size of Ti in (3.4), giving us the maximum

separation between the trusted node and the legitimate nodes underground within

each sector. We show in Fig. 3.8(a) the maximum sector size of a trusted node against

the frequency for various volumetric water content. We can deduce that the maximum

separation in each sector is approximately 2.1m. Similarly, we show in Fig. 3.8(b) the

maximum sector size against the soil moisture content for various center frequencies.

We observe that the underground separation decreases as the water content in the soil

increases. The maximum range of Ti depends on the operational frequency since lower

frequency antennas can cover more distances. When placing nodes underground, the
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Figure 3.9: Plots of (a) the distance between a Type 1 M from A against the un-
derground depth of Ti, (b) the distance between a Type 1 M from A against the
underground depth of Ti, (c) the required power transmitted by the Type 1 M to
defeat Step 6 of STUN, (d) the required power transmitted by the Type 1 M to defeat
Step 6 of STUN, (e) the required power transmitted by the Type 1 M to defeat Step
4 of STUN, (f) the required power transmitted by the Type 1 M to defeat Step 4 of
STUN.

separation of the nodes should be within 2.1m, and the soil moisture content influences

the maximum range between the legitimate node and the trusted node.

3.4.3 Robustness Evaluation

In this section, we evaluate the robustness of STUN against Type 1 and Type 2

adversaries.
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Figure 3.10: Plots of (a) the distance between a Type 1 M from A against the
underground depth of Ti at different volumetric water content for duMTi

= 0.2m,
(b) the distance between a Type 1 M from A against the aboveground distance of
A at different volumetric water content for duMTi

= 0.4m, (c) the required power
transmitted by the Type 1 M to defeat Step 4 of STUN at different volumetric water
content, (d) the required power transmitted by the Type 2 M against the distance
between M and Ti, and (e) the required power transmitted by the Type 2 M against
the distance between M and Ti.

3.4.3.1 Type 1 Adversary

To evaluate the capabilities of an adversary, we emulate the adversarial data uti-

lizing experimentally obtained wireless channel parameters, precisely measuring the

effective soil permittivity and relative permeability of the soil from the experimental

setup described in Section 5.5. The underground wireless channel is relatively stable

and mostly deterministic compared to the OTA wireless channel [168].

In Fig. 3.9(a), we illustrate how the gateway-to-adversary distance changes with
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the underground depth of the trusted node (duTi
), considering various underground

adversary distances (duMTi
). Similarly, in Fig. 3.9(b), we vary the center frequencies

and analyze the impact on the adversary distance. Our results show that M must

position itself between 2000m and 10000m from the gateway to achieve an equivalent

path loss in underground-to-OTA while located above ground.

In Fig. 3.9(c) and (d), we examine how successful an aboveground adversary can

be in passing the verification at the gateway. We observed that the transmitter power

is above the threshold at the gateway for various underground (duTi
) and aboveground

(daATi
) distances. Even when the adversary operates with the experimentally measured

acceptable distance, our results reveal that the required power remains more than the

threshold needed to pass Step 6. The adversary must transmit at a precise power

level, maintaining an RSS ratio between 1 and 1.5. Adversary can compute the needed

power for the gateway due to positional knowledge of the gateway aboveground but

needs to do the same for the trusted node underground whose location is unknown.

Similarly, in Fig. 3.9(e), and (f), we show that the power transmitted from above-

ground Type 1 adversary attempting to pass Step 4 verification, even when the ad-

versary distance (daMTi
) from the trusted node is within the communication range.

Our results show that the adversary transmit power to the trusted node is very high

while changing the underground depth, and center frequency. Our findings indicate

that the adversary needs to transmit a precise power to maintain an RSS threshold

between 2.512 × 10−7mW and 6.309 × 10−7mW for verification at the trusted node.

The likelihood of a successful attack is low, given that the adversary typically lacks

exact positional knowledge of the trusted nodes and does not possess physical access

to the farm.

In Fig. 3.10(a), (b), we demonstrate how aboveground gateway-to-adversary dis-

tance changes with underground depth (duTi
), while varying the volumetric water con-
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tent (VWC). We observe that in Fig. 3.10(a) and (b), while we keep the duMTi
at 0.2m

and 0.4m. We observe that water content alters the adversary’s position, shifting the

distance from the underground node to soil the surface. Additionally, Fig. 3.10(c)

analyzes how the adversary’s distance changes with the aboveground gateway dis-

tance (daATi
) while varying the VWC. Our results confirm that in Fig. 3.10(a), (b),

(c), the adversary must operate at considerably large distances. M cannot reduce the

transmit power rather than increase the distance, as this will cause the adversary to

fail Step 4 due to high attenuation for OTA-to-underground transmissions.

3.4.3.2 Type 2 Adversary

In our evaluation, we assess the transmission power of an underground adversary to

the trusted nodes as the distance between them increases. Our findings indicate that

the adversary has to transmit an excessive amount of power. In contrast, the legiti-

mate nodes maintain a consistent transmit power of [0.0032W, 0.025W, 0.1W, 0.2W],

while the distance between the legitimate and trusted nodes remains at [0.5m, 0.8m,

1m, 2m]. The adversary succeeds if the received power of the trusted node is between

τTi
low = 2.512 × 10−7mW and τTi

high = 6.309 × 10−7mW as obtained in Section 3.2.2.

We emulate the adversary’s path loss according to (3.3) with the soil parameters ob-

tained from the testbed. We ran the experiment 10,000 times. Fig. 3.10(d) and (e)

depict the underground power transmitted by the Type 2 adversary (P tx
M ) against the

underground distance between the adversary and the trusted node (duMTi
), with vari-

ations in the power transmitted by the legitimate nodes (P tx
Lij

) and the underground

distance between the trusted node and the legitimate node (duLijTi
). Our observations

reveal that the adversary’s power, as illustrated in Fig. 3.10(d) and (e), is sufficient to

cause damage to the sensors. Furthermore, as the adversary’s underground distance

from the farm’s perimeter increases, it becomes increasingly challenging to counter
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step 4 due to changes in soil conditions securely.

3.5 Chapter Summary

We address the problem of a secret-free secure bootstrapping for COTS under-

ground nodes with an aboveground gateway. We propose STUN, which uses hard-

to-forge underground wireless propagation laws to achieve node authentication and

secret establishment in-band with the help of a trusted underground node. We demon-

strate that STUN resists active signal injection attacks and scales well as the number

of underground nodes increases. In addition, We theoretically prove that STUN has a

security equivalent to the UOV scheme in public cryptography. We also validate our

theoretical results with outdoor underground wireless testbed experiments. We eval-

uate the placements of the trusted nodes to cover an agricultural farm in a hexagonal

sector format. To optimize the required number of trusted nodes, we investigated the

distance of the trusted nodes from the farm boundary and the distance between each

other. Finally, we developed security for the downlink communication and multiple

trusted and legitimate nodes.
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CHAPTER 4

RF Fingerprint-Based Location Authentication for

Over-The-Air and Underground Wireless Networks

This chapter is based on joint work with Mr. Hakim Lado, Dr. Nirnimesh Ghose,

Dr. BoyangWang, and Dr. Mehmet Can Vuran. While the work reflects collaboration

across team members, I led the conceptual design, data collection, modeling, and

experimental evaluation of the RF fingerprinting system. My contribution to this

work represents approximately 70% of the effort.

This chapter explores the use of wireless channel characteristics as unique finger-

prints to verify the location of transmitting devices. Instead of relying on crypto-

graphic secrets or trusted hardware, we utilize the channel impulse response (CIR) as

a discriminative indicator of location. CIR encodes the multipath structure between

a transmitter and receiver and reflects the surrounding physical environment, mak-

ing it inherently difficult to forge or emulate from a different location. This enables

robust authentication even in the presence of adversaries attempting to spoof legiti-

mate transmissions. To ground our method in practical constraints, we first outline

the system and adversarial models, followed by a description of how CIR is computed

from pilot symbols. This foundation supports the development of a generalizable,

authentication pipeline resilient to our attack settings.
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Figure 4.1: System model showing transmitters Txi sending wireless signals to the
receivers Rxj, which extract CIRs. Labeled CIRs from authorized location zones are
used for training and authentication at the central server.

4.1 System Overview

4.1.1 Notations

We preprocess raw RF signals received at the receiver to extract the complex

baseband I/Q samples. These samples are segmented into fixed-length traces, which

serve as input to our location authentication system.

A single trace, representing a short sequence of complex I/Q samples, is denoted

as x = [x1, x2, . . . , xL], where xk = xR
k +jxI

k and L is the trace length. We fix L = 288

in our experiments. The set of all traces is X = {x(1), . . . ,x(N)}, with each trace x(i)

associated with a ground truth label ℓ(i) ∈ L, where L is the set of authorized location

zones. The number of unique locations is M = |L|.

4.1.2 System Model

The system consists of a set of stationary or mobile transmitters T and stationary

receivers R. Let T = {Tx1,Tx2, . . . ,Txi} denote the set of wireless transmitters, and

let R = {Rx1,Rx2, . . . ,Rxj} denote the set of stationary receivers. Each transmitter

Txi ∈ T periodically sends known pilot signals, and each receiver Rxj ∈ R computes

the channel impulse response (CIR) from the received baseband I/Q samples. The

CIR captures the spatial and temporal characteristics of the wireless channel.

The system operates in two phases: training and authentication. During training,
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Table 4.1: Summary of Notations

Symbol Description

x(i) i-th trace containing complex I/Q samples
xR
k , x

I
k Real and imaginary parts of the k-th complex sample

L Trace length (set to 288)
w Sliding window stride (set to 288)
M Total number of I/Q samples in a sequence
X Set of all traces used for training/testing
ℓ(i) Ground truth label (location) for trace x(i)

L Set of all candidate location labels
Lloss Loss function used during training
hj[n] Time-domain CIR at location Lj

ĥj[n] Estimated time-domain CIR at location Lj

ĥj Estimated CIR vector via least squares
Hj[f ] Intermediate frequency-domain channel response at Lj

Ĥj[f ] Estimated frequency-domain channel response at Lj

YLj
Received signal vector at Lj in matrix CIR model

P Toeplitz matrix constructed from pilot symbols
W Additive noise vector in matrix CIR model
P [n] Known pilot symbols (time domain)
P [f ] Fourier transform of pilot symbols
w[n] Additive noise in time domain
YLj

[f ] Received signal in frequency domain at location Lj

Afilt Filtered amplitude component of CSI
Φfilt Filtered phase component of CSI
P (τ) Power Delay Profile (PDP)
τ̄ Mean excess delay
τrms RMS delay spread
Bc Coherence bandwidth, Bc ≈ 1/τrms

πi,j Predicted confidence for location ℓj on trace x(i)

F Classifier model
Dtrain,Dtest Training and test datasets
ravg Average rank of the true location across predictions
m′ Number of correctly classified test traces
θf , θy, θd ADA parameters (feature extractor, classifier, discriminator)
λ ADA weighting factor
ϵ Adversarial perturbation budget
α Step size for adversarial attacks
hUG(t) Continuous-time underground CIR
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Figure 4.2: System overview showing the preprocessing, training, and transfer learn-
ing using fine-tuning and adversarial domain adaptation for authorized locations,
followed by the adversarial attack from location X.

transmitters send pilot signals from known authorized location zones, and the receiver

extracts and labels the corresponding CIR traces. These labeled traces are used to

train a multi-class classifier, where each class represents a distinct location zone.

During authentication, the receiver extracts the CIR from new transmissions and

queries the trained classifier. The system, as illustrated in fig 4.1, verifies whether the

predicted location matches an authorized zone with high confidence. The architecture

is agnostic to communication protocol, device type, and deployment environment,

enabling flexible and scalable deployment.

4.1.3 Threat Model

We assume that the training phase occurs in a trustworthy environment with only

legitimate transmitters operating from authorized zones. The adversary attempts to

spoof location in the authentication phase by injecting CIR-like signals to mislead

the classifier.

We define two attacker models:
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4.1.3.1 Friis’ Empirical Adversary:

Knows only device distances and estimates CIR using Friis’ equation, ignoring

multipath and noise effects.

4.1.3.2 Ray-Tracing Enhanced Adversary:

Uses advanced ray-tracing to simulate CIR with reflection, scattering, shadowing,

and delay clusters. It attempts to closely match legitimate CIR patterns, representing

a worst-case channel-aware attacker.

Our system demonstrates robustness against both attacker types across various

environments. More details are provided in Section 4.5.

4.1.4 Motivation for Deep Learning

Traditional RF fingerprinting methods relying on RSS or CSI perform well un-

der controlled settings but degrade in dynamic or underground environments due to

temporal drift, noise, and multipath.

Even after preprocessing such as Butterworth filtering or denoising autoencoders,

location-invariant distortions remain. Deep CNNs offer improved robustness by learn-

ing complex spatio-temporal features and effectively distinguishing intra- versus inter-

location variation.

Each input trace x(i) = [x
(i)
1 , . . . , x

(i)
L ] is passed through a CNN to extract high-

level features corresponding to coherence bandwidth, RMS delay, and PDP varia-

tions—features strongly tied to location. CNNs also adapt well to noise and domain

shifts across OTA and underground conditions. The general overview our authenti-

cation system is shown in fig. 4.2
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4.1.5 Impact of Hardware Imperfections

Even devices built from the same specification exhibit hardware-induced nonlin-

earities. These include phase noise, amplifier distortion, and oscillator drift, which

can introduce either beneficial or harmful bias in the signal.

Such imperfections may increase separability between devices but reduce the fi-

delity of spatially induced channel effects. Hence, it is essential that the model learn

to filter out hardware-specific noise while preserving channel-specific spatial features

for reliable location authentication.

4.1.6 Impact of Channel Variability

The wireless channel is highly sensitive to environmental factors like multipath, soil

properties, object motion, and weather, which directly impact CIR and its reliability

as a location identifier.

To maintain authentication reliability, we combine spatial filtering, denoising, and

domain adaptation techniques to reduce noise and emphasize persistent location-

specific features. This ensures model resilience even when the channel conditions

change.

4.1.7 Natural vs. Adversarial Channel Variations

4.1.7.1 Natural Variations:

OTA channels experience rich multipath and high temporal variation from motion

and interference. Underground channels have higher spatial resolution but suffer from

soil-induced drift. OTA scenarios require frequent recalibration, while underground

setups demand robust handling of slow, non-stationary drift.
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4.1.7.2 Adversarial Variations:

OTA adversaries may attempt replay or modulation spoofing, but fail to mimic

CIR from a different location. Underground attackers cannot replicate soil conditions

or air-soil boundary distortions, leading to detectable deviations.

Underground channels offer higher spoofing resistance due to environmental con-

straints, while OTA channels provide diverse propagation paths requiring stronger

generalization from models.

4.2 Location Fingerprinting Architecture

Table 4.2: Complete Model Performance Analysis for Location Authentication.

Model Best Performance Stability Reliability

ResNet-50 85–95% High Excellent across all scenarios

ResNet-34 80–92% High Very Reliable, best overall

ResNet-18 75–90% High Very Reliable

In-Lab Model 70–85% Moderate to High Reliable in controlled settings

GoogleNet 60–70% Moderate Reasonably Reliable in Filtered settings

VGG16 50–60% Low Inconsistent across device/distance

VGG19 ∼33% (Random Baseline) Very Low Unreliable, fails to generalize

4.2.1 Convolutional Neural Network Architectures

We adopt multiple convolutional neural network architectures to extract spatio-

temporal patterns in the filtered CIR traces for location-based authentication. These

models are designed to provide robust authentication performance across over-the-air

and underground scenarios in both indoor and outdoor environments by learning to

distinguish between authorized location zones.

Our primary architectures include ResNet-18, ResNet-34, and ResNet-50 deep

residual networks, which employ identity skip connections to mitigate vanishing gra-
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dients. ResNet-18 offers a compact structure with fewer parameters, balancing com-

putational efficiency and representational power, making it suitable for resource-

constrained authentication systems. ResNet-34 and ResNet-50 extend this capability

with deeper stacks of convolutional layers, incorporating bottleneck blocks to increase

architectural depth while maintaining computational tractability. This facilitates

deeper feature extraction for authentication decisions, enabling better discrimination

between closely spaced authorized locations and capturing subtle variations in channel

characteristics crucial for reliable authentication.

We selected ResNet architectures as our primary models based on comprehensive

comparative analysis with alternative CNN architectures, including VGG16, VGG19,

and GoogleNet, as detailed in Table 4.2. ResNet models demonstrate superior perfor-

mance with 75–95% accuracy and high stability compared to alternatives that suffer

from fundamental architectural limitations. VGG19 fails completely, achieving only

random baseline performance of approximately 33% due to severe vanishing gradient

problems in its deep architecture without skip connections. VGG16 exhibits poor

stability with 50–60% accuracy and inconsistent performance across different trans-

mission scenarios. GoogleNet provides moderate performance ranging from 60–70%

but lacks the consistent reliability required for critical authentication applications.

The critical advantage of ResNet architectures lies in their identity skip connections,

which effectively mitigate gradient degradation issues that severely limit deeper net-

works without residual connections.

In addition, we designed a custom 5-layer CNN, referred to as the in-lab model,

to provide baseline comparison against deeper architectures. This model comprises

three convolutional layers with ReLU activations, a pooling layer, a fully connected

layer, a softmax classifier, and two additional fully connected layers for location clas-

sification. Despite its simplicity, the in-lab model achieves 70–85% authentication
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accuracy, demonstrating that effective location authentication can be achieved with

properly designed simpler architectures. This validates that ResNet’s superior per-

formance stems from architectural advantages rather than mere parameter count,

while providing a computationally efficient alternative for resource-constrained de-

ployments.

These selected models offer a synergistic combination of depth, efficiency, and

resilience, facilitating robust temporal and spatial authentication of location zones

across diverse indoor and outdoor environments. The detailed performance evaluation

of these models for location authentication is presented in Section 4.3.

4.2.2 Location Authentication Dataset

We consider a dataset that includes wireless transmissions in two environmental

settings: (i) indoor and (ii) outdoor. The indoor environmental settings comprise

wireless transmissions for OTA communication, demonstrating the feasibility of our

authentication approach across diverse propagation environments. The outdoor en-

vironmental settings consist of CIR data samples with a sample rate of 6.4 MSps

collected for OTA communication, enabling evaluation of authentication robustness

under challenging environmental conditions.

Both communication scenarios utilize USRP SDR B200 and B205mini devices

operating at a 2.4 GHz center frequency that act as transmitters and receivers. We

utilize 1 receiver device and 4 transmitter devices positioned across 3, 4, 5, and 6

feet for the distance-based authentication evaluation. We use 6 transmitters and 6

receivers for the device-based authentication assessment while maintaining the same

distance and changing each device to evaluate robustness against hardware variations.

Each transmitted data is collected for 2 minutes per transmission, and we move the

devices across different distances to capture spatial variations in channel character-
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istics. We have a variable-length vector of two dimensions representing the in-phase

and quadrature transmissions. We repeat this procedure across three indoor and out-

door locations, creating authorized location zones for authentication evaluation. The

experimental setup for data collection is shown in Figures 4.10 and 4.11 for outdoor

and indoor environments, respectively. We refer to the data samples as transmissions

for convenience. We save the IQ samples as binary files and perform the same exper-

iment for different locations in both outdoor and indoor settings. Additional details

regarding the dataset statistics are provided in Section 4.3.

4.2.3 Data Preprocessing

Once we capture the received signal, we perform various data preprocessing steps:

extracting the channel state information, data normalization, and filtering. These are

applied to both underground and OTA transmissions, indoors and outdoors. This

preprocessing step removes noisy components that could compromise authentication

reliability while retaining the essential location-specific information needed for accu-

rate authentication decisions.

4.2.3.1 Data Normalization

We normalize our dataset to improve the numerical stability and convergence speed

during training of our authentication models. Data normalization guarantees that the

input data is uniformly scaled, eliminating anomalies that could adversely impact our

machine learning models’ capacity to learn temporal and spatial features crucial for

reliable location authentication. Our procedure entails normalizing the input data to

handle zeros and NaN values, which might affect the learning process and improve

the robustness and precision of the authentication system in both indoor and outdoor

environments.
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4.2.3.2 Extracting The Channel Impulse Response

The Channel Impulse Response (CIR) serves as a critical characterization of location-

specific wireless propagation signatures, essential for robust authentication mecha-

nisms. This work extracts the CIR using pilot symbol-based channel estimation in

the time domain, a method that effectively preserves the temporal multipath charac-

teristics of the wireless channel.

For a transmitter communicating with receivers at locations Lj, the discrete-time

received signal, yLj
[n], can be fundamentally modeled as the convolution of the trans-

mitted signal xT [k], additive noise w[n], and the location-dependent CIR, hj[n− k]:

yLj
[n] =

∞∑
k=−∞

xT [k] · hj[n− k] + w[n] (4.1)

When known pilot symbols P [n] are transmitted, the received signal yLj
[n]:

yLj
[n] =

∞∑
k=−∞

P [k] · hj[n− k] + w[n] (4.2)

To derive the channel frequency response, a Fourier transform is applied to both sides

of the equation, yielding:

YLj
= P ·Hj +W (4.3)

The channel frequency response, Ĥj, is then obtained by solving for Hj:

Ĥj =
YLj

P
(4.4)

Finally, the time-domain CIR, ĥj[n], is recovered by applying the inverse Fourier

transform:
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ĥj[n] = F−1

{
YLj

P

}
(4.5)

From Equation (4.1), the CIR can also be written as

ĥj[n] = F−1

{
YLj

X

}
(4.6)

WhereX is the transmitted signal envelope. This process effectively extracts location-

specific signatures, encompassing multipath delays, amplitude variations, and de-

lay spread patterns. The preservation of these temporal propagation characteristics

within the time-domain CIR creates unique spatial fingerprints adversaries find dif-

ficult to replicate, thus enabling robust location-based authentication across diverse

wireless environments.

Matrix Representation for Computational Modeling For computational mod-

eling and algorithmic implementation, the convolution operation described above can

be efficiently represented in matrix form. Considering finite-length signals, the con-

volution of the pilot symbols P [n] and the CIR hj[n] to produce the received signal

yLj
[n] can be expressed as a matrix-vector product.

Let P be a vector of Np pilot symbols, and hj be a vector of Nh CIR coefficients.

The received signal YLj
(a vector of length Np +Nh − 1) can be expressed as:

YLj
= Phj +W (4.7)

Here, YLj
∈ C(Np+Nh−1)×1 represents the received signal vector, hj ∈ CNh×1 is

the CIR vector, W is the additive noise vector, and P is a Toeplitz matrix con-

structed from the pilot symbols P [n]. This Toeplitz matrix is formed by shifting
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the pilot symbol vector in successive rows, effectively implementing the convolu-

tion operation as a linear transformation. For instance, if P = [P0, P1, . . . , PNp−1]
T

and hj = [hj,0, hj,1, . . . , hj,Nh−1]
T , the Toeplitz matrix P would have dimensions

(Np +Nh− 1)×Nh, where each column is a shifted version of the pilot signal vector.

The matrix P can be visualized as:

P =



P0 0 0 · · · 0

P1 P0 0 · · · 0

P2 P1 P0 · · · 0

...
...

...
. . .

...

PNp−1 PNp−2 PNp−3 · · · PNp−Nh

0 PNp−1 PNp−2 · · · PNp−Nh+1

...
...

...
. . .

...

0 0 0 · · · PNp−1


In practical channel estimation, particularly when pilot symbols are transmitted, the

CIR hj can be estimated using techniques such as least squares:

ĥj = (PHP)−1PHYLj
(4.8)

where PH denotes the conjugate transpose of P. Note that Toeplitz systems can be

solved efficiently using Fast Fourier Transform (FFT) algorithms, reducing computa-

tional complexity from O(N3) to O(N logN) for large pilot sequences.

This matrix formulation not only simplifies CIR estimation computationally, but

also provides a structured input format ideal for deep learning models trained on
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location-specific channel characteristics.

4.2.4 Filtering Process for Authentication Enhancement

We evaluate multiple filtering approaches to extract stable location-specific sig-

natures while removing noise and hardware imperfections that could compromise

authentication reliability. Our comparative analysis considers several filtering tech-

niques including Butterworth low-pass filtering [33,199], elliptic filtering [128], moving

average filtering [171], and Denoising Autoencoder (DAE) approaches [179,198].

After extensive evaluation, we select Butterworth filtering and DAE techniques

based on their superior performance in preserving authentication-relevant channel

characteristics while providing effective noise reduction. Butterworth filters were

chosen for their maximally flat frequency response in the passband and excellent phase

linearity, which preserves the temporal structure crucial for CIR-based authentication.

Alternative filters such as elliptic and moving average filters were considered but

rejected due to their inferior performance in maintaining location-specific signatures.

Elliptic filtering was evaluated but showed suboptimal results due to its ripple

characteristics in both passband and stopband, which could distort the fine-grained

location-specific features essential for authentication. Moving average filtering, while

computationally simple, demonstrated poor frequency selectivity and phase response,

making it unsuitable for preserving the complex spectral characteristics of CIR data

required for reliable location authentication.

The quantitative results presented in Table 4.3 demonstrate the clear superiority of

Butterworth filtering over the rejected alternatives. Moving average filtering achieved

only moderate performance (50-60%) with very poor stability, while elliptic filtering,

despite reaching up to 70% performance in some cases, exhibited extremely poor

stability that rendered it completely unreliable for authentication applications.
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Table 4.3: Comparative Performance Analysis of Filtering Methods for Location Au-
thentication.

Filtering Method Best Performance Stability Reliability

Butterworth 80–90%+ High Excellent

Moving Average ∼50–60% Very Poor Unreliable

Elliptic ∼60–70% Extremely Poor Completely Unreliable

4.2.4.1 Butterworth Filtering of CIR

We apply Butterworth low-pass filtering separately to the amplitude and phase

components of the estimated time-domain CIR, ĥj[n], to enhance location-specific

features and suppress noise. This two-part filtering process improves fingerprinting

accuracy by reducing small-scale fading and hardware-induced fluctuations while pre-

serving large-scale propagation effects.

Amplitude Filtering. The amplitude-based filter smooths rapid magnitude fluc-

tuations in the CIR while preserving features critical for location authentication. This

is particularly effective in controlled indoor environments where signal variations are

more stable. We apply the Butterworth transfer function to the amplitude component

of the CIR:

ĥfilt[n] = G(z) · ĥj[n] (4.9)

where G(z) is the low-pass Butterworth filter defined as:

G(z) =
B(z)

A(z)
=

b1 + b2z
−1 + · · ·+ bn+1z

−n

1 + a2z−1 + · · ·+ an+1z−n
(4.10)

with b and a as filter coefficient vectors. We apply zero-phase filtering (forward and

reverse directions) to avoid introducing phase distortion. The filtered amplitude is

denoted as Afilt[n] = |ĥfilt[n]|.
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Phase Filtering. To reduce phase noise and hardware-induced artifacts, we extract

the phase of the CIR, ∠ĥj[n], and apply the same Butterworth filter. This isolates

the large-scale phase behavior from small-scale fluctuations. The filtered phase com-

ponent is denoted as Φfilt[n] = ∠ĥfilt[n]. Zero-phase filtering ensures phase symmetry

is preserved and avoids time distortion.

Recombination. After applying both filters, we reconstruct the filtered CIR by

recombining the filtered amplitude and phase:

h̃j[n] = Afilt[n] · ejΦfilt[n] (4.11)

This final filtered CIR, h̃j[n], enhances the stability and discriminative power of

location-specific features for fingerprinting under various propagation conditions.

4.2.4.2 Denoising Autoencoder (DAE)

In addition to traditional signal processing filters, we leverage DAEs for adaptive

noise reduction, particularly in complex and noisy environments where their learned

representation offers superior performance. A DAE is a type of artificial neural net-

work designed to learn a robust representation of input data by attempting to recon-

struct a clean output from a corrupted, or noisy, input [179]. In principle, a DAE

consists of two main parts: an Encoder which maps the noisy input xnoisy to a lower-

dimensional latent representation z, such that z = f(xnoisy); and a Decoder which

reconstructs the original, clean input xclean from the latent representation, such that

xreconstructed = g(z). During training, the DAE is fed noisy versions of the CIR data

and is optimized to minimize the difference between its reconstructed output and the

original, uncorrupted CIR signal. This forces the network to learn to identify and
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remove noise patterns while preserving the essential underlying signal structure. For

CIR data, this means the DAE learns to distinguish between true location-specific

channel characteristics and transient environmental noise or hardware imperfections.

The network effectively denoises the CIR by projecting it into a latent space where

noise is suppressed, and then reconstructing the signal from this cleaner represen-

tation. This enables the DAE to selectively preserve spatial and temporal features

crucial for location fingerprinting while removing environment-specific noise patterns

through its learned representation. Our evaluation in section 4.4 reveal that DAEs

excel in high-noise outdoor environments, where their adaptive noise reduction ca-

pabilities are critical for reliable authentication decisions, in contrast to Butterworth

filtering, which performs better in controlled indoor settings.

Algorithm 1: Sliding Window-Based I/Q Trace Extraction and Preprocess-
ing.

Input: Sequence of complex I/Q samples derived from filtered CIR:
{x1, x2, . . . , xM}

Output: Preprocessed trace set X = {x(1), . . . ,x(N)}
1 Set trace length L and stride w
2 Initialize trace index i← 1
3 for k = 1 to M − L+ 1 w do
4 Extract trace: x(i) ← [xk, xk+1, . . . , xk+L−1]

5 Normalize Re(x(i)) and Im(x(i)) via min-max scaling

6 Optionally apply STFT to x(i) for spectrogram generation

7 Store x(i) in X
8 i← i+ 1

9 return X

4.2.5 Extracting I/Q Samples Using Sliding Window

We preprocess the extracted CIR data using a sliding window approach, segment-

ing complex I/Q representations into fixed-length traces. Each trace serves as an
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Sliding process

Figure 4.3: Sliding window segmentation of complex I/Q samples with trace length
L, producing (M − L+ 1) overlapping traces from a sequence of M samples.

input instance for location authentication, providing the temporal context necessary

for reliable location verification.

The choice of stride length significantly impacts both computational efficiency

and authentication performance. We select a stride w = 288 equal to the window

length L = 288 to create non-overlapping windows for several reasons: computa-

tional efficiency, by eliminating redundant processing of the same samples; statistical

independence, by ensuring independence between training samples and preventing

overfitting to temporal correlations within overlapping segments; and authentication

robustness, as our empirical evaluation shows that overlapping windows (w < L)

lead to memorization of local temporal patterns rather than learning generalizable

location-specific features.

Comparative analysis reveals that overlapping windows initially appear to improve

training accuracy due to increased sample size, but this improvement stems from

data leakage rather than genuine learning of location signatures. During testing with

temporally separated data, non-overlapping window training demonstrates superior

generalization performance, achieving 3-5% higher authentication accuracy compared

to overlapping approaches.

We apply a fixed-length window L = 288 and stride w = 288 over a sequence

of M complex CIR-derived I/Q samples where L ≪ M . Each trace is defined as

x(i) = [x
(i)
1 , x

(i)
2 . . . , x

(i)
L ], where x

(i)
k = x

R,(i)
k + jx

I,(i)
k represents the k-th complex I/Q
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sample within the i-th trace, derived from the filtered CIR. The window slides across

the sequence with a stride w, producing one trace at each step. This continues until

we obtain a dataset X = {x(1), . . . ,x(N)}.

For w = L = 288, we obtain (M−L+1) total traces from a sequence ofM samples,

where consecutive traces capture independent temporal segments of the CIR evolu-

tion, providing robust training data for location authentication while maintaining

computational tractability.

We normalize each trace using min-max normalization to improve numerical sta-

bility and model convergence. The I/Q data is then optionally converted to the fre-

quency domain using Short-Time Fourier Transform (STFT), extracting spectrogram

features by computing the power spectrum over local windows. This spectrogram

emphasizes transient frequency content and enhances the model’s robustness to tem-

poral variation. STFT helps the model focus on discriminative channel signatures

rather than raw signal variations by ensuring numerical stability, reducing hardware

bandwidth to focus on spatial or channel variations instead of absolute signal levels,

and capturing time-frequency patterns, which is useful since CIR exhibits temporal

and spectral changes due to multipath, soil conditions, and motion. STFT also en-

hances generalization since spectrograms emphasize features robust to noise, making

the model less sensitive to transient fluctuations, minor hardware, or environmental

shifts. It is important to note that the training pipeline has no STFT or spectro-

gram computation. Each input sample is formatted as a real-valued tensor of shape

(batch size, 2, L), where the two channels correspond to the in-phase (I) and quadra-

ture (Q) components, and L is the trace length.

Each trace captures CIR’s short-term spectral and temporal properties that are

essential for location-based authentication. This slicing method applies equally to

the time and frequency-domain representations of the CIR. Each trace is treated as
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a two-channel sequence, with one channel for the in-phase (I) and the other for the

quadrature (Q) component. This ensures a uniform trace structure and length across

all samples, facilitating consistent input for the location authentication model.

4.2.6 Channel Impulse Response in Underground Wireless Communica-

tion

Multipath effects from lateral, direct, and reflected propagation components signif-

icantly alter the temporal structure of the wireless channel in underground environ-

ments, creating unique location-specific signatures that are particularly valuable for

authentication in critical infrastructure applications. The CIR captures these effects,

which characterize the channel’s output in response to an ideal impulse input. The

CIR for underground communication [150] can be approximated as a sum of delayed

and weighted delta functions given as

hUG(t) =
L−1∑
l=0

αlδ(t− τl) +
D−1∑
d=0

αdδ(t− τd) +
R−1∑
r=0

αrδ(t− τr) (4.12)

Here, L,D,R are the numbers of lateral, direct, and reflected wave components.

αl, αd, αr are the complex gains for each wave component. These complex gains

represent the amplitude and phase changes each wave component undergoes as it

propagates through the underground channel. τl, τd, τr are the delays associated with

the lateral, direct, and reflected waves, respectively. The CIR inherently captures the

environmental characteristics of underground propagation, including the lossy and

dispersive nature of soil, and serves as a basis for extracting fingerprintable features

such as power delay profile (PDP), RMS delay spread, and coherence bandwidth.
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We obtain the PDP by squaring the magnitude of the CIR given by

P (τ) = |h(τ)|2, (4.13)

The mean excess delay uses the power from the PDP to compute the average delays,

the time domain characterized by the channel based on the CIR’s multipath structure.

This is given by

τ̄ =

∫ τmax

τmin
τP (τ) dτ∫ τmax

τmin
P (τ) dτ

, (4.14)

where P (τ) is the power at a delay τ , τ̄ is the mean excess delay, τmin and τmax are

the range of delays. The numerator is the weighted sum of delays, where the weights

are the power values from the CIR, and the denominator is the total received power

integral of the PDP. Equation (4.14) can also be represented in discrete form as

τ̄ =

∑
k Pkτk∑
k Pk

, (4.15)

where Pk = |αk|2 is the power of the k-th multipath component from the impulse

response, τk is the delay of the k-th multipath component, and αk are all the multipath

amplitudes.

The root mean square (RMS) delay spread quantifies the temporal dispersion of

multipath components around the mean excess delay and is a key indicator for channel

time dispersion. RMS delay spread evaluates the temporal dispersion, which directly

affects communication performance. RMS delay spread is defined as the square root

of the second central moment of the power delay profile, which is given as

τrms =
√
(τ 2)− (τ̄)2, (4.16)
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which can be expanded in discrete form as

τrms =

√∑
k Pkτ 2k∑
k Pk

−
(∑

k Pkτk∑
k Pk

)2

, (4.17)

where τ̄ =
∑

k Pkτk∑
k Pk

is the mean excess delay, τk is the k-th multipath component.

The RMS delay spread indicates the extent of dispersion in the delays. A larger

RMS delay spread signifies greater temporal dispersion of the signal, potentially re-

sulting in overlapping symbols (ISI) in high-data-rate communication. RMS Delay

spread is inversely related to the coherence bandwidth.

Bc ≈
1

τrms

. (4.18)

The inverse relationship between the RMS delay spread and coherence bandwidth

reflects the effects of multipath dispersion on frequency selectivity. Coherence band-

width characterizes the frequency band over which the channel response remains

approximately constant and is typically estimated from the channel transfer func-

tion. Channels with large RMS delay spreads exhibit smaller coherence bandwidths,

indicating higher frequency selectivity and reduced diversity.

Underground channels typically exhibit large RMS delay spread and low coherence

bandwidth due to significant multipath propagation within the lossy and dispersive

underground medium, creating robust location-specific signatures that are difficult for

adversaries to replicate. This limits frequency diversity but provides strong authen-

tication features and favors operation in the low-frequency zone where attenuation

and signal stability create consistent authentication signatures.
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4.2.7 Large-scale vs Small-scale Fading for Authentication

Large-scale fading refers to variations in signal strength over relatively large dis-

tances or time durations, providing stable location-specific signatures that are valu-

able for authentication. These variations are primarily caused by path loss and shad-

owing due to macroscopic terrain features. Under large-scale fading, the CIR records

deterministic effects that create consistent location fingerprints, including path at-

tenuation and blockage patterns that are difficult for adversaries to replicate.

Small-scale fading results from reflection, diffraction, and scattering effects that

cause rapid signal variations. While these fluctuations can degrade authentication

consistency in dynamic situations, they also provide fine-grained location-specific fea-

tures that enhance security against sophisticated spoofing attempts.

We utilize amplitude and phase-based filtering approaches to separate large-scale

fading from small-scale fading, preserving stable authentication features while remov-

ing rapidly varying noise that could compromise location verification reliability. We

assess the filtered signals using multiple statistical metrics to ensure that location-

discriminative features essential for authentication are preserved. This filtered CIR is

critical for reliable authentication decisions in machine learning-based location veri-

fication systems.

We also investigate temporal and spatial correlation in the channel data for au-

thentication system design. While temporal correlation shows the stability of au-

thentication features over time, spatial correlation captures the uniqueness of channel

behavior across different positions. Together, these metrics provide crucial insights

for wireless channel-based authentication in dynamic environments, enabling robust

location verification that can adapt to changing conditions while maintaining security

guarantees.
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4.2.8 Spatio-Temporal Channel Correlation

4.2.8.1 Temporal Correlation

Temporal correlation computes the statistical relationship between wireless chan-

nel properties at different times, directly impacting authentication system stability.

It captures how channel characteristics change and whether location-specific features

remain consistent over time.

Temporal correlation guides location-based authentication by determining channel

predictability for verification decisions. High temporal correlation indicates stable

location signatures, allowing longer authentication validity periods. Low temporal

correlation signifies rapid channel variation, requiring more frequent re-authentication

or adaptive thresholds to maintain authentication accuracy.

4.2.8.2 Spatial Correlation

Spatial correlation quantifies the statistical relationship between wireless channel

properties at different spatial locations, providing the foundation for location-based

authentication security. It captures the uniqueness of channel behavior across differ-

ent positions, enabling discrimination between authorized and unauthorized locations.

Understanding spatial variations in channel characteristics is essential for robust

authentication system design. Low spatial correlation across locations ensures that

each authorized zone has distinct signatures that adversaries cannot easily replicate

from different positions. This information guides the development of robust location

authentication techniques capable of precisely distinguishing between legitimate and

spoofed transmissions across space.
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4.2.9 Adversarial Domain Adaptation for Location Authentication

We applied Adversarial Domain Adaptation (ADA) to improve the generalization

of location authentication models across indoor and outdoor settings for both OTA

and underground scenarios. Environmental variations such as soil moisture, mul-

tipath fading, and signal attenuation cause significant variation in wireless channel

properties that could compromise authentication effectiveness when models trained

in one environment are deployed in another.

ADA tackles this problem by aligning feature distributions across domains using

adversarial learning, ensuring robust authentication performance regardless of envi-

ronmental conditions. This is particularly crucial for authentication systems that

must maintain security guarantees across diverse deployment scenarios.

The propagation of wireless signals varies with the environment. While outdoor

environments experience fading and diffraction due to large-scale obstructions, in-

door environments induce dense multipath from walls and objects. Because of the

considerable attenuation in the soil and the refractive effects at the soil-air inter-

face, underground to above-ground transmission adds even more complexity. These

domain-dependent effects restrict the generalizing capability of conventional machine

learning systems. ADA helps to reduce this restriction by ensuring that the feature

learned from one domain, for instance, indoor, remains effective when applied to

another, such as outdoor settings.

The ADA architecture consists of three components: a feature extractor θf , a

source classifier θy, and a domain discriminator θd, as illustrated in Figure 4.9. The

feature extractors θf learn the channel attributes like the power delay profile, RMS de-

lay spread, and coherence bandwidth. The classifier θy predicts the location utilizing

the retrieved attributes, whereas the domain discriminator θd attempts to distinguish
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between various domains, including indoor and outdoor settings. A gradient rever-

sal layer (GRL) nullifies the gradients from the discriminator, forcing the feature

extractor to acquire domain-invariant features for robust classification over diverse

settings.

LetGf (.; θf ) denote the neural network-based feature extractor with parameters θf .

Let Gy(.; θy) represent the label prediction module with parameter θy, and Gd(.; θd)

denote the domain discriminator with parameters θd. We define the total ADA ob-

jectives as

L(θf , θy, θd) = Lclas(θf , θy)− λ · Ldom(θf , θd) (4.19)

Where;

Lclas(θf , θy) = Ly (Gy(Gf (xi; θf ); θy), yi) (4.20)

Ldom(θf , θd) = Ld (Gd(Gf (xi; θf ); θd), di) (4.21)

Where Gy, Gf , and Gd are the label classifier, feature extractor, and domain dis-

criminator. yi, and di are the true class and domain labels. Lclas is the supervised

cross-entropy loss for the source classification on source domain data, Ldom is the

binary cross-entropy loss function for the domain discrimination (source vs. target),

and λ is the weighting factor.

During training, we used the source and target training data. After training,

only θf and θy are retained for inference. This enables location prediction on unseen

domains without requiring domain labels at test time.

ADA enhances authentication robustness by enabling models trained in one envi-

ronment to provide reliable location verification in different environmental contexts.
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The learned channel features are robust to environmental variations, resulting in en-

hanced authentication reliability in real-world applications. By strengthening feature

learning, ADA additionally improves the security of location authentication systems

by reducing susceptibility to adversarial attacks that attempt to exploit environmen-

tal domain shifts.

4.2.10 Fine-tuning for Location Authentication Models

We fine-tuned pre-trained CNNs to enhance their adaptability to our wireless CIR

data’s spatial and temporal characteristics for improved authentication performance.

Our process involves optimizations including hyperparameter tuning, learning rate

adjustment, and regularization techniques to prevent overfitting while maintaining

authentication accuracy.

Fine-tuning addresses the challenge of limited labeled authentication data by

adapting existing CNN models to emphasize domain-specific channel features cru-

cial for location verification. These include coherence bandwidth, RMS delay spread,

and power delay profile characteristics that provide location-specific authentication

signatures.

The fine-tuning technique begins with initializing a pre-trained CNN and substi-

tuting its final classification layers with new layers tailored for location classification.

The network undergoes additional training with a smaller learning rate to prevent sig-

nificant weight updates while enabling it to learn information from the underground

and the aboveground channel data. This technique guarantees that the model can

extract generalizable features while enhancing its understanding of the distinct char-

acteristics of wireless propagation settings.

Optimizing the fine-tuned model necessitates the selection of suitable hyperparam-

eters, such as reducing learning rate schedules and batch sizes of 32, and using the
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Adam optimizer and regularization methods to mitigate overfitting. If memory errors

occur, the system dynamically reduces the batch size to 8 and retries training.

Transfer learning is essential for authentication systems as it minimizes the re-

quirement for extensive training data while enhancing location verification accuracy.

This approach ensures that authentication models can extract generalizable security-

relevant features while adapting to the specific characteristics of the deployment en-

vironment.

During evaluation, we compute authentication accuracy and obtain rank statis-

tics using predicted probability distributions, enabling assessment of authentication

confidence and reliability across different threat scenarios.

4.2.11 Evaluating CIR Processing Techniques for Authentication

Using statistical correlation metrics and error analyses, we assess the efficacy of

different CIR processing approaches by comparing original, filtered, and denoised

CIR data samples. These measures evaluate the effectiveness of Butterworth filtering

and denoising autoencoder (DAE) techniques in maintaining location-discriminative

features essential for reliable authentication while enhancing signal clarity.

4.2.11.1 The Spearman Rank Correlation Coefficient (ρ)

This gauges the monotonic relationship between the CIR dataset’s ranked values.

Spearman’s Rank correlation coefficient captures both linear and non-linear patterns.

Low p-value and high Spearman coefficient suggest a consistent rank order is main-

tained after processing [173].



73

4.2.11.2 The Pearson Correlation Coefficient

The Pearson correlation coefficient [131] evaluates the linear correlation between

the original and processed CIR datasets. Unlike Spearman’s rank-based approach,

Pearson’s is sensitive to the actual magnitude and distribution of the signal values,

making it particularly useful for assessing amplitude preservation in CIR process-

ing. A high Pearson coefficient and a low p-value indicate that the filtering process

maintains the underlying signal structure while effectively removing high-frequency

artifacts, ensuring that location-discriminative features remain intact for reliable fin-

gerprinting. Pearson’s quantifies the strength and direction of linear correlation, rang-

ing from −1 to +1. A high Pearson coefficient (approaching 1) with a low p-value

indicates that the processed CIR data maintains a strong linear relationship with the

original signal, suggesting that the essential amplitude and phase characteristics are

preserved during filtering while removing unwanted noise components [59].

4.2.11.3 The R-squared coefficient of determination (R2)

R2 quantifies the extent to which the processed CIR data preserves the variability

of the original CIR data. A R2 value approaching 1 indicates that the processed data

accurately represents the structure and variability of the original data, preserving

essential spatial and temporal properties [41, 72].

4.2.11.4 The MSE, RMSE, and MAE Error metrics

We also compute normalized Mean Squared Error (MSE), Root Mean Squared

Error (RMSE), and Mean Absolute Error (MAE) to measure variations introduced

by processing. While MAE gives a robust average error that is less sensitive to

outliers, MSE emphasizes larger errors, and RMSE provides an interpretable error
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magnitude in the original signal units.

Low error measures of MSE, RMSE, MAE, and high correlation coefficient of

Spearman and the coefficient of Pearson demonstrate that filtering preserves impor-

tant relations. A high R2 further supports that the processed signal preserves the

core spatial and temporal variability. These measures guarantee that the processed

CIR data maintains the spatial and temporal attributes crucial for precise location

fingerprinting in indoor and outdoor settings.

4.2.12 Comprehensive CIR Processing Performance Analysis for Authen-

tication

We contrast the original CIR, filtered CIR, and denoised CIR data for both in-

door and outdoor settings in same-RX different-TX experiments, evaluating their

effectiveness for location authentication applications. Our results are presented in

Figures 4.4, 4.5, 4.7, 4.6, and 4.8, along with detailed statistics in Table 4.4, demon-

strating environment-specific effectiveness of different processing techniques.

4.2.12.1 Original CIR vs. Butterworth Filtered CIR

We evaluate Butterworth filtering performance by comparing original and fil-

tered CIR data across indoor and outdoor environments, assessing preservation of

authentication-relevant features.

For the indoor environment, Butterworth filtering demonstrates moderate preser-

vation of signal characteristics with a Spearman rank correlation coefficient of ρ =

0.6032, R2 = 0.224, and a Pearson correlation coefficient of 0.6243. The normalized

error metrics show MAE = 1.04×10−1, RMSE = 1.31×10−1, and MSE = 1.71×10−2,

with a PSNR of 17.67 dB, indicating reasonable signal preservation with controlled

noise reduction. These results are illustrated in Figure 4.4(c,f) and summarized in
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Table 4.4.

In the outdoor environment, filtering exhibited similar correlation performance

with Spearman ρ = 0.6024, R2 = 0.191, and a Pearson correlation coefficient of

0.6340. The normalized error metrics were MAE = 9.12×10−2, RMSE = 1.15×10−1,

and MSE = 1.32 × 10−2, with a higher PSNR of 18.80 dB. The slightly better error

performance in outdoor settings suggests that Butterworth filtering is more effective

in environments with higher baseline noise levels, as shown in Figure 4.5(c,f).

4.2.12.2 Original CIR vs. Denoised CIR

The denoising autoencoder (DAE) exhibits environment-specific performance, re-

vealing varying effectiveness across settings as illustrated in Figure 4.4.

In the indoor environment, DAE denoising shows poor correlation with the original

signal, achieving only a Spearman ρ = 0.3276, a Pearson coefficient of 0.3592, and a

negative R2 = −1.215, indicating that the denoised signal explains less variance than

a simple mean model. The normalized error metrics are substantially higher: MAE

= 1.64× 10−1, RMSE = 2.22× 10−1, and MSE = 4.91× 10−2, with a PSNR of 13.09

dB. These results, shown in Figure 4.4(a,b), suggest that the DAE over-processes the

relatively clean indoor signals.

Conversely, in the outdoor environment, DAE demonstrates excellent performance,

with Spearman ρ = 0.8766, Pearson coefficient of 0.8872, and R2 = 0.7537, indicating

strong preservation of signal structure. The normalized error metrics are significantly

lower: MAE = 4.70 × 10−2, RMSE = 6.06 × 10−2, and MSE = 3.68 × 10−3, achiev-

ing the highest PSNR of 24.01 dB across all comparisons. This superior performance,

illustrated in Figure 4.5(a,b), suggests that DAE excels in high-noise outdoor environ-

ments where its learned noise patterns effectively separate signal from environmental

interference.
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4.2.12.3 Denoised CIR vs. Butterworth Filtered CIR

Direct comparison between the two processing approaches reveals their relative

strengths and trade-offs.

In the indoor environment, the comparison shows poor correlation with a Spearman

ρ = 0.1864, a Pearson coefficient of 0.2159, and R2 = −1.411, indicating that the two

methods produce substantially different outputs. The normalized errors are MAE =

1.82×10−1, RMSE = 2.31×10−1, and MSE = 5.33×10−2, with a PSNR of 6.054 dB,

suggesting fundamental differences in their processing approaches for clean indoor

signals. These results are evident in the correlation analysis shown in Figure 4.7(a,c).

For the outdoor environment, the comparison shows moderate correlation with a

Spearman ρ = 0.5199, Pearson coefficient of 0.5491, and R2 = 0.157, with normalized

errors of MAE = 8.23 × 10−2, RMSE = 1.04 × 10−1, and MSE = 1.09 × 10−2, and

a PSNR of 19.65 dB. This indicates that both methods provide similar processing

outcomes in noisy outdoor environments, as demonstrated in Figure 4.7(d,e).

4.2.12.4 Comparative Analysis and Implications

Our comprehensive evaluation reveals environment-specific effectiveness.

Butterworth filtering consistently outperforms DAE denoising in indoor settings,

providing moderate but stable signal preservation (R2 = 0.2237 vs. −1.215). The

controlled indoor environment contains minimal noise for DAE to suppress, which

causes over-processing and signal degradation.

In contrast, in outdoor environments, DAE denoising significantly outperforms

Butterworth filtering (R2 = 0.7537 vs. 0.1912), demonstrating superior capability in

high-noise conditions. DAE learns and removes complex environmental noise patterns

while preserving essential channel characteristics.
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Figure 4.4: CIR signal processing comparison for outdoor environments showing am-
plitude and phase characteristics across the first 50 samples in the same-RX, different-
TX setup: (a) Amplitude comparison between original and denoised signals, (b) Phase
comparison between original and denoised signals, (c) Amplitude comparison between
original and filtered signals, (d) Amplitude comparison between denoised and filtered
signals, (e) Phase comparison between denoised and filtered signals, (f) Phase com-
parison between original and filtered signals.

While Butterworth filtering offers predictable, frequency-domain noise reduction,

it uniformly attenuates high-frequency components that often contain discriminative

channel information. In comparison, DAE selectively preserves spatial and temporal

features critical for location fingerprinting by leveraging learned representations of

environment-specific noise.

These findings indicate that optimal CIR processing requires environment-aware

technique selection: Butterworth filtering for controlled indoor settings and DAE

denoising for complex outdoor scenarios. This adaptive strategy ensures maximum

preservation of discriminative channel properties necessary for accurate location au-

thentication across diverse deployment environments.
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Figure 4.5: CIR signal processing comparison for outdoor environments showing am-
plitude and phase characteristics across the first 50 samples in the same-RX, different-
TX setup. (a) Amplitude comparison between original and denoised signals. (b)
Phase comparison between original and denoised signals. (c) Amplitude comparison
between original and filtered signals. (d) Amplitude comparison between denoised
and filtered signals. (e) Phase comparison between denoised and filtered signals. (f)
Phase comparison between original and filtered signals. These comparisons highlight
the signal preservation and transformation behaviors of denoising and filtering meth-
ods.

Table 4.4: Quantitative comparison of different CIR processing approaches for indoor
and outdoor settings.

Setting Comparison Pearson P-Value Spearman ρ MAE RMSE MSE R2 PSNR (dB)

Indoor

Orig. vs Denoised 0.3592 0.0 0.3276 1.64× 10−1 2.22× 10−1 4.91× 10−2 -1.215 13.09

Orig. vs Filtered 0.6243 0.0 0.6032 1.04× 10−1 1.31× 10−1 1.71× 10−2 0.224 17.67

Denoised vs Filtered 0.2159 0.0 0.1864 1.82× 10−1 2.31× 10−1 5.33× 10−2 -1.411 6.054

Outdoor

Orig. vs Denoised 0.8872 0.0 0.8766 4.70× 10−2 6.06× 10−2 3.68× 10−3 0.754 24.01

Orig. vs Filtered 0.6340 0.0 0.6024 9.12× 10−2 1.15× 10−1 1.32× 10−2 0.191 18.80

Denoised vs Filtered 0.5491 0.0 0.5199 8.23× 10−2 1.04× 10−1 1.09× 10−2 0.157 19.65

4.3 Experimental Evaluation

4.3.1 OTA Experimental Setup

We collect over-the-air (OTA) BPSK samples at three indoor locations using GNU

Radio and software-defined radio (SDR) USRP devices, specifically the B200 and
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Figure 4.6: Amplitude histogram distribution plots of CIR data for (a) indoor and
(b) outdoor environments comparing original, filtered, and denoised signals.

B205mini, to evaluate our location authentication system. BPSK is selected for its

simplicity, robustness to noise, and low bit error rate (BER) under low signal-to-noise

ratio (SNR) conditions. It enables efficient channel extraction with minimal process-

ing, preserving authentication-relevant features. Furthermore, BPSK operates in the

time domain, offering an accurate representation of the wireless channel—critical for

reliable location-based authentication in resource-constrained environments.

4.3.2 OTA Experimental Setup

We collect OTA BPSK samples at three indoor locations using GNU Radio and

software-defined radio (SDR) USRP devices, specifically the B200 and B205mini,

to evaluate our location authentication system. We select the BPSK modulation

technique and direct signal-based CIR extraction over pilot-based channel estimation

due to several critical advantages for authentication performance and data efficiency.

BPSK Selection Rationale: BPSK offers several advantages for location au-

thentication applications. Its binary nature provides simplicity and robustness to
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Figure 4.7: Pairwise CIR correlation scatter plots for indoor (top row) and outdoor
(bottom row) environments: (a) Indoor denoised amplitude against filtered ampli-
tude, (b) Indoor original amplitude against filtered amplitude, (c) Indoor original
amplitude against denoised amplitude, (d) Outdoor denoised amplitude against fil-
tered amplitude, (e) Outdoor original amplitude against filtered amplitude, (f) Out-
door original amplitude against denoised amplitude.

noise while maintaining a low bit error rate (BER) under low signal-to-noise ratio

(SNR) conditions. It requires minimal processing for channel extraction and pre-

serves authentication-relevant channel characteristics, making it computationally ef-

ficient and well-suited for resource-constrained authentication systems. The constant

envelope property of BPSK ensures consistent power transmission, which is essential

for reliable channel characterization across different spatial locations.

Direct Signal-Based CIR vs. Pilot-Based Estimation: We extract CIR di-

rectly from the entire BPSK signal rather than relying on sparse pilot symbols for

several authentication-specific reasons. Pilot-based channel estimation typically uses

only 10 − 20% of the transmission frame, providing limited temporal samples for
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Figure 4.8: Quantitative performance comparison of CIR signal processing methods
in indoor vs. outdoor environments. The top row shows correlation metrics: (a)
denoised vs. filtered signals correlation (Pearson ρ, Spearman ρ, R²), (b) original vs.
denoised signals correlation, and (c) original vs. filtered signals correlation. The bot-
tom row presents error metrics on a logarithmic scale: (d) denoised vs. filtered error
comparison (MAE, RMSE, MSE), (e) original vs. denoised error comparison, and (f)
original vs. filtered error comparison. Indoor environments (blue bars) consistently
demonstrate higher correlation values and lower error metrics than outdoor envi-
ronments (magenta bars), indicating more stable channel conditions. All processing
methods show strong correlation preservation (¿0.8), with filtering approaches achiev-
ing superior noise reduction performance across both environments.

location fingerprinting. In contrast, our approach utilizes the complete BPSK sig-

nal for CIR extraction, generating significantly larger datasets essential for robust

CNN-based authentication models.

The authentication task requires extensive training data to learn subtle location-

specific channel variations that distinguish authorized from unauthorized positions.

Pilot-based approaches yield insufficient data volume for effective deep learning model
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Figure 4.9: Adversarial Domain Adaptation architecture with a shared feature extrac-
tor, class label predictor for source domain classification, and a domain discriminator
optimized via a gradient reversal layer.

Figure 4.10: Schematic map of the locations used for outdoor wireless data collection.

training, particularly for capturing the complex spatial relationships necessary for

reliable location verification. Our BPSK-based approach generates the substantial

datasets shown in Table 4.5, with total volumes exceeding 50GB per experimental

configuration critical for training robust authentication models.

Furthermore, continuous signal-based CIR extraction captures finer temporal vari-

ations in channel characteristics compared to sparse pilot-based estimation. These

detailed temporal signatures provide richer location-specific features that enhance

authentication accuracy and reliability across diverse environmental conditions. The

approach enables comprehensive characterization of multipath, fading, and propaga-

tion effects that serve as unique spatial fingerprints for location-based authentication.

BPSK operation in the time domain enables accurate channel representation while
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Figure 4.11: Schematic layout of the indoor wireless data collection locations.

ensuring the data volume necessary for effective machine learning model development.

4.3.2.1 Indoor Experimental Settings

Our indoor testbed setup comprises aboveground transmitter and receiver pairs

implemented using USRP B200 and B205mini software-defined radios (SDRs). We

select these USRPs for their portability and plug-and-play support, enabling flexi-

ble authentication system deployment. A Lenovo ThinkPad T14 runs GNU Radio

BPSK modulation code with a 6.4MSps sampling rate, 4 samples per symbol, and a

2.45GHz center frequency. We choose 2.45GHz as the operating frequency to prior-

itize bandwidth over range for controlled indoor authentication evaluation.

In the distance-based authentication experiment, we first move the transmitter

USRP while keeping the receiver USRP fixed, evaluating authentication performance

across spatial separations. We transmit signals at 3 ft, 4 ft, 5 ft, and 6 ft, distances

selected to thoroughly evaluate system performance within typical operational ranges

and demonstrate feasibility in near-field indoor scenarios for authentication analysis.

In the second setup, we vary the transmitter USRP at each distance while keeping

the receiver fixed, enabling evaluation of authentication robustness against device

variations at specific locations.
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Figure 4.12: Outdoor experiments using different CNN-based models for authentica-
tion under varying transmitter-receiver pairs. Plots show accuracy versus distance
for: (a) ADA models with ReLU activation and Butterworth filtering in same-receiver,
different-transmitter setting, (b) fine-tuning with ReLU and Butterworth filtering in
the same setting, (c) fine-tuning with Linear activation and no filtering, and (d)
fine-tuning with ReLU activation and no filtering, all for same-receiver, different-
transmitter settings.

In the device-based authentication experiment, we fix the transmitter-receiver

USRP separation at 5 ft to evaluate authentication performance across different hard-

ware configurations. We maintain the same receiver and vary the transmitter among

six USRP devices, collecting CIR data for each authentication scenario. This setup

evaluates the system’s ability to authenticate different transmitters from the same
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Figure 4.13: Outdoor experiments using different CNN-based models for authentica-
tion under varying transmitter-receiver pairs. Plots show accuracy versus distance
for: (a) ADA with ReLU activation and Butterworth filtering for same receiver and
same transmitter setting, (b) fine-tuning with ReLU activation and Butterworth fil-
tering for same receiver and same transmitter setting, (c) fine-tuning with Linear
activation and no filtering, and (d) fine-tuning with ReLU activation and no filtering,
all under the same-receiver, same-transmitter setting.

location while maintaining receiver consistency.

We store distinct transmitter and receiver signals in binary files for each authen-

tication experiment. These files serve as input for the preprocessing phase, where we

compute CIR data essential for location-based authentication decisions. This exper-

iment validates OTA authentication performance across three indoor locations with
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varying environmental characteristics.

4.3.2.2 Outdoor Experimental Settings

The outdoor environment introduces additional noise and multipath effects, pro-

viding a challenging testbed for evaluating authentication robustness. In the outdoor

authentication experiments, we replicate the setup used in indoor settings to enable

comparative authentication performance analysis. We conduct data collection across

three distinct outdoor locations, each representing different environmental conditions

that affect authentication reliability.

At each location, we move the transmitter USRP while keeping the receiver USRP

stationary, transmitting authentication signals at 3 ft, 4 ft, 5 ft, and 6 ft. These dis-

tances are selected to assess system performance within representative short-range

outdoor operational environments. We record the received signals in separate binary

files corresponding to each distance, enabling comprehensive authentication perfor-

mance analysis across spatial variations. This setup evaluates the authentication

system’s ability to maintain location verification accuracy despite environmental in-

terference.

In the second phase of the experiment, we keep the receiver USRP device station-

ary and vary the transmitter USRP at each distance. This configuration allows us

to evaluate authentication robustness against both spatial and hardware variations,

simulating real-world deployment scenarios where different devices operate from au-

thorized locations.

For the device-based authentication evaluation, we fix the transmitter-receiver sep-

aration at 5 ft and vary both the transmitter and receiver across six distinct USRP

units. This comprehensive evaluation ensures that the authentication system reliably

verifies location-based trust regardless of specific hardware configurations, demon-
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Table 4.5: Dataset Sizes Before and After CIR Processing

Setting Condition Before CIR (GB) After CIR (GB)

Indoor Devices
Same RX, Diff TX 27.9 13.9

Diff RX, Diff TX 28.1 14.0

Indoor Distances
Same RX, Same TX 18.7 9.3

Same RX, Diff TX 18.7 9.3

Outdoor Devices
Same RX, Diff TX 28.2 14.1

Diff RX, Diff TX 28.0 14.0

Outdoor Distances
Same RX, Same TX 18.7 9.3

Same RX, Diff TX 18.7 9.3

strating practical deployment feasibility.

4.3.3 Dataset Size Summary

We comprehensively summarize the dataset sizes collected across different envi-

ronmental settings and experimental conditions:

4.3.3.1 Indoor Device-Based Dataset

The total data volume is approximately 56GB, comprising same receiver–different

transmitter (27.9GB before CIR processing; 13.9GB after) and different receiver–different

transmitter (28.1GB before CIR processing; 14GB after).

4.3.3.2 Indoor Distance-Based Dataset

We collected 37.4GB of raw data, consisting of same receiver–different transmitter

(18.7GB before CIR processing; 9.3GB after) and same receiver–same transmitter

(18.7GB before CIR processing; 9.3GB after).

4.3.3.3 Outdoor Device-Based Dataset

The dataset amounts to approximately 56.2GB, including different receiver–different

transmitter (28GB before CIR processing; 14GB after) and same receiver–different
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Condition
Diff. Rx – Diff. Tx Same Rx – Diff. Tx

ResNet-18 ResNet-34 ResNet-50 InLab ResNet-18 ResNet-34 ResNet-50 InLab

ADA-Butter-ReLU 77.4 ± 8.8 92.4 ± 9.3 47.4 ± 12.0 86.6 ± 4.8 71.9 ± 8.3 76.6 ± 13.3 45.1 ± 11.7 84.5 ± 9.7

Fine-ReLU 53.9 ± 4.3 73.9 ± 1.6 74.8 ± 2.6 79.1 ± 3.6 64.2 ± 2.9 33.3 ± 0.1 74.3 ± 2.3 75.7 ± 1.5

Fine-Linear 71.1 ± 5.6 70.0 ± 4.8 76.1 ± 1.9 55.5 ± 2.2 67.4 ± 1.1 66.5 ± 0.5 70.9 ± 1.8 87.8 ± 3.0

Fine-Butter-ReLU 74.3 ± 6.0 74.0 ± 13.1 86.3 ± 1.3 58.9 ± 7.1 66.4 ± 0.4 68.2 ± 2.8 74.6 ± 2.9 67.7 ± 1.4

Table 4.6: Mean ± standard deviation of classification accuracy (%) for each CNN
model and condition in both “Different Rx – Different Tx” and “Same Rx – Different
Tx” settings in the devices’ outdoor experiments.

Condition
Same Rx – Same Tx Same Rx – Diff. Tx

ResNet-18 ResNet-34 ResNet-50 InLab ResNet-18 ResNet-34 ResNet-50 InLab

ADA-Butter-ReLU 72.5 ± 4.2 73.1 ± 13.7 73.8± 13.2 56.6 ± 9.5 65.6 ± 1.0 88.1 ± 6.5 45.4 ± 7.4 77.9 ± 18.1

Fine-ReLU 75.4 ± 10.2 33.3 ± 0.1 83.9 ± 0.3 82.3 ± 0.7 56.4 ± 3.8 46.1 ± 4.8 78.1 ± 1.7 49.0 ± 0.9

Fine-Linear 73.9 ± 2.7 66.7 ± 0.2 84.4 ± 1.1 73.8 ± 10.2 70.4 ± 2.5 56.2 ± 8.0 76.1 ± 4.0 71.0 ± 0.7

Fine-Butter-ReLU 82.5 ± 1.4 90.3 ± 1.7 91.1 ± 1.3 82.6 ± 0.8 76.4 ± 5.7 69.4 ± 4.9 72.8 ± 3.6 55.4 ± 14.8

Table 4.7: Mean ± standard deviation of classification accuracy (%) for each CNN
model and condition in both “Same Rx – Same Tx” and “Same Rx – Different Tx”
outdoor distances’ experiments.

transmitter (28.2GB before CIR processing; 14.1GB after).

4.3.3.4 Outdoor Distance-Based Dataset

We collected 37.4GB of raw data, consisting of same receiver–different transmitter

(18.7GB before CIR processing; 9.3GB after) and same receiver–same transmitter

(18.7GB before CIR processing; 9.3GB after).

4.3.4 Model Training

We train several CNN models, including ResNet-18, ResNet-34, ResNet-50, and

In-lab architectures, to provide location-based authentication decisions utilizing CIR

data. The training focuses on reducing loss and improving location authentication ac-

curacy, enabling the models to efficiently learn spatial and temporal features relevant

to reliable location verification and trust establishment.
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4.3.4.1 Model Loss and Accuracy Over Time

During training, we monitor loss and authentication accuracy curves to assess the

model’s convergence and stability for location verification tasks. While authentication

accuracy describes the model’s ability to correctly verify location-based trust across

spatial areas, the loss function measures the difference between predicted and true lo-

cation labels. Over several epochs, we assess these measures to find the early stopping

point that balances generalization with training efficiency for robust authentication

performance.

4.3.4.2 Hardware Specifications, and Computational Requirements

We employ a high-performance computing system with an NVIDIA RTX A6000

GPU, 48GB GPU memory, and third-generation tensor cores TF32, significantly ac-

celerating the authentication model training process and providing up to 5X training

throughput. The system runs on CUDA version 12.4 and executes authentication

experiments using the TensorFlow framework with the Keras API. We train each au-

thentication model for a fixed number of epochs, with the duration depending on the

model architecture and dataset size. This hardware configuration was particularly

critical for deeper CNN authentication models, significantly reducing training time

and increasing convergence rates for reliable location verification systems.

All authentication experiments are conducted on a Dell Precision 7920 Tower Desk-

top, configured with 384GB RAM, 4.1 TB disk capacity, and an Intel Xeon Gold 625

CPU @ 3.90GHz (32 cores), running Ubuntu 22.04. This configuration ensures repro-

ducible authentication evaluation results and supports the computational demands

of comprehensive location verification analysis.
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4.3.4.3 Hyperparameter Settings for Authentication Models

We configure the CNN authentication models with the following hyperparameters

to ensure optimal convergence and generalization for location verification tasks. We

use a batch size of 64, a learning rate of 1 × 10−4 with a cosine decay schedule,

and train the models for 100 epochs. We employ the Adam optimizer with default

β1 = 0.9 and β2 = 0.999 and use categorical cross-entropy as the loss function for

location authentication decisions.

Weight initialization follows the He-normal distribution, and ReLU activations

are applied after each convolutional layer to enable robust feature extraction for

authentication. We set trace length L and stride w to 288, and we train on 80% and

validate on 20% of our authentication dataset, ensuring robust model evaluation for

location verification performance.

4.3.5 Model Evaluation

We evaluate the optimized authentication models using various performance in-

dicators, including authentication accuracy and classification reports across different

threat scenarios. The best-performing models demonstrate high authentication re-

liability across diverse transmitter and receiver configurations at different locations,

confirming the effectiveness of our Butterworth filtering and data preprocessing meth-

ods for location-based trust establishment.

By analyzing training patterns and tuning hyperparameters, we ensure that the

CNN models effectively capture the spatial and temporal attributes of the CIR data

that are essential for accurate and reliable location-based authentication. This com-

prehensive evaluation demonstrates the practical feasibility of our authentication ap-

proach across a wide range of deployment scenarios and environmental conditions.
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Condition
Diff. Rx – Diff. Tx Same Rx – Diff. Tx

ResNet-18 ResNet-34 ResNet-50 InLab ResNet-18 ResNet-34 ResNet-50 InLab

ADA-Butter-ReLU 63.9 ± 9.0 84.5 ± 12.9 56.1 ± 14.2 86.7 ± 11.5 83.3 ± 13.4 80.2 ± 2.0 57.0 ± 5.2 84.9 ± 4.7

Fine-ReLU 66.6 ± 0.2 66.6 ± 0.2 75.5 ± 10.9 66.6 ± 0.2 67.3 ± 9.4 69.3 ± 7.1 75.5 ± 2.0 76.3 ± 2.4

Fine-Linear 66.8 ± 0.1 66.7 ± 0.2 73.4 ± 13.3 66.7 ± 0.2 73.7 ± 4.6 71.5 ± 4.0 78.1 ± 4.2 75.1 ± 1.4

Fine-Butter-ReLU 66.7 ± 0.2 66.5 ± 0.3 80.0 ± 16.3 66.7 ± 0.2 89.3 ± 6.5 88.8 ± 7.2 91.6 ± 4.0 94.1 ± 1.1

Table 4.8: Mean ± standard deviation of classification accuracy (%) for each CNN
model and condition in both “Different Rx – Different Tx” and “Same Rx – Different
Tx” scenarios in the devices’ indoor experiments.

4.4 Performance Evaluation and Results
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Figure 4.14: Bar chart showing classification accuracy (%) for each CNN model and
condition in both “Different Rx – Different Tx” and “Same Rx – Different Tx” settings
from the outdoor device experiments.

Condition
Same Rx – Same Tx Same Rx – Diff. Tx

ResNet-18 ResNet-34 ResNet-50 InLab ResNet-18 ResNet-34 ResNet-50 InLab

ADA-Butter-ReLU 59.8 ± 21.1 80.0 ± 8.1 55.4 ± 11.9 77.2 ± 12.5 93.1 ± 3.8 60.0 ± 11.0 66.2 ± 16.1 60.1 ± 4.8

Fine-ReLU 65.4 ± 3.7 53.7 ± 8.8 72.3 ± 0.6 58.1 ± 4.9 61.6 ± 4.6 50.5 ± 5.8 77.1 ± 0.9 49.6 ± 5.3

Fine-Linear 94.6 ± 0.6 33.2 ± 0.1 66.3 ± 4.5 55.6 ± 0.5 43.9 ± 3.4 54.9 ± 2.5 64.1 ± 6.4 52.8 ± 2.6

Fine-Butter-ReLU 81.5 ± 2.0 57.0 ± 7.8 93.1 ± 1.6 38.0 ± 6.6 92.9 ± 0.4 58.7 ± 8.4 43.7 ± 6.7 63.0 ± 2.7

Table 4.9: Mean ± standard deviation of classification accuracy (%) for each CNN
model and condition in both “Same Rx – Same Tx” and “Same Rx – Different Tx”
settings in the indoor distance experiments.
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Figure 4.15: Bar chart showing classification accuracy (%) for each CNN model and
condition in both “Same Rx – Same Tx” and “Same Rx – Different Tx” settings from
the outdoor distance-based experiments.

4.4.1 Evaluation Metrics

4.4.1.1 Location Ranking for Authentication Performance Evaluation

We present location ranking as an additional metric to accuracy to assess the

efficiency of location-based authentication. Authentication accuracy measures the

percentage of correctly verified CIR traces; it does not show how well the authentica-

tion system ranks the correct location among all authorized candidates. On the other

hand, location rank reflects the true location in the arranged list of prediction scores

over several CIR traces, providing insight into authentication confidence levels.

For a collection of CIR traces associated with a transmitter at a fixed authorized lo-

cation, the authentication system generates score vectors for each trace: (si,1, ..., si,|L|),

where |L| is the total number of authorized locations and si,j is the predicted confi-

dence for location ℓj on the i-th trace. These scores are aggregated across n′ traces
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Figure 4.16: Outdoor experiments using different CNN-based models for authenti-
cation under varying transmitter–receiver pairs. Plots show accuracy versus trans-
mitters for: (a) ADA models with ReLU activation and Butterworth filtering in
different-receiver, different-transmitter settings, (b) fine-tuning with ReLU activa-
tion and Butterworth filtering, (c) fine-tuning with Linear activation and no filtering,
and (d) fine-tuning with ReLU activation and no filtering, all in different-receiver,
different-transmitter settings.

given as

sk =
n′∑
i=1

si,k, for 1 ≤ k ≤ |L|, (4.22)

The aggregated score vector is then arranged in decreasing order. The true location’s
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Figure 4.17: Outdoor experiments using different CNN-based models for authenti-
cation under varying transmitter–receiver pairs. Plots show accuracy versus trans-
mitters for: (a) ADA models with ReLU activation and Butterworth filtering for the
same receiver and different transmitter setting, (b) fine-tuning with ReLU activation
and Butterworth filtering, (c) fine-tuning with Linear activation and no filtering, and
(d) fine-tuning with ReLU activation and no filtering, all under the same receiver and
different transmitter setting.

authentication rank is defined as its index in the sorted score list. A rank of 1 indicates

that the authentication system identifies the correct authorized location as the top

match based on cumulative evidence from multiple traces.

We find the average location rank to evaluate authentication performance over all
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Figure 4.18: Indoor experiments using different CNN-based models for authentication
under varying transmitter–receiver pairs. Plots show accuracy against transmitters
for: (a) ADA with ReLU activation and Butterworth filtering, (b) Fine-tuning with
ReLU activation and Butterworth filtering, (c) Fine-tuning with Linear activation
and no filtering, (d) Fine-tuning with ReLU activation and no filtering — all for
different receiver and different transmitter settings.

authorized sites, which is given as

ravg =
1

|L|

|L|∑
j=1

rj, (4.23)

Location rank is especially useful in low-SNR or adversarial scenarios when individ-

ual authentication decisions may be uncertain. While single trace authentication
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Figure 4.19: Indoor experiments using different CNN-based models for authentication
under varying transmitter–receiver pairs. Plots show accuracy versus transmitters
for: (a) ADA models with ReLU activation and Butterworth filtering for the same
receiver and different transmitter setting, (b) fine-tuning with ReLU activation and
Butterworth filtering, (c) fine-tuning with Linear activation and no filtering, and (d)
fine-tuning with ReLU activation and no filtering, all under the same receiver and
different transmitter setting.

accuracy may be limited, a low average location rank (near 1) suggests that the

authentication system frequently ranks the correct authorized location highly. This

allows for accurate location verification using a short sequence of CIR traces.

In our experiments, we observe that location rank converges rapidly. For example,

even with suboptimal per-trace authentication accuracy in the OTA setting, the true
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Figure 4.20: Indoor experiments using different CNN-based models for authentication
under varying transmitter–receiver pairs. Plots show the accuracy against distances
for: (a) ADA with ReLU activation and Butterworth filtering, (b) Fine-tuning with
ReLU activation and Butterworth filtering, (c) Fine-tuning with Linear activation
and no filtering, (d) Fine-tuning with ReLU activation and no filtering — all for the
same receiver and different transmitter setting.

authorized location is often ranked in the top 3 after only a few CIR traces, demon-

strating the utility of location rank as a robust and confidence-aware performance

metric for location authentication systems.
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Figure 4.21: Indoor experiments using different CNN-based models for authentication
under varying transmitter–receiver pairs. Plots show accuracy versus distances for:
(a) ADA with ReLU activation and Butterworth filtering for same receiver and same
transmitter setting, (b) fine-tuning with ReLU activation and Butterworth filtering,
(c) fine-tuning with Linear activation and no filtering, and (d) fine-tuning with ReLU
activation and no filtering, all in same receiver and same transmitter settings.

4.4.1.2 Accuracy

Given a training dataset Dtrain = {(x(1), ℓ(1)), . . . , (x(N), ℓ(N))}, where each input

trace x(i) ∈ X is labeled with a ground truth authorized location ℓ(i) ∈ L, we train an

authentication model F to map CIR traces to their corresponding authorized location

zones.
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Figure 4.22: Bar chart showing classification accuracy (%) for each CNN model and
condition in both “Different Rx – Different Tx” and “Same Rx – Different Tx” settings
in the devices’ indoor experiments.
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Figure 4.23: Bar chart showing classification accuracy (%) for each CNN model and
condition in both “Same Rx – Same Tx” and “Same Rx – Different Tx” settings in
the indoor distance experiments.

During the authentication evaluation phase, our system is tested on a separate

dataset Dtest = {(x′(1), ℓ′(1)), . . . , (x′(N ′), ℓ′(N
′))}. For each test trace x′(i), our authen-

tication system produces a confidence vector πi = (πi,1, . . . , πi,|L|), where πi,j is the

predicted confidence score for authorized location ℓj.

Our authentication decision is correct if the highest-scoring label matches the true
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authorized location. For instance, ℓ′(i) = ℓj where πi,j = maxk πi,k. Let m
′ denote the

number of correctly authenticated test traces among the N ′ total traces. Then, the

authentication accuracy is computed as

Authentication Accuracy =
m′

N ′

As a baseline, we set the random guess probability to 1
M

= 1
3
≈ 0.33, since we have

M = 3 distinct authorized location zones. This benchmark provides a lower bound

for authentication system performance under uniform random prediction.

4.4.2 Outdoor Experimental Results

We evaluate the authentication performance of the CNN models introduced in Sec-

tion 4.1 using datasets collected in outdoor settings. We conduct two main types of

authentication evaluations: device-based and distance-based experiments. In device-

based authentication experiments, we evaluate scenarios involving transmitter and

receiver USRP device variations. Specifically, we investigate (1) authentication sce-

narios where both transmitter and receiver devices differ and (2) authentication sce-

narios with a constant receiver and varying transmitters while maintaining a fixed

separation of 5ft. For distance-based authentication experiments, we evaluate scenar-

ios involving non-changing transmitter and receiver devices and scenarios where only

transmitters vary across different distances.

4.4.2.1 Device-Based Evaluation

In a different receiver-different transmitter authentication scenario (Fig. 4.14(a),

Fig. 4.16(a), and Table 4.6), ADA significantly improves authentication accuracy be-

yond random guess levels, especially for ResNet-18, ResNet-34, and the in-lab model
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using Butterworth filtering and ReLU activation. ResNet-34 particularly obtains

the best authentication performance (92.4% ± 9.3%), highlighting ADA’s power in

controlling significant domain shifts by promoting domain-invariant learning for ro-

bust location authentication. Deeper models like ResNet-50, however, show modest

authentication gains from ADA with performance drops up to 47.4%±12.0%, presum-

ably due to memorization of domain-specific characteristics and limited dataset size,

suggesting that increasing the training data may enhance authentication performance

through improved generalization across spatial variation of the CIR data.

Fine-tuned networks using Butterworth filtering and ReLU activation as shown

in Fig. 4.16(b) and Fig. 4.14(b) consistently outperform other variants for location

authentication, affirming the joint significance of applying filtering and nonlinear ac-

tivations. These fine-tuned models show better spatial and temporal stability than

ADA models for authentication tasks. Linear activation models without filtering in

Fig. 4.14(b) and Fig. 4.16(c,d) also perform reliably for authentication, underscor-

ing fine-tuning’s capability to identify and leverage dominant, generalizable signal

patterns essential for robust location verification.

In the same receiver-different transmitter authentication scenario as shown in

Fig. 4.14(a) and Fig. 4.17(a), lighter models such as ResNet-18 and ResNet-34 out-

perform deeper models like ResNet-50 under ADA, with ResNet-34 achieving 76.6%±

13.3% authentication accuracy, benefiting from regularization effects. However, fine-

tuned models generally surpass ADA models for authentication tasks, with notable

accuracy improvements. Particularly, fine-tuning combined with Butterworth filtering

remains the most effective for location authentication, consistently delivering stable

accuracy and resilience against minimal domain shifts as shown in Fig. 4.17(b,c,d).

Fine-tune linear excels in the in-lab authentication scenarios with accuracy up to

87.8% ± 3.0%, underscoring the scenario-dependent effectiveness of linear activation
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for location verification, while fine-tune ReLU performs poorly for ResNet-34 with

authentication accuracy of 33.3% ± 0.1%, illustrating potential model overfitting or

inability to generalize well for authentication under that setting.

4.4.2.2 Distance-Based Evaluation

The results of the distance-based authentication evaluation are summarized in

Fig. 4.15, Fig. 4.12, Fig. 4.13, and Table 4.7. In authentication scenarios involving

the same receiver with different transmitters, shown in Fig. 4.15, ADA models exhibit

robust and consistent authentication performance across spatial separations, partic-

ularly with shallower networks like ResNet-18 and ResNet-34, reaffirming ADA’s do-

main invariant learning strength for location authentication. However, authentication

performance significantly varied with ADA models in same receiver-different trans-

mitter settings; for instance, the In-lab model achieves authentication accuracy of

77.9% ± 18.1%, reflecting sensitivity to location variations in authentication scenar-

ios.

Fine-tuned models with Butterworth filtering and ReLU activation, shown in

Fig. 4.15, achieve good authentication accuracy and consistency with ResNet-18

reaching up to 76.4%±5.7%, confirming the substantial benefits of frequency-domain

smoothing and nonlinear feature extraction for robust location authentication.

Conversely, models trained with ReLU activation and no filtering show moderate

authentication accuracy, indicating their limited ability to capture meaningful spatial

features for location verification compared to filtered approaches, reinforcing that

filtering contributes more significantly to spatial discrimination for authentication

than activation choice alone. Our baseline in-lab model, despite performing very well

sometimes, can be unstable for authentication tasks, which emphasizes the benefit of

ResNet residual learning capability with skip connections to mitigate the vanishing
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gradient effect and enable better gradient flow and stable feature extraction for reliable

authentication, even in deeper signal hierarchies.

In the same receiver-same transmitter authentication scenario, ADA preserves

competitive authentication accuracy, though the gains are smaller due to reduced

domain shifts. Fine-tuned models retain superior authentication performance across

all configurations, with ReLU activation and Butterworth filtering producing the most

consistent authentication accuracy, underscoring the importance of filtering and fine-

tuning for reliable location verification.

Butterworth filtering greatly increases authentication model stability and robust-

ness over different spatial configurations from the outdoor experiments for both dis-

tance and device scenarios. Fine-tuning paired with Butterworth filter and ReLU

activation usually produces the most robust and reliable authentication performance

across experiments. Larger ResNet models, such as ResNet-50, tend to underperform

in some authentication scenarios, likely due to insufficient training data. ADA models

show authentication advantages mostly in settings with notable domain shifts, but

their effectiveness diminishes in stable authentication conditions.

4.4.2.3 Outdoor Denoised Experimental Results

Distance-Based Evaluation The denoised outdoor distance-based results signifi-

cantly improve model stability and performance consistency. As shown in Table 4.10,

Figure 4.26, Figure 4.24, and Figure 4.25, the denoised preprocessing effectively en-

hances authentication reliability across spatial variations.

In the same receiver-same transmitter configuration, finetune ReLU achieves ex-

ceptional performance with ResNet-50 reaching 89.8% ± 2.6% accuracy, representing

a substantial improvement over ADA and fine-tuned linear results. The denoising
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process particularly benefits deeper architectures, with ResNet-50 consistently out-

performing shallower networks. ADA-ReLU shows robust performance with ResNet-

18, achieving 79.8% ± 11.9% accuracy, demonstrating the effectiveness of domain

adaptation when combined with denoising techniques.

The denoised results show more balanced performance across architectures for the

same receiver—different transmitter settings. Fine-ReLU maintains strong authenti-

cation accuracy with the in-lab model reaching 81.5% ± 4.4%, while Fine-Linear

demonstrates consistent performance across ResNet architectures with ResNet-50

achieving 75.8% ± 1.9% accuracy. The reduced variance in denoised results indi-

cates improved model stability and enhanced generalization capabilities for location

authentication.

Device-Based Evaluation The outdoor device-based denoised results, presented

in Table 4.11, Figure 4.29, Figure 4.27, and Figure 4.28, show significant performance

improvements across transmitters. In different receiver-different transmitter scenar-

ios, Fine-Linear with ResNet-50 achieves 84.5% ± 1.2% accuracy, demonstrating the

robust combination of denoising and linear activation for authentication tasks. ADA-

ReLU shows competitive performance with the in-lab model reaching 84.9% ± 11.1%,

highlighting the effectiveness of domain adaptation in challenging device variation

scenarios.

For the same receiver—different transmitter configurations, Fine-ReLU demon-

strates exceptional performance with the in-lab model achieving 84.6% ± 6.2% ac-

curacy and ResNet-50 reaching 81.5% ± 2.1%. The denoising process significantly

reduces the impact of hardware-induced variations, enabling more reliable location-

based authentication across different transmitter devices while maintaining receiver

consistency.
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Figure 4.24: Outdoor distance-based denoised results for CNN-based authentication
models showing accuracy versus distance. Plots compare different model configu-
rations: (a) ADA Vanilla with Linear activation, same RX–different TX, (b) ADA
Vanilla with ReLU activation, same RX–different TX, (c) Fine-tuned Vanilla with
Linear activation, same RX–different TX, (d) Fine-tuned Vanilla with ReLU activa-
tion, same RX–different TX.

4.4.3 Indoor Experimental Results

4.4.3.1 Device-Based Evaluation

We summarized the indoor device-based authentication results in Fig. 4.22, Fig. 4.18,

Fig. 4.19, and Table 4.8. In the Different RX-Different TX authentication scenario,

ADA models benefit most from domain adaptation when retaining Butterworth fil-
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Figure 4.25: Outdoor distance-based denoised results for CNN-based authentication
models showing accuracy versus distance. Plots compare different model configura-
tions: (a) ADA Vanilla with Linear activation, same RX–same TX, (b) ADA Vanilla
with ReLU activation, same RX–same TX, (c) Fine-tuned Vanilla with Linear ac-
tivation, same RX–same TX, (d) Fine-tuned Vanilla with ReLU activation, same
RX–same TX. All results reflect denoised performance in outdoor experimental con-
ditions with varying transmitter–receiver pair configurations.

tering and ReLU activation, with ResNet-34 reaching 84.5%± 12.9% authentication

accuracy and the lightweight in-lab architecture peaking at 86.7% ± 11.5%. Fine-

tune-ReLU and Fine-tune-Linear without filtering hover around the mid 60% range

for authentication accuracy on ResNet-18/34 and improve only when depth increases

in ResNet-50, which ranges from 73–76% authentication performance. Adding Butter-
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Condition
Same Rx – Same Tx Same Rx – Diff. Tx

ResNet-18 ResNet-34 ResNet-50 InLab ResNet-18 ResNet-34 ResNet-50 InLab

ADA-Linear 65.6 ± 11.6 61.4 ± 6.5 75.7 ± 10.8 57.5 ± 9.4 62.8 ± 4.7 76.0 ± 3.9 74.0 ± 4.4 60.3 ± 11.3

ADA-ReLU 79.8 ± 11.9 74.7 ± 5.9 49.5 ± 8.5 72.7 ± 14.2 67.5 ± 0.8 75.6 ± 14.0 45.8 ± 12.1 73.4 ± 17.3

Fine-Linear 66.0 ± 0.4 66.5 ± 0.0 71.5 ± 3.4 54.3 ± 3.0 50.9 ± 2.6 60.6 ± 3.9 75.8 ± 1.9 59.5 ± 1.4

Fine-ReLU 60.2 ± 0.2 55.8 ± 1.9 89.8 ± 2.6 81.7 ± 7.4 49.3 ± 0.9 58.1 ± 3.9 72.3 ± 1.3 81.5 ± 4.4

Table 4.10: Mean ± standard deviation of classification accuracy (%) for each CNN
model and condition in both ”Same Rx – Same Tx” and ”Same Rx – Different Tx”
scenarios in the outdoor distance experiments on denoised CIR.
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Figure 4.26: Bar chart showing classification accuracy (%) for each CNN model and
condition in both “Same Rx – Same Tx” and “Same Rx – Different Tx” settings in
the distances’ outdoor experiments using denoised CIR data.

Condition
Diff. Rx – Diff. Tx Same Rx – Diff. Tx

ResNet-18 ResNet-34 ResNet-50 InLab ResNet-18 ResNet-34 ResNet-50 InLab

ADA-Linear 78.2 ± 7.5 54.6 ± 9.2 76.2 ± 9.4 50.8 ± 8.0 75.4 ± 14.1 45.3 ± 4.6 64.6 ± 7.8 44.7 ± 4.7

ADA-ReLU 78.4 ± 7.1 81.5 ± 14.5 50.9 ± 8.8 84.9 ± 11.1 72.1 ± 18.8 77.2 ± 10.8 59.1 ± 8.4 68.6 ± 13.3

Fine-Linear 64.5 ± 4.1 69.9 ± 6.7 84.5 ± 1.2 61.9 ± 3.5 77.8 ± 5.5 66.7 ± 0.2 83.3 ± 1.4 79.4 ± 12.4

Fine-ReLU 74.4 ± 10.2 38.0 ± 9.2 68.9 ± 2.2 48.0 ± 2.5 67.0 ± 0.9 62.6 ± 1.8 81.5 ± 2.1 84.6 ± 6.2

Table 4.11: Mean ± standard deviation of classification accuracy (%) for each CNN
model and condition in both “Different Rx – Different Tx” and “Same Rx – Different
Tx” scenarios in the outdoor device experiments on denoised CIR.

worth filtering at fine-tune time narrows the authentication performance gap, letting

ResNet-50 break 80% authentication accuracy (80.0% ± 16.3%), but depth-shallow

variants remain capped near the low-70s for authentication tasks. Overall, adapta-

tion plus filtering is essential for robust authentication when both transmitter and
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Figure 4.27: Outdoor device-based denoised results for CNN-based authentication
models. Plots compare different model configurations: (a) ADA Vanilla with Lin-
ear activation, different RX–different TX, (b) ADA Vanilla with ReLU activation,
different RX–different TX, (c) Fine-tuned Vanilla with Linear activation, different
RX–different TX, (d) Fine-tuned Vanilla with ReLU activation, different RX–different
TX.

receiver positions vary; depth alone cannot compensate for channel-transfer mismatch

in authentication scenarios.

In the same RX-Different TX authentication setting, fine-tuned networks com-

bining Butterworth filtering and ReLU activation dominate authentication perfor-

mance. ResNet-50 achieves 91.6%±4.0% authentication accuracy, ResNet-34 reaches

88.8% ± 7.2%, and the in-lab model attains the overall best authentication perfor-
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Figure 4.28: Outdoor device-based denoised results for CNN-based authentication
models. Plots compare different model configurations: (a) ADA Vanilla with Lin-
ear activation, same RX–different TX, (b) ADA Vanilla with ReLU activation, same
RX–different TX, (c) Fine-tuned Vanilla with Linear activation, same RX–different
TX, (d) Fine-tuned Vanilla with ReLU activation, same RX–different TX. All re-
sults show denoised performance for outdoor experimental conditions with varying
transmitter–receiver device pair configurations.

mance of 94.1% ± 1.1%. ADA-Butter-ReLU still performs solidly for authentication

(≈ 80−85%) but no longer leads, suggesting that once the receiver is fixed, the heavy

domain adaptation step adds less value than lighter fine-tuning for authentication

tasks. Removing Butterworth filtering (Fine-ReLU) again suppresses authentication

accuracy by 10−20 percentage points, underscoring that frequency domain smoothing
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Figure 4.29: Bar chart showing classification accuracy (%) for each CNN model and
condition in both “Different Rx – Different Tx” and “Same Rx – Different Tx” settings
in the devices’ outdoor experiments.

is the single most reliable ingredient for robust authentication across architectures.

These results reaffirm that the Butterworth filter is the key determinant of authenti-

cation robustness, while the choice between ADA and fine-tuning depends on whether

the receiver location variability affects authentication performance.

4.4.3.2 Distance-Based Evaluation

We summarize the indoor distance-based authentication results in Fig. 4.23, Fig. 4.20,

Fig. 4.21, and Table 4.9. In the same receiver-different transmitter authentication sce-

nario, ADA models with ReLU activation and Butterworth filtering achieve strong

authentication accuracy, with ResNet-18 reaching 93.1% ± 3.8%, indicating robust

adaptation to spatial changes in authentication performance. However, the same

model shows reduced stability in the same receiver-same transmitter authentication

settings, implying limited benefit from domain adaptation when spatial variance is

minimized for authentication tasks.

Fine-tuned models incorporating Butterworth filtering and ReLU activation per-

form competitively across both authentication conditions. For instance, ResNet-50
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attains 93.1%± 1.6% authentication accuracy in the same receiver-same transmitter

setting, validating the effectiveness of frequency smoothing and non-linear activa-

tion for reliable location authentication. Notably, the fine-tuned linear model with

ResNet-18 achieves the highest authentication accuracy of 94.6%± 0.6%, though this

peak authentication performance does not generalize consistently across other archi-

tectures.

Models without Butterworth filtering but using ReLU, such as fine-tune ReLU,

usually underperform for authentication tasks, emphasizing that filtering has more

impact on authentication robustness than activation choice. Although the in-lab

models sometimes show great authentication accuracy up to 77.2%± 12.5%, its vari-

ability across authentication settings confirms that deeper architectures with residual

learning provide better feature consistency for reliable location authentication. These

results demonstrate that Butterworth filtering generates stable and accurate models

for indoor location authentication when combined with fine-tuning and suitable acti-

vation functions.

4.5 Security Analysis

In this section, we first discuss our adversary’s ability to model the CIR using

Friis’ equation and the ray-tracing channel reconstruction method. This is followed by

the robustness analysis of LAOUWN against the adversary presented in Section 4.1,

focusing on the security guarantees for location-based authentication.

4.5.1 Friis’ Empirical Adversary

Our Friis’ empirical adversary is the baseline for evaluating our system’s resilience

against a low-resource adversary attempting to bypass location authentication with



112

minimal or no knowledge of multipath presence in a communication setting. It sets

the lower bound of adversarial effectiveness against our authentication system, il-

lustrating the optimistic scenario that neglects realistic environmental complexities.

This adversary attempts to forge channel characteristics to spoof authorized locations

based solely on distance estimation.

Let us denote the transmitter complex baseband signal as X and the received com-

plex baseband signal as Y . In a legitimate authentication scenario, the relationship

is:

Y = hRX-TX ·X + w (4.24)

Where hRX-TX represents the actual channel between the legitimate authorized trans-

mitter (TX) and the receiver (RX), and w represents the additive noise.

The Friis-based authentication adversary attempts to impersonate the legitimate

authorized transmitter by estimating the legitimate channel using only the Friis trans-

mission equation. When the adversary transmits to bypass authentication, the system

observes:

Y = hRX-Adv ·XAdv + w (4.25)

Where hRX-Adv denotes the actual channel between the adversary and the receiver,

and XAdv is the adversary’s transmitted signal attempting to spoof authentication.

Unlike the more sophisticated ray-tracing enhanced adversary, the Friis-based au-

thentication adversary does not attempt to compensate for its own channel. Instead,

it simply applies a Friis-based channel estimate for its transmission, hoping that the

received signal will approximate the legitimate transmission and bypass authentica-

tion:

hRX-Adv ·XAdv ≈ hRX-TX ·X (4.26)
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To achieve authentication bypass, the adversary sets:

XAdv = hFriis(dTX-RX) ·X (4.27)

Where X represents a legitimate message, and hFriis(dTX-RX) is the Friis-based esti-

mate of the legitimate channel based solely on distance.

The Friis-based authentication adversary uses the free-space path loss model to

approximate the legitimate channel given as:

hFriis(d) =
√

GtGr ·
λ

4πd
· e−j 2πd

λ (4.28)

Where Gt and Gr are the transmitter and receiver gains, λ is the wavelength, and d

is the distance. The first part of equation
√
GtGr · λ

4πd
models the attenuation of the

amplitude, while the exponential term e−j 2πd
λ accounts for the phase change due to

the delay of propagation.

In practice, the authentication adversary faces significant challenges in accurately

measuring distance dTX-RX. Although technologies such as GPS can provide loca-

tion estimates, they typically have error margins of several meters, which introduces

substantial phase errors at GHz frequencies that compromise authentication spoof-

ing attempts. Underground settings further complicate authentication attacks with

variable signal propagation speeds through different soil compositions.

Beyond the channel mismatch issue, the Friis model itself represents a simplistic

single-tap channel response given by

hFriis(t) = α · δ(t− τ0) (4.29)

Where α =
√
GtGr · λ

4πd
is the complex amplitude derived from the Friis equation,
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δ(t) is the Dirac delta function, and τ0 =
d
c
is the propagation delay with c being the

speed of light.

The Friis-based adversary’s minimal knowledge approach is ineffective against our

LAOUWN authentication framework. Some of these authentication security limita-

tions are discussed below.

4.5.1.1 Ignores Adversary’s Channel in Authentication Bypass

By failing to account for hRX-Adv, the adversary introduces a systematic error

in the characteristics of the received signal that compromises authentication spoofing

attempts. The channel mismatch happens because the minimal knowledge Friis-based

adversary ignores its own channel hRX-Adv. The actual received signal will be

Y = hRX-Adv · hFriis(dTX-RX) ·X + w (4.30)

Equation (4.30) is obtained by substituting (4.27) into (4.25). For successful au-

thentication bypass, we need hRX-Adv ·hFriis(dTX-RX) ≈ hRX-TX, which is highly unlikely

given the complex nature of wireless channels, especially in underground environ-

ments. This mismatch provides strong authentication security against Friis-based

spoofing attempts.

4.5.1.2 Single-tap Approximation Limits Authentication Spoofing

The Friis model produces a simplistic channel representation with only a direct

path component, failing to capture the rich multipath structure of actual underground-

to-air channels that our authentication system relies upon. While the legitimate
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authorized channel consists of multiple components given as

hUG(t) =
L−1∑
l=0

αlδ(t− τl) +
D−1∑
d=0

αdδ(t− τd) +
R−1∑
r=0

αrδ(t− τr) (4.31)

Equation (4.31) represents the lateral, direct, and reflected wave components as

described in Section 4.2; the Friis model reduces this to a single component, making

authentication spoofing ineffective.

4.5.1.3 Missing Soil Effects Enhance Authentication Security

The model ignores the crucial impact of soil composition, moisture, and tempera-

ture, which dramatically alter signal propagation in an underground environment and

provide unique authentication signatures. These factors affect amplitude attenuation

and phase velocity, which are not captured in the Friis model but are essential for

our authentication security.

4.5.1.4 No Frequency-selective Fading in Authentication Attacks

Underground channels exhibit significant frequency-selective characteristics that

the Friis model cannot reproduce, limiting authentication spoofing effectiveness. The

model assumes flat fading across all frequencies, which is unrealistic in complex prop-

agation environments and fails to replicate the signatures our authentication system

uses.

4.5.1.5 Inability to Model Narrow Beam Patterns for Authentication

Bypass

Unlike the ray-tracing approach, which models signal propagation as a large num-

ber of very narrow beams reflecting off surfaces and penetrating materials with differ-
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ent properties, the Friis model treats propagation as a signal direct path without any

scattering or reflection, making authentication spoofing attempts easily detectable.

4.5.1.6 Channel Metrics Comparison

The legitimate authorized power delay profile (PDP) is given by

PDPlegitimate(τ) = |hUG(τ)|2 =
∑
i

|αi|2 · δ(τ − τi) (4.32)

And the Friis-based authentication spoofing estimation is given as

PDPFriis(τ) = |hFriis(τ)|2 = |α|2 · δ(τ − τ0) (4.33)

Equation (4.32) shows the sum squared of the magnitude of the CIR for authorized

locations, while Equation (4.33) shows a single tap squared of the magnitude of the

CIR for spoofing attempts. This highlights that the Friis model produces a simplistic

single-spike PDP that cannot bypass our authentication system. It validates why

the Friis-based adversary cannot successfully impersonate a legitimate authorized

location; it simply cannot reproduce the rich multipath structure that characterizes

authentic location signatures.

This fundamental difference leads to dramatic disparities in key channel metrics

such as RMS delay spread given by

τrms,legitimate =

√∑
i Piτ 2i∑
i Pi

−
(∑

i Piτi∑
i Pi

)2

≫ τrms,Friis = 0 (4.34)

Where Pi = |αi|2 represents the power of each multipath component, τrms,legitimate

is the RMS delay of the legitimate authorized location and τrms,Friis is the Friis RMS

delay spread. The RMS delay spread of the Friis model is effectively zero due to
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its single-tap nature, while underground channels exhibit significant delay spread,

which provides strong authentication security guarantees and justifies why a Friis-

based adversary will be unsuccessful in spoofing the location of legitimate authorized

nodes.

These limitations directly translate into robust authentication security guarantees

in our system. Even with perfect knowledge of the distance between the legitimate

transmitter and receiver, this minimal-knowledge approach fails to capture the essen-

tial features LAOUWN leverages for location authentication. Therefore, a Friis-based

adversary cannot successfully replicate the complex channel characteristics essential

to bypass our authentication method in either an OTA or an underground scenario.

Unlike the ray-tracing approach discussed in the next section, which models signal

propagation as many narrow beams reflecting off surfaces and penetrating materials

with different properties, the Friis model treats propagation as a single direct path

without scattering or reflection. Next, we analyze the more sophisticated ray-tracing-

enhanced adversary that attempts to overcome these limitations.

4.5.2 Ray-Tracing Enhanced Adversary

We consider the adversary’s ability to replicate legitimate authorized channel char-

acteristics to bypass authentication. Contrary to Friis’ adversary, in the enhanced

ray-trace adversary, we leverage advanced computational modeling methods via a hy-

brid 3D geometric ray-tracer. These techniques numerically reconstruct the channel

by modeling interactions between transmitted signals and surrounding environments

to create sophisticated authentication bypass attempts. We consider key parame-

ters when simulating our adversary CIR dataset for authentication attacks, which

includes log-distance path loss, multipath reflections, shadow fading, Ricean fading,

delay spread, and diffuse scattering.
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We implement our adversary framework, which is a hybrid 3D ray-tracer that

synthesizes CIR data using a combination of deterministic specular reflections, diffuse

scattering, shadow fading, Ricean K-factor balancing, and delay clusters. Our output

CIR binary files represent a realistic adversarial condition. We simulate CIR data for

LoS and NLoS paths. We include two scenarios for NLoS settings, including occlusion,

like a wall, and shifting the adversary’s position 3 meters from the LoS.

We simulate CIR data for clean, occluded attack settings. For instance, clean LoS

attacks are characterized by a clear, unobstructed, direct path between the simulated

transmitter and receiver; the clean NLoS attack scenario is when the direct path is

obstructed, and the signals primarily propagate via reflections and scattering, sim-

ulated by shifting the adversary’s receiver target position 3m away from the direct

LoS path, and the occluded NLoS attack settings are where we explicitly introduce an

additional obstacle, such as a wall, into the simulation to block dominant paths fur-

ther and test authentication security. We save unique CIR data for various distances,

including 10m, 20m, 30m, and 40m across indoor and outdoor settings, generating

distinct files for clean LoS, clean NLoS, and occluded NLoS attack conditions.

The enhanced ray-tracing adversary embodies a sophisticated attacker capable

of accurately replicating legitimate transmitter signatures for authentication bypass,

representing the most challenging threat to our location authentication system. Ray

tracing offers accurate environmental modeling, calculation of numerous multipath

components, and diffuse scattering at the expense of substantial computational re-

source demand. This adversary has comprehensive knowledge of the environmental

layout and propagation characteristics.
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4.5.3 Adversary Setup Analysis

We conducted experiments comparing the impact of both adversarial types on

our authentication method. We rigorously evaluate our methodology to assess the

robustness of our proposed authentication system against sophisticated attacks. It

encompasses the datasets utilized, the specific model under scrutiny, and the com-

prehensive software framework we developed for this authentication security analysis.

The empirical Friis attacker provides a baseline attack model reflecting minimal ad-

versarial capability. In contrast, the ray-tracing adversary represents a worst-case

attack scenario.

4.5.3.1 Friis’ Empirical Adversary

Our Friis’ empirical adversary serves as the baseline for evaluating our authentica-

tion system’s resilience against a low-resource attacker with minimal or no knowledge

of multipath presence in a communication setting. This adversary attempts to forge

channel characteristics based solely on distance estimation using Friis’ transmission

equation to bypass location authentication. It sets the lower bound of adversarial

effectiveness against our authentication system, representing an optimistic scenario

that neglects realistic environmental complexities. The model assumes a simplistic

single tap channel response, ignoring crucial impacts of soil composition, moisture,

temperature in underground environments, and frequency-selective fading that pro-

vide authentication security. These limitations mean the Friis-based adversary cannot

successfully replicate the complex channel characteristics essential to bypass our au-

thentication method in either an OTA or an underground scenario.
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4.5.3.2 Ray-tracing Enhanced Adversary

For our authentication security evaluation, we leverage both real-world legitimate

data and synthetically generated adversarial CIR data to test our authentication

system under diverse attack conditions. The foundation of our evaluation rests on

two primary datasets. The legitimate authorized dataset consists of CIR data we

collected from real-world wireless transmissions across indoor, outdoor, and under-

ground propagation environments. Our process for capturing and pre-processing au-

thentic channel conditions using software-defined radios was discussed in Section 4.2.

This dataset serves as the ground truth for training our authentication model and

as the baseline for evaluating its performance under non-adversarial conditions. We

organized it in a designated directory, categorized by environment and specific mea-

surement configurations, such as varying transmitter-receiver distances of 4 ft, 5 ft,

and 6 ft for authorized locations.

To stringently test our authentication framework’s resilience, we use our synthet-

ically generated adversarial CIR dataset, primarily via sophisticated hybrid 3D ray-

tracing simulation designed to bypass authentication. We ensured our adversarially

generated CIRs are saved in the same binary format and scaled to match the ampli-

tude range of the real-world legitimate data, ensuring consistency for authentication

attack testing. We simulated adversary transmitters at positions offset from legiti-

mate authorized sites, targeting these locations from various distances from 10m to

40m to test authentication bypass attempts. We stored this synthetic adversarial

data in a separate, structured directory compatible with our authentication evalua-

tion framework.

We engineered a comprehensive Python-based evaluation framework to automate

and standardize the assessment of the authentication model’s performance under var-



121

ious attack conditions. This framework manages data loading, model inference, cal-

culation of authentication performance metrics, generation of additional adversarial

attacks against the authentication system, simulation of channel noise and hardware

impairments, and visualization of authentication security results.

Our authentication security framework establishes a structured output directory

to store all generated results, including diagnostics, detailed analyses, authentication

attack outcomes, and noise study data. We employ initial diagnostic utilities to

inspect the raw binary format of legitimate and adversarial CIR files in the sample,

aiding in data integrity verification for authentication testing. Subsequently, we load

the fine-tuned ResNet18 model for authentication, with provisions for custom objects

such as accuracy metrics for authentication performance. We perform preliminary

validation using purely synthetic data to confirm the operational integrity of the basic

authentication prediction pipeline before proceeding to more complex authentication

security evaluations.

4.6 Adversarial Robustness Evaluation Results

4.6.1 Complete Ray-Tracing Authentication Bypass Failure

The most significant findings from our authentication security evaluation are the

complete failure of the sophisticated ray-tracing enhanced adversary to successfully

bypass location authentication by spoofing legitimate authorized nodes’ locations.

Across all environmental conditions, including indoor, outdoor, and occluded scenar-

ios, the adversarial authentication accuracy remains approximately 0.33, correspond-

ing to random guessing performance for our three-location authentication problem,

irrespective of the distance.

Figure 4.30 (a), (b), (c), and (d) demonstrate the authentication adversarial ro-
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Figure 4.30: Plots of adversarial impact on authentication accuracy across different
environments and conditions. Subfigures show the authentication accuracy of our
location fingerprinting system against enhanced raytrace adversaries at varying dis-
tances and occlusion conditions: (a) indoor clean environment, (b) indoor occluded
environment, (c) outdoor clean environment, and (d) outdoor occluded environment.

bustness results across different environmental conditions, showing remarkable con-

sistency in authentication defense performance. The ray-tracing adversary achieves

no better than random authentication accuracy across all tested scenarios. This indi-

cates that the CNN authentication classifier treats sophisticated adversarial samples

as illegitimate authentication attempts rather than misclassifying them to the wrong

authorized locations.
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4.6.2 Distance-Independent Security Guarantees

The adversarial robustness exhibits exceptional consistency across spatial separa-

tions from 10m to 40m. Even at the closest adversary distance of 10m, where the

attacker theoretically possesses the most accurate channel knowledge and strongest

signal coupling, the authentication bypass success remains at random guessing lev-

els. These distance-independent authentication security characteristics indicate that

unique spatial signatures captured by underground-to-air and OTA propagation can-

not be effectively replicated through sophisticated channel modeling for authentica-

tion spoofing, even with detailed environmental knowledge.

The flat response curves across all adversary distances indicate systematic au-

thentication security properties rather than distance-dependent vulnerabilities. This

provides strong authentication security guarantees for practical deployments where

adversary positioning cannot be controlled entirely, establishing a minimum authen-

tication security perimeter of 10m with complete protection against sophisticated

authentication spoofing attempts.

4.6.3 Environmental Security Consistency

The identical authentication defensive performance across indoor, outdoor, and

occluded scenarios demonstrates that LAOUWN’s authentication security properties

are inherent to underground-to-air channel characteristics rather than dependent on

specific environmental conditions. This consistency provides strong authentication

security guarantees for diverse agricultural deployment scenarios while maintaining

operational flexibility in sensor positioning across different environments for location

authentication.
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4.6.4 Advanced Threat Model Evaluation

Our comprehensive adversarial evaluation assesses the security properties of

LAOUWN against sophisticated attack scenarios that represent a realistic threat to

location-based authentication systems in critical agricultural IoT deployments. We

evaluate three primary categories: mobile adversaries with dynamic positioning ca-

pabilities, coordinated multi-adversary attacks, and hardware trojans representing

insider threats with physical access to system components.

4.6.4.1 Mobile Adversary Attack Analysis

Mobile adversaries represent a significant threat to location authentication systems

due to their ability to dynamically position themselves and adapt their attack strate-

gies based on spatial and temporal factors. Our evaluation implements mathematical

simulations of mobile adversaries that can move along predetermined trajectories

while attempting to spoof legitimate location signatures.

Temporal Consistency Against Mobile Attacks Figure 4.31(a) demonstrates

the temporal consistency of our defense against mobile adversary attacks over a 15-

second evaluation period. The attack accuracy remains consistently at approximately

0.33 throughout the entire duration, representing only marginal improvement over

the random guess baseline of 0.33 for our three-location authentication system. This

temporal stability indicates that mobile adversaries gain no significant advantage

through dynamic positioning or timing based attack strategies.

Spatial Attack Success Patterns The spatial attack success patterns, illustrated

in Figure 4.31(c), reveal uniform resistance across different adversary positions. The

attack success rate varies minimally between 0.30 and 0.36 across the evaluated spatial
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grid, indicating that our authentication system exhibits no exploitable spatial vul-

nerabilities. The consistent performance across diverse positions demonstrates that

location-specific channel signatures cannot be effectively replicated through mathe-

matical position models.

The heatmap visualization shows that regardless of where mobile adversaries posi-

tion themselves within the evaluated area, their attack success rates remain clustered

around the random guess baseline. This spatial uniformity is particularly significant

because it indicates that proximity to legitimate transmitter locations provides no

meaningful advantage for authentication bypass attempts.

Distance-Independent Security Properties Distance-based robustness evalu-

ation, shown in Figure 4.31(b), demonstrates exceptional security properties that

are independent of adversary proximity. The attack success rate remains constant

at approximately 0.33 across distances ranging from 0 to 50 meters. This distance-

independent security characteristic in particularly significant because it indicates that

even adversaries with close proximity and potentially superior signal coupling cannot

achieve meaningful improvements in authentication bypass success rates.

The consistent attack failure across all evaluated distances establishes a funda-

mental security property: LAOUWN’s location authentication does not depend on

maintaining physical separation from potential adversaries. This is crucial for agri-

cultural IoT deployments where adversaries may have physical access to deployment

areas but cannot compromise authentication integrity through positioning strategies

alone.
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4.6.4.2 Coordinated Attack Resistance

Coordinated attacks represent sophisticated threat scenarios where multiple ad-

versaries collaborate to overcome authentication defenses through synchronized op-

erations, temporal coordination, or signal amplification strategies. Our evaluation

implements three distinct coordination strategies to assess the collective threat po-

tential of multiple adversaries operating in concert.

Complete Failure of Coordination Strategies As demonstrated in Fig-

ure 4.31(f), all coordination strategies achieve an identical attack success rate of 0.333,

indicating complete failure to improve upon individual adversary performance. This

represents exactly the random guess baseline for our three-location authentication

system, compared to the legitimate baseline accuracy of 0.92.

Synchronized Attacks: These attacks involve multiple adversaries transmitting

simultaneously to create signal superposition effects, attempting to overwhelm or

confuse the authentication system through coordinated signal interference. Despite

the theoretical potential for signal amplification through constructive interference,

synchronized attacks provide no advantage over single-adversary scenarios, achieving

only random guess performance.

Time-Shifted Average Accuracy Attacks: These sophisticated attacks are

designed to exploit potential temporal vulnerabilities through coordinated transmis-

sion scheduling, where multiple adversaries coordinate their transmissions at different

time intervals to probe for temporal weaknesses in the authentication system. The

identical 0.333 success rate demonstrates that temporal coordination strategies sim-

ilarly fail to enhance attack effectiveness against LAOUWN’s robust authentication

framework.
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Security Architecture Validation The coordinated attack resistance validates

LAOUWN’s defense-in-depth security architecture:

Multi-Adversary Resilience: The system maintains security against external

threats through spatial correlation properties that remain robust even when multi-

ple adversaries collaborate with perfect coordination and unlimited communication

capabilities.

Scalable Security Guarantees: The uniform failure across coordination strate-

gies indicates that increasing the number of coordinated adversaries would not im-

prove attack success rates, providing scalable security guarantees regardless of adver-

sary resources.

Physical Layer Foundation: The results reinforce that LAOUWN’s security

is fundamentally grounded in physical layer properties that cannot be circumvented

through coordination strategies, establishing a theoretical foundation for the inherent

security of underground-to-air location authentication systems.

4.6.4.3 Hardware Trojan Impact Assessment

Hardware trojans represent the most severe threat category in our evaluation, sim-

ulating insider attacks where adversaries have physical access to system components

and can implement malicious modifications at the hardware level. Our evaluation

implements four distinct trojan types that target fundamental signal characteristics

used in RF fingerprinting authentication.

Complete Hardware Trojan Immunity Figure 4.31(d), presents the model ac-

curacy analysis across all hardware Trojan types, demonstrating complete immunity

to hardware-level attacks. All Trojan implementations achieve exactly 0.333 model

accuracy, which corresponds to random guessing performance for our three-location



128

authentication system, compared to the baseline accuracy of 0.92. This represents

a remarkable security property where hardware-level modifications cannot improve

attack success beyond random chance.

The uniform failure across all trojan types indicates that:

Phase Shifter Trojans: These trojans introduce systematic phase corruptions to

exploit timing-based authentication features but fail to compromise system security.

Despite targeting the phase characteristics that are fundamental to CIR-based loca-

tion authentication, these modifications cannot bypass the robust feature learning of

our CNN architecture.

Amplitude Manipulator Trojans: Designed to alter signal magnitude char-

acteristics, these trojans similarly provide no improvement in authentication bypass

capability. The consistent 0.333 accuracy demonstrates that amplitude modifications

at the hardware level cannot replicate the complex spatial signatures required for

location spoofing.

Timing Jammer Trojans: These implement circular shifts to corrupt temporal

signal structure but achieve no impact on system integrity. Even systematic timing

manipulations cannot overcome the sophisticated spatio-temporal feature extraction

of the ResNet-based authentication system.

Noise Injector Trojans: Adding targeted interference based on signal variance

characteristics, these trojans also fail to compromise authentication effectiveness. The

robustness against noise injection demonstrates that the learned location signatures

transcend simple statistical signal properties.

Performance Degradation Analysis Figure 4.31(e), reveals the performance

degradation analysis across all hardware trojan types. All hardware trojan types

show exactly 63.9% performance degradation, which represents the difference be-



129

tween the baseline accuracy (0.92) and the random guess performance (0.333). This

indicates that hardware trojans, rather than improving attack success, actually reduce

the system to random guessing performance across all attack vectors.

This uniform degradation pattern demonstrates:

Algorithmic Tamper Resistance:

The CNN-based feature extraction has learned authentication signatures that are

inherently robust to hardware-level signal corruptions. The learned representations

capture fundamental propagation characteristics that cannot be effectively spoofed

through hardware modifications.

Multi-layered Security Architecture: The residual learning structure of our

ResNet implementation provides multiple pathways for authentication decisions, en-

suring that localized hardware corruptions cannot compromise overall system security.

4.6.5 Security Analysis and Implications

4.6.5.1 Algorithmic Tamper Resistance

The comprehensive failure of all attack categories demonstrates that LAOUWN,

achieves algorithmic tamper resistance, where the authentication algorithm maintains

security properties even with corrupted or maliciously modified inputs. The consis-

tent attack success rates across mobile, coordinated, and hardware Trojan scenarios

indicate that our deep learning approach has identified authentication features that

are inherently robust to our attack strategies.

The CNN architecture’s ability to maintain authentication integrity despite sys-

tematic signal corruptions suggests that the learned feature representations capture

fundamental propagation characteristics that cannot be effectively spoofed through

current attack methodologies. The residual learning structure of our ResNet im-



130

0 2 4 6 8 10 12
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
At

ta
ck

 A
cc

ur
ac

y
Attack Accuracy
Random Guess (0.33)

0 10 20 30 40 50
Distance to Target (m)

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Random Guess (0.33)
Attack Success Rate

0 20 40
X Position (m)

0

1

2

3

4

5

Y 
Po

sit
io

n 
(m

)

0.325

0.330

0.335

0.340

At
ta

ck
 S

uc
ce

ss
 R

at
e

(a) (b) (c)

Phase
Shifter

Amplitude
Manipulator

Timing
Jammer

Noise
Injector

Hardware Trojan Type

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 A

cc
ur

ac
y

0.333 0.333 0.333 0.333

Baseline (0.92)

Phase
Shifter

Amplitude
Manipulator

Timing
Jammer

Noise
Injector

Hardware Trojan Type

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pe

rfo
rm

an
ce

 D
eg

ra
da

tio
n

63.9% 63.9% 63.9% 63.9%

Synchronized Time-Shifted
Attack Type

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

0.333 0.333

Baseline (0.92)
Random Guess (0.33)

(d) (e) (f)

Figure 4.31: Advanced adversary attack analysis across multiple scenarios and met-
rics. (a) Attack accuracy evolution over time showing performance degradation pat-
terns, (b) Attack success rate versus distance demonstrating range-dependent effec-
tiveness, (c) Attack success heatmap showing spatial distribution of effectiveness, (d)
Hardware trojan effectiveness across different implementations, (e) Hardware trojan
performance degradation over time, and (f) Coordinated attack comparison showing
performance and success rates for synchronized versus independent attack vectors.

plementation provides multiple pathways for authentication decisions, ensuring that

localized signal corruptions cannot compromise overall system security.

4.6.5.2 Spatial Decorrelation Security Properties

Our evaluation confirms that the spatial correlation properties of underground-to-

air propagation provide inherent security advantages for location authentication. The

uniform attack failure across different spatial positions and distances demonstrates

that location-specific signatures cannot be replicated through positioning strategies

alone. The complex interaction between soil composition, moisture content, and
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electromagnetic propagation creates authentication features that are fundamentally

tied to specific geographic locations.

The distance-independent security characteristics observed in our evaluation indi-

cate that proximity-based attacks, which are effective against many wireless authenti-

cation systems, provide no advantage against underground-to-air channel fingerprint-

ing. This property is particularly valuable for agricultural IoT deployments where

adversaries may have physical access to deployment areas but cannot compromise

authentication through positioning strategies.

4.6.5.3 Defense-in-Depth Security Architecture

The comprehensive resistance across all threat categories demonstrates that

LAOUWN implements an effective defense-in-depth security architecture. The system

maintains security against external threats through spatial correlation properties, re-

sists coordinated attacks through robust feature learning, and provides insider threat

protection through algorithmic tamper resistance. This multi-layered security ap-

proach ensures authentication integrity across the complete threat spectrum relevant

to critical agricultural IoT applications.

4.6.6 Practical Security Guarentees

4.6.6.1 Deployment Security Assurance

Our evaluation results provide strong evidence for the practical security of LAOUWN

in real-world agricultural IoT. The consistent attack failure across diverse threat sce-

narios and minimal improvement over random guessing performance indicate that

adversaries cannot achieve reliable authentication bypass even with sophisticated at-

tack capabilities.
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The hardware Trojan resistance provides particular assurance for insider threat

protection. Agricultural IoT systems often involve distributed sensor deployments

with limited physical security, making hardware modification attacks a realistic con-

cern. Our demonstration of complete immunity to hardware modification attacks is

a realistic concern. Our demonstration of complete immunity to hardware-level at-

tacks ensures that authentication integrity remains intact even if individual system

components are compromised.

4.6.6.2 Minimum Security Perimeter

The distance-independent attacks success rates establish that LAOUWN main-

tains consistent security properties across practical deployment ranges. The 10-meter

minimum evaluation distance protects against proximity-based attacks while allowing

flexible sensor positioning for agricultural monitoring applications. The consistent se-

curity performance across extended ranges supports scalable deployment architectures

without degradation.

4.6.6.3 Environmental Robustness

The uniform attack resistance across different spatial positions and coordination

strategies indicates that LAOUWN maintains security properties despite environ-

mental variations that could affect wireless propagation. The robust authentication

performance under diverse attack scenarios suggests that real-world environmental

factors, such as seasonal changes, weather conditions, and agricultural activities, are

unlikely to create exploitable security vulnerabilities.

Our comprehensive adversarial evaluation demonstrates that LAOUWN provides

exceptional security properties suitable for critical agricultural IoT applications where
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location authentication integrity is paramount for system operation and data trust-

worthiness.

4.7 Chapter Summary

This paper presents LAOUWN, a novel secret-free authentication framework that

leverages unique channel impulse response (CIR) signatures from underground-to-air

wireless channels to establish robust location-based authentication without crypto-

graphic key management. We developed a comprehensive system combining advanced

signal processing techniques with deep learning architectures (ResNet-18/34/50) en-

hanced through transfer learning and adversarial domain adaptation, achieving over

90% authentication accuracy across diverse indoor and outdoor scenarios. Our com-

prehensive security analysis demonstrates complete resistance to sophisticated ad-

versaries, with both Friis empirical and ray-tracing enhanced attackers achieving

only random guessing performance (33%), proving that even adversaries with perfect

electromagnetic knowledge cannot compromise authentication integrity. We estab-

lish distance-independent security guarantees across 10-60 meter ranges and environ-

mental robustness across indoor, outdoor, and underground scenarios. This makes

LAOUWN particularly valuable for precision agriculture applications where unautho-

rized sensor access could lead to crop damage and financial losses. The demonstrated

spatial decorrelation properties and resistance to advanced electromagnetic modeling

establish a theoretical foundation for inherent security in underground wireless sen-

sor networks, positioning LAOUWN as a foundational technology for securing critical

agricultural IoT infrastructure.
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CHAPTER 5

VET: Autonomous Vehicular Credential Verification using

Trajectory and Motion Vectors

This chapter introduces VET (Vehicular credential Verification using Trajectory

and motion vectors), a novel in-band authentication framework designed for au-

tonomous vehicular networks. Instead of relying solely on traditional cryptographic

credentials, VET verifies the physical veracity of the sender by cross-validating claimed

trajectory and motion vectors (TMVs) with those independently estimated from wire-

less signal characteristics—specifically, frequency-of-arrival (FoA) measurements. The

framework addresses a critical security gap by detecting adversaries who may have

valid credentials but attempt to spoof their physical location or movement. VET

supports single-verifier deployment, does not require line-of-sight conditions, and is

robust even in the presence of remote adversaries with signal manipulation capabil-

ities. The chapter presents the system and threat models, outlines the TMV-based

verification protocol, and provides both theoretical analysis and experimental valida-

tion using USRP testbeds. Results demonstrate that VET achieves high true positive

rates and resilience to advanced spoofing attacks, offering a practical and lightweight

enhancement to vehicular authentication. We first describe the system and threat

model, then we describe our developed verification protocol.
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Figure 5.1: The verifier B performs verification of a prover A’s credentials based on
motion state vectors in the presence of an attacker M capable of spoofing trajectories.

5.1 Models

In this section, we first present the system model followed by the threat model for

VET. We present Table 5.1, which summarizes the frequently used notations in this

paper.

5.1.1 System Model

The Legitimate Prover (A): The prover A has legitimate credentials, which

can be either PKI credentials (pK, sK), or symmetric key credentials K. We assume

that A uses an omnidirectional antenna to transmit wireless signals.

The Verifier (B): The signal transmitted by A is received by the verifier B, when

the prover is within the communication range. The trust is established by performing

source authentication of the prover. We assume that there are one or more truthful

verifiers X within the communication range. This is a valid assumption for CAVs,

and there are other vehicles or roadside units or UAVs with more than one trusted

controller and UAVs. However, these verifiers do not require mutual trust. Each

verifier performs VET independently and can broadcast a failure message in case of

a failure. It should be noted that an adversary can exploit to launch a denial-of-
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Figure 5.2: The prover A attempts to authenticate with the verifier B in the presence
of an adversary M and other entities X within the communication range.

service; such an adversary can be manually removed. Also, this is orthogonal to VET

presented in this paper.

5.1.2 Threat Model

We consider a Dolev-Yao attacker [49]. The adversary M has a valid credential,

which can be either PKI credential (pkM , sKM) or symmetric credential KM , and

injecting its messages to disrupt the acceptable functionalities of a vehicular ad-hoc

network. The attacker knows the locations of all the verifiers but does not physically

control the verifier. M transmit a message with an intention for the verifier (B) to

accept as the legitimate prover. M also knows all the channels between legitimate

entities. The adversary can either be within the communication range of B or can

compromise static wireless nodes connected to the internet to realize the attack.

Finally, we do not put any restrictions on the motion of the adversary. Hence, the

adversary can be either static or moving. The attack scenarios for this work are:

Remote Attacker: We consider an attacker located within the verifiers’ commu-

nication range and attempting to inject his messages without intentional modification

of PHY-layer data.
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Remote Advanced Attacker: In addition to the capability of a remote at-

tacker, the advanced attacker can intentionally modify the transmitted PHY-layer

level wireless signal.

Notation Description

A Prover

B Verifier

X One or more truthful verifiers within the communication range

M Adversary

L Claimed trajectory for k time-ordered locations for initial TMVs verification

V Claimed motion for k time-ordered locations for initial TMVs verification

L′ Estimated trajectory for k time-ordered locations for initial TMVs verification

V ′ Estimated motion for k time-ordered locations for initial TMVs verification

L̃′ Estimated trajectory for non A-to-B communication for final TMVs verification

Ṽ ′ Estimated motion for non A-to-B communication for final TMVs verification

M Set of transmitted k messages ({(m(1), t(1)), . . . , (m(k), t(k)})
M̂ Captured k messages

F Frequency of Arrival

F̃ Frequency of Arrival for non A-to-B communication, where t(i) ̸= t′(i)

ϵ Acceptable error for location

µ Acceptable error for velocity

ΠA Prover oracle

ΠB Verifier oracle

ΠX Entity X oracle

ΠM Adversary oracle

tx Message transmissions

pk Probability of success of Adversary with No -Matching

dMB Distance between M and B

hMB Wireless channel between M and B

hMX Wireless channel between M and X

k Number of trajectory data points

RMSE(·) Normalized root mean square error function for TMV Verification.

Table 5.1: Table of Notations
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5.2 Primitives used in VET

Before diving into the details of VET, we present its building blocks. First, we

present the method utilized to estimate the velocity. Followed by the method to

compute the position and combine both to compute the trajectory and motion vectors

(TMVs).

Frequency of Arrival (FoA) for Velocity Estimation: The FoA captures

the effect of the velocity on the center frequency. In other words, it is the Doppler

effect experienced by the moving verifier B with respect to the moving prover A at

speed v. From Fig. 5.2, the prover vehicle A is within the communication range of

the verifier B. The frequency of arrival when the verifier and the prover are moving

towards each other, so the Doppler effect experienced by the verifier increases, is given

by

F = f0 ×
c+−→v B cos α

c−−→v A sin α
, (5.1)

where F is the Doppler shift on verifier B, c is the propagation speed, f0 is the

prover’s center frequency.

From (5.1), the velocity of the prover at the ith sample is given by

−→v B(i) =

[
c− F(i)(

−→v A(i) sin α)

f0

]
cos−1 α. (5.2)

The Doppler effect of the signal measured by B is dependent on the radial velocity

and the center frequency. The relative velocity observed −→v (i) = −→v B(i) cos α −
−→v A(i) sin α.
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5.2.0.1 Direct Location Estimation

For estimation of the location, it is important to note that the verifier B has more

than one antenna. This assumption is valid for vehicular networks as the roadside

units are MIMO enabled, and in the case of UAV swarms, multiple single antenna

UAVs can collude as the verifier. We used maximum likelihood estimation to directly

estimate the position, which maximizes the likelihood for the prover [9] when the

prover is broadcasting within the expected verification range. This is a one-step

process that does a 2-D or 3-D grid search of the prover’s position.

The location ℓ(i) of the prover B is the position that maximizes the log-likelihood

function. This position is expressed as

ℓ(i) = argmax
ℓ
{Li}. (5.3)

Here, the log-likelihood function is written as

Li =
J∑

j=1

λmax(Qj). (5.4)

The log-likelihood function is the summation of all the maximum eigenvalues of

the Hermitian matrix Qj. The matrix contains received signals multiplied by the

frequency difference of arrival (FDoA) at the different antennas.

Effect of NLoS on the FoA: Typically, when vehicular wireless signals propagate

in the real world, it does that in multipath [176]. The motion claim of the prover

reaches the verifier in two or more paths. For simplicity, in our research, we use two

path components. The NLoS path exists due to signal reflection before getting to the

verifiers. This means there exists a reflection point that is always changing due to the

dynamicity of the environment and this change affects the position by some factor δ.
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Therefore, the prover’s position for verifiers is c−−→vBcos α + δ. This means that for

a moving verifier and a moving prover due to NLoS, the Doppler effect will be given

by

F = f0 ×
c+−→v B cos α + δ

c−−→v A sin α
+ ϵ, (5.5)

This NLoS component is embedded in the signal path attenuation which maximizes

the likelihood [9], at each verifier and the function that contains the unknown provers

position and velocity.

5.3 VET: Credential Verification using Trajectory and Mo-

tion Vectors

We present a secured, in-band vehicular access control method to verify the au-

thenticity and integrity of a set of messages transmitted from a legitimate vehicle A at

the verifier, as shown in fig. 5.1. B implements a location based strategy for verifica-

tion, where B does not trust A in the start of the communication. For the verification,

B generates a set of trajectory and motion vectors from the carrier frequencies.

5.3.1 Vehicular Motion State Verifier

The basic idea is for verifier B to authenticate the claimed trajectory observed for a

prover A via a location-based authentication strategy. We exploit the characteristics

of the direct position and velocity estimation via the arrival frequency to verify the

prover. The protocol is presented as without generality between a prover A and a

verifier B. It should be noted that simultaneous runs of the protocol can be initiated

between the same prover and different verifiers as the prover A can simultaneously

communicate with various entities. First, we describe TMVs utilized to develop VET:
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Trajectory and Motion Vectors: The trajectory L of a moving vehicle is

defined as k time-ordered locations

L = {(ℓ(1), t(1)), (ℓ(2), t(2)), . . . , (ℓ(k), t(k))}, (5.6)

where each location ℓ(i) = (x(i), y(i)) is the geospatial location coordinate at time

t(i). Where 1 ≤ i ≤ k for t(i) and t(i) < t(j) for i < j. Further, the motion V is

defined as k time-ordered locations in the same epoch

V = {(−→v (1), t(1)), (−→v (2), t(2)), . . . , (−→v (k), t(k))}, (5.7)

where −→v (i) is the velocity at time t(i). These locations and velocities are obtained

using the method described in Section 5.2

The protocol is initiated when the prover A is within the communication range of

B. The prover A sends Request to Authenticate message with authenticated encryp-

tion using issued credentials. An authenticated encryption function AE(·) utilizing the

shared secret K [20]. This will guarantee the source’s authenticity, message integrity,

and confidentiality. When verifiers share a common secret, AE(·) can be implemented

as an encrypt-then-MAC operation. Whereas for the public key cryptographic sce-

nario, AE(·) can be implemented as a sign/encrypt/sign (or encrypt/sign/encrypt).

Here, the credential can either be the actual one issued by a trusted authority or

a pseudonym credential for preserving privacy. The verifier B provides the prover

limited connectivity if the credentials are verified.

During the limited connectivity, the verifier B captures the message transmitted

to it and extracts the claimed k TMVs L and V , and estimated TMVs L′ and V ′.

First, B verifies the claimed and estimated using a root mean square error (RMSE)
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function. If successful, in the same time epoch, the verifier B captures the frequency

of arrival (FoA) F̃ for the messages transmitted by A but not intended for the B.

From these FoA, the verifier B estimates TMVs L̃′ and Ṽ ′, which are shifted in time

as compared to claimed. Further, B maps the claimed TMVs to the same time as

estimated TMVs using kinematic equations. The estimated and claimed TMVs are

compared; if these are within the accepted errors, A’s messages are accepted and

granted full access. Formally, the vehicular motion state verification steps are:

1. Initial Request : Once the prover A is within the communication range of

the verifier B. A transmits a request to authenticate AEK(RTA) to the verifier

B to join.

2. Limited Access Connection: After verifying the authenticity of A’s cre-

dential K, B grants it limited access. During the limited access B captures

k messages transmitted by A as M = {(m(1), t(1)), . . . , (m(k), t(k)}, con-

taining claimed TMVs: velocity vectors V = {(−→v (1), t(1)), . . . , (−→v (k), t(k)}

and L = {(ℓ(1), t(1)), . . . , (ℓ(k), t(k))}. B also records the FoA F =

{(f(1), t(1)), . . . , (f(k), t(k)}, and computes TMVs: velocity vectors V ′ =

{(−→v (1)′, t(1)), . . . , (−→v (k)′, t(k)} and L′ = {(ℓ(1)′, t(1)), . . . , (ℓ(k)′, t(k))}.

It should be emphasized that the verifier has not yet acknowledged any of the

critical directives. It is only used for the verifier to extract the relevant trajec-

tory information of the incoming prover for verification.

3. Initial TMVs Verification: B computes the Root Mean Square Error

(RMSE) of location as:

RMSE(ℓ(i), ℓ(i)′) =

√√√√∑k
i=1

(
ℓ(i)−ℓ(i)′

ℓ(i)′

)2

k
.
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The RMSE of velocity is as follows;

RMSE(−→v (i),−→v (i)′) =

√√√√∑k
i=1

(−→v (i)−−→v (i)′
−→v (i)′

)2

k
.

B then performs verification:

RMSE(ℓ(i), ℓ(i)′)
?

≤ ϵ ∀ 1 ≤ i ≤ k,

RMSE(−→v (i),−→v (i)′)
?

≤ µ ∀ 1 ≤ i ≤ k,

where RMSE(·) is a normalized root mean square error function, and ϵ and µ

are the acceptable error. If B passes the check, A grants B partial access and

acceptsM as valid. Else, B disregardsM and terminates the connection of A.

Also, B broadcasts a signal notifying FAILED authentication of A.

4. Estimating TMVs for non A-to-B communication: During the same time

epoch, verifier records FoA F̃ = {(f̃(1), t′(1)), . . . , (f̃(k), t′(k)}, where t(i) ̸=

t′(i), from the transmissions (tx) from A not intended for B. Next the verifier B

computes corresponding velocity vectors Ṽ ′ = {(
−→
ṽ′ (1), t′(1)), . . . , (

−→
ṽ′ (k), t′(k)},

and trajectory vectors L̃′ = {(ℓ̃′(1), t′(1)), . . . , (ℓ̃′(k), t′(k))}.

5. Interpolating Claimed TMVs: The estimated TMVs
−→
ṽ′ (i), t′(i) and

(ℓ̃′(i), t′(i)) are interpolated to synchronize with claimed TMVs (−→v (i), t(i)) and

(ℓ(i), t(i)) using cubic spline interpolation methods for a timeseries data [113].

6. Final TMVs Verification: The RMSE of location is calculated as:

RMSE(ℓ(i), ℓ̃′(i)) =

√√√√∑k
i=1

(
ℓ(i)−ℓ̃′(i)

ℓ̃′(i)

)2

k
.
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The RMSE of velocity is computed as:

RMSE(−→v (i),
−→
ṽ′ (i)) =

√√√√∑k
i=1

(−→v (i)−
−→
ṽ′ (i)

−→
ṽ′ (i)

)2

k
.

Finally, B performs verification:

RMSE(ℓ(i), ℓ̃′(i))
?

≤ ϵ ∀ 1 ≤ i ≤ k,

RMSE(−→v (i),
−→
ṽ′ (i))

?

≤ µ ∀ 1 ≤ i ≤ k,

where RMSE(·) is a normalized root mean square error function, and ϵ and µ

are the acceptable error. If B passes the check, A grants B full access and

acceptsM as valid. Else, B disregardsM and terminates the connection of A.

Also, B broadcasts a signal notifying FAILED authentication of A.

Figure 5.3 formally presents the steps of VET. A remote adversary M who cannot

modify the physical characteristics of the transmitted signal is detected in Step 3, as

the claimed TMVs are for the emulated trajectory while the estimated TMVs are the

actual trajectory of M . Further, an advanced adversary M who with the knowledge

of channel to the verifier B can craft the FoA to match the emulated and the claimed

TMVs. Such as the adversary is detected by Step 6, as in Step 4 the verifier B

captures the FoAs when the adversary will be communicating with any other entity

present in the vicinity. Such communication can be detected by noting the sender

and receiver in the header [21].

We will present a more detailed discussion on the robustness of the protocol in

the next section. Here, it is assumed that the advanced adversary is attempting to

emulate different trajectories at different verifiers. This is an acceptable assumption
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A B

Initialization:
AEK(RTA)−−−−−−−−−−→ Grants limited Access

Captures Claimed Messages:

M = {(m(1), t(1)), . . . , (m(k), t(k)} AEK(M)−−−−−−−−→ M̂, also capture

F = {(f(1), t(1)), . . . , (f(k), t(k)},
extract

V = {(−→v (1), t(1)), . . . , (−→v (k), t(k)}
L = {(ℓ(1), t(1)), . . . , (ℓ(k), t(k))}.

compute

V ′ = {(−→v (1)′, t(1)), . . . , (−→v (k)′, t(k)}
L′ = {(ℓ(1)′, t(1)), . . . , (ℓ(k)′, t(k))}.

Initial TMVs Verification: RMSE(−→v (i),−→v (i)′) =

√∑k
i=1

(
−→v (i)−−→v (i)′

−→v (i)′

)2

k ,

Partial access.

RMSE(ℓ(i), ℓ(i)′) =

√∑k
i=1

(
ℓ(i)−ℓ(i)′

ℓ(i)′

)2

k .

RMSE(−→v (i),−→v (i)′)
?
≤ ϵ,

RMSE(ℓ(i), ℓ(i)′)
?
≤ µ,

Computes TMVs’s : tx (Transmission not to B)
Sniff Packets−−−−−−−−−−→

F̃ = {(f̃(1), t′(1)), . . . , ( ˜f(k), t′(k)},
t(i) ̸= t′(i),

compute

Ṽ ′ = {(
−→
ṽ′ (1), t′(1)), . . . , (

−→
ṽ′ (k), t′(k)},

L̃′ = {(ℓ̃′(1), t′(1)), . . . , (ℓ̃′(k), t′(k))}.

TMVs Interpolation: From t(i)′ to t(i) using cubic spline interpolation:

V = {(−→v (1), t(1)), . . . , (−→v (k), t(k)},
L = {(ℓ(1), t(1)), . . . , (ℓ(k), t(k))}.

Final TMVs Verification: RMSE(−→v (i),
−→
ṽ′ (i)) =

√∑k
i=1

(
−→v (i)−

−→̃
v′(i)

−→̃
v′(i)

)2

k ,

RMSE(ℓ(i), ℓ̃′(i)) =

√∑k
i=1

(
ℓ(i)−ℓ̃′(i)

ℓ̃′(i)

)2

k .

RMSE(−→v (i),
−→
ṽ′ (i))

?
≤ ϵ,

RMSE(ℓ(i), ℓ̃′(i))
?
≤ µ,

Decision:
Broadcast Decision←−−−−−−−−−−−−−− Decision ¡FAIL or SUCCESS¿,

Full access. AcceptM, grant B full access.

Figure 5.3: Vehicular Motion Vectors Verifier Protocol.

as all the verifiers will have different physical locations. Hence, emulating the same

physical trajectory will force M to emulate different perceived trajectories at different

verifiers.
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Figure 5.4: (a) A timeline for the interpolation, (b) ROC curve for location data using
various interpolation techniques, and (c) ROC curve for velocity data using various
interpolation techniques.

5.3.2 Interpolating TMVs

In Step 5, of VET the estimated TMVs need to be interpolated for synchronizing

with claimed TMVs, as shown in Fig. 5.4(a) such that the comparison can be made

between the estimated and claimed trajectories. We perform the interpolation uti-

lizing cubic spline interpolation [113, 155] because of its high accuracy, smoothness,

flexibility, robustness, and less noisy interpolation when modeling trajectory motion

profiles. Compared to other interpolation techniques like piecewise linear interpola-

tion [95], r-cubic spline [143], and polynomial interpolation [61], cubic spline produces

a smoother curve. Piecewise linear interpolation [95] has a high granularity of the

TMV data but only does well when the vehicle is moving on a straight line at constant

velocity. It is not as robust as cubic-spline for interpolating TMV in the real world.

Linear interpolation works well in ideal scenarios, but in our experiments, the vehicles

move at changing speeds at different times. Piecewise polynomial interpolation, like

quadratic spline, is not the best interpolation technique compared to cubic spline and

r-cubic spline regarding accuracy and smoothness, especially for complex scenarios.

r-cubic spline [143] is simpler and faster but less accurate because its interpolation is

based on simple recurrence equations, unlike the cubic spline which requires solving
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tri-diagonal matrix-vector equations. In Fig. 5.4 (b) and (c), we show that cubic

spline has the best performing ROC curve as compared to other techniques for lo-

cation and velocity, respectively, when we account for a trajectory with 90◦ turn.

We used the data we collected for evaluations; please refer to Section 5.5.1 for more

details. Although we do note that cubic spline is more computationally expensive, it

is acceptable for our model as a not computationally limited verifier performs all the

computations. Moreover, we need accuracy and smoothness of the curve, especially

for irregular data points, rather than speed for VET. The cubic spline interpolation

of both the location and velocity is performed using the following equation:


S0(t) = Ỹ0 + b0(t− t′0) + c0(t− t′0)

2 + d0(t− t′0)
n ∀ t ∈ [t′0, t

′
1],

...

Sn(t) = Ỹn−1 + bn−1(t− t′n) + cn−1(t− t′n)
2 + dn−1(t− t′n)

n ∀ t ∈ [t′n−1, t
′
n].

(5.8)

where Ỹ can be either velocity −→v or location ℓ of the vehicle at time t′, computing

the parameters for b, c, d is obtained from solving a system of linear equations and

substitution. The result will be a TMV curve that is smooth and more continuous

than other forms of interpolations.

5.4 Security Analysis

In this section, first, we analyze the correctness of VET followed by robustness

analysis against the adversary presented in Section 5.1.2. For the formal analysis of

the protocol, we will utilize the idea of matching conversation [21]. The main idea is

that two entities can mutually authenticate each other in the presence of an adversary

if and only if they have the same chronology of exchanged messages.
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5.4.1 Correctness Analysis

We discuss the correct implementation of VET when there is no adversary present.

We consider the prover A and verifier B to be modeled by an Oracle model. We define

the protocol transcript at A and B as ΠA and ΠB, respectively as observed by the

oracle Π. In the transcripts, the received messages are denoted by a hat notation.

The transcripts of the messages exchanged between A and B are:

ΠA = {AEK(RTA);m(1); tx(1); . . . ;m(k); tx(k)}, (5.9)

ΠB = { ̂AEK(RTA); m̂(1); t̂x(1); . . . ; m̂(k); t̂x(k)}, (5.10)

for ease of depiction, we have skipped the timestamps for the messages. Several

communicating oracles are also possible in a distributed way, but each oracle is unique.

The matching conversation is a way of authenticating an entity, which is the prover

A. Both A and B will get the same long-lived key K, which would be unknown to

anyone else. Once the communication is correct, the verifier B confirms or denies the

prover A. That is, at the end of the conversation, the decision (η), from the verifier

B is to confirm (C) or reject (R) the prover A (η, C,R). Although rejection can occur

before the end of the conversation, confirmation only happens at the end.

The prover oracle (ΠA) sends a message AEK(RTA), which contains the request to

authenticate. The verifier oracle (ΠB) receives the message ̂AEK(RTA). It decrypts

the message to check if the correct key K was used and grants the prover partial

access. Next the prover oracle (ΠA) transmits the message m(1) where ΠB extracts

trajectory and motion vectors (TMVs) ℓ(1) and v(1). This is followed by ΠA transmits

a message txA(1) not intended for ΠB. From t̂xA(1) transmission ΠB records the
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Frequency of Arrival (FoA) f̃(1). Now the verifier estimates the velocity
−→
ṽ′ (1) and

location ℓ̃′(1). Finally, compare the estimated and claimed velocities and locations

based on the RMSE in Step 6 after interpolating the estimated to synchronize with

the claimed in Step 5. It is straightforward to show if the message m(1) and the

transmission tx(1) are from the same prover oracle ΠA. The estimated and claimed

will be within the acceptable error ϵ for location and µ for velocity. This is repeated

for all k transmissions.

5.4.2 Robustness Analysis

Next, we will analyze the robustness of VET against the threat model we defined

in Section 5.1.2. First, we will analyze VET against a remote attacker who injects

messages. This is followed by the remote advanced attacker, who can modify its

physical layer envelope in an attempt to force the verifier B to accept the messages.

Remote Attacker: The remote adversary (M) is inside the communication range

of the verifier B. Here, in the oracle model, we have an adversary oracle ΠM and the

verifier oracle ΠB. The transcripts of the messages exchanged between M and B for

VET execution is:

ΠM = {AEKM
(RTA);mM(1); txM(1); . . . ;mM(k); txM(k)}, (5.11)

ΠB = { ̂AEKM
(RTA); m̂M(1); ̂txM(1); . . . ; m̂M(k); ̂txM(k)}, (5.12)

For ease of depiction, we have skipped the timestamps for the messages. For the case

of a legitimate prover (A), there can be two different scenarios: (1) A is not present,

and M initiates VET, and (2) A is present and M hijacks the execution of VET. In
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the first case, the prover oracle’s transcript is:

ΠA = {∅}. (5.13)

In the second case, the transcript is:

ΠA = {AEK(RTA);m(1); tx(1); . . . ;m(k); tx(k)}. (5.14)

To prove the robustness of VET against a remote attacker. We aim to prove that

the acceptance or authentication at the verifier (B) with non-matching conversations

at prover and verifier oracles ΠA and ΠB, respectively, is negligible. Let us dive into

the individual messages exchanged between the adversary oracle ΠM and the verifier

oracle ΠB, (5.11) and (5.12). The first message that is exchanged between them is

AEKM
(RTA), this message is accepted by ΠB even with mismatch with ΠA, (5.13)

and (5.14). This is because the credential used by ΠM is either issued by a valid

Trusted Authority (TA) or compromised from the legitimate prover A. Thus ΠM is

able to initiate the session. Now, let us focus on the k messages exchanged for the

verification. There are two sets of messages mM(i) are the messages intended for the

verifier oracle ΠB and ΠB estimates the TMVs. And the transmissions txM(i) from

adversary oracle ΠM intended for other oracles present such as ΠX . Which can be

some other verifier in the same vicinity. Such that the verifier oracle ΠB can be a

roadside unit and other oracles ΠX can be another vehicle in the vicinity.

For this type of adversary, the claimed and the estimated TMVs because the

adversary is present at a remote location, as shown in Fig. 5.5(a). This will force

ΠB to estimate the remote TMVs detected by Step 3 of VET. It should be noted

here this applies to both static and moving adversaries. Hence, this type of adversary
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(a) (b)

Figure 5.5: (a) A remote adversary M attempting to authenticate with a spoofed
trajectory inside the communication range of the verifier B, and (b) a remote ad-
vanced attacker M attempting to authenticate an emulated trajectory to verifier B
with other verifiers X in the vicinity.

will be detected and removed from the system. As well as the verifier will notify the

presence of an adversary to other entities in the communication range.

Remote Advanced Attacker: Similar to the analysis against a remote attacker,

to prove the robustness of VET against a remote advanced attacker. We aim to

prove that the acceptance or authentication at the verifier (B) with non-matching

conversations at prover and verifier oracles ΠA and ΠB, respectively, is negligible.

The individual messages exchanged between the adversary oracle ΠM and the verifier

oracle ΠB, (5.11) and (5.12). The first message that is exchanged between them is

AEKM
(RTA), this message is accepted by ΠB even with mismatch with ΠA, (5.13)

and (5.14). Here, in addition to injecting the set of claimed TMVsM, the advanced

adversary can change the envelope and FoA to emulate a trajectory estimated from

sniffed packets indented for ΠX . Hence, an advanced adversary oracle ΠM is capable

of emulating a trajectory to ΠB, as shown in Fig. 5.5(b).

The emulated trajectory of ΠM is accepted at ΠB without matching conversation

with ΠA if the RMSE of all the TMVs in Step 6 is within the acceptable range. This

cannot happen with certainty as ΠM because even if emulating the same trajectory to
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Figure 5.6: The plot shows the success probability of M for different numbers of
TMVs in the trajectory k.

ΠB and ΠX . The estimated trajectories will be different; this is because the estimated

trajectory (V ′,L′) in Step 2 is emulated for ΠB. Whereas the estimated trajectory

(Ṽ ′, L̃′) in Step 4 is emulated for ΠX . The adversary does this to pass Step 3, where

the claimed and estimated trajectories must match at respective verifiers. Note here

that Step 4 for ΠB captures the messages for Step 2 of ΠX . Also, verifiers inform all

other entities about the failure of the authentication of any entity. It should be noted

here this can be utilized to launch a denial-of-service (DoS) where a legitimate entity

is forcibly disconnected. This is orthogonal to the application of VET. This can be

trivially tackled by cryptographic verification of the failure broadcast. Next, we show

that both types of adversaries have negligible success probability in defeating VET.

Formal Proof: For both the adversary models, we can model the success of

the adversary oracle ΠM for claimed TMVs to match the estimated TMVs. Let

the probability for ΠM for −→v (i) and ℓ(i) match with
−→̃
v′ (i) and ℓ̃′(i), respectively

at ΠB be p. This probability depends on the distance of the adversary M from the

emulated trajectory. As the wireless channel outdoors decorrelates [188]. We evaluate

this probability in the evaluation section. Thus, for k TMVs, the probability of an

adversary succeeding with no matching is
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Pr[B accept ∧ No-matching] = pk, (5.15)

which is a negligible probability [135], as shown in Fig. 5.6. Even for a high

probability p1 = 0.9, for 50, 40, 30, 20, and 10 TMVs, the success probability is

5 × 10−3, 1.4 × 10−2, 4.2 × 10−2, 1.2 × 10−1, and 3.5 × 10−1. Please note here for

a single execution of VET, the attacker has only one chance to inject all the TMVs

online. Hence, a higher probability of success is acceptable here relative to traditional

crypto-algorithm (similar values are acceptable for other online protocols with short

authentication strings [123]).

5.4.3 Discussion on Shortcomings

One of the areas we need to recognize is in the absence of at least two truthful

verifiers, a remote advanced adversary can be successful. But it should be noted here

that a novice remote adversary who cannot craft the physical layer envelope can be

detected with only one verifier. Thus, only detecting an advanced adversary can craft

the physical layer envelope with the knowledge of all the channels within the entities.

We need more than one truthful verifier, which is not a reasonable requirement for

detecting the strongest possible adversary.
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Figure 5.7: (a) Verifying different trajectories of a legitimate prover A, (b) a remote
adversary injecting a claimed trajectory, and (c) a remote advanced adversary ma-
nipulating the signal’s physical properties to emulate trajectory.
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Figure 5.8: Experimental setup with Prover car (A) and Verifiers (B) and (X).

5.5 Experimental Evaluation

In this Section, we evaluate the correctness, robustness, and protocol parameters

utilizing a USRP platform with well-defined experiments. First, we describe the

experimental setup followed by correctness and robustness analysis.

5.5.1 Experimental Setup

Our experimental setup includes a prover (A) vehicle and stationary verifier (B),

as shown in Fig. 5.7(a) and Fig. 5.8. We have a secondary verifier (X) present

in the system for demonstration purposes only; we do not use the data collected

at (X) for evaluations. The prover vehicle contains the signal transmitter USRP

2922 inside a car, which continuously broadcasts the BPSK signal at 915MHz using

an omnidirectional antenna (VERT-900). The transmitter USRP is connected to a

Lenovo ThinkPad T14 running the GNU Radio transmitter code. We choose 915MHz

center frequency with a bandwidth, f0, instead of 2.45GHz, which is in the Wi-Fi band

because it is less congested and has a longer range. The verifiers are two stationary

USRP 2922s connected to two individual computers placed on the opposite side of

the road, which acts as receivers. The center frequency is also set to 915MHz, with

a target sampling rate of 32000Sps and an actual sample rate of 195312Sps. The
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receivers also run GNU Radio code to capture the transmitted data packets from

the moving prover. A GPS-enabled phone collects the ground truth of location and

velocity data as the prover vehicle drives around the verifiers. We synchronize all

three computers and the phone to use the United States Internet Time Server (ITS)

of The Network Time Protocol server [185]. The verifier collects timestamped data

as the prover drives around at a constant speed.

5.5.2 Correctness Analysis

First, we focus on evaluating the correct performance of VET. For this, we evaluate

the location estimation and velocity estimation individually. The performance of VET

is the worst of either of the estimations. We captured the physical layer envelope and

frequency of arrival of the signal received from A. We implemented the methods

mentioned in Appendix A to estimate velocity and position. Then, we compute

the key performance indicator (Receiver operating characteristic) by comparing the

estimated velocity and position to the ground truth recorded on the phone kept inside

A.

Receiver operating characteristic (ROC) curve: We compute two separate

Receiver operating characteristic (ROC) curves for velocity and location data. We

use the ROC curves to evaluate three parameters. First, the acceptable errors to set

the thresholds (ϵ, µ) for RMSE of location and velocity, respectively, in Steps 3 and

6. Second, k is the number of trajectory points required to complete the verification

with an acceptable true positive rate. Finally, we evaluate the acceptable errors for

the straight or turning trajectory of the vehicle.

Figure 5.9(a) shows the plot between true positive rate (TPR) and false positive

rate (FPR) for various ϵ RMSE errors and k = 3 for the location data. From the

figure, we observe that for ϵ = 0.2, we observe a 0.92 true positive rate for 0.03 false
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positive rate. In Fig. 5.9(c), we show the location data ROC curve for various k

number of trajectory points for ϵ = 0.2. We observe that for k = 3 VET can achieve

TPR = 0.96 for FPR or 0.03. Further, in Fig. 5.9(b) and (d), we plot the velocity

ROC curve for various RMSE threshold (µ) and k, respectively. We observe that for

velocity, VET achieves a TPR of 0.9 for µ = 0.2 and a TPR of 0.94 for k = 3. We

also observe that each of the curves are acceptable ROC curve as the TPR goes close

to 1 before the FPR reaches 0.05. For the rest of the experimental analysis, we set

the values of the thresholds from the ROC curves. Specifically, we fix the ϵ = 0.2

and µ = 0.2 for location RMSE and velocity RMSE, respectively. We selected these

values as they achieve optimum TPR for acceptable FPR. Finally, we compute the

ROC curves for various trajectories, as shown in Fig. 5.7(a). The trajectory “A” and

“C” are straight line while “B” and “D” involves turns. From the curves in Fig. 5.9(e)

and (f), we observe better performance for straight-line trajectories as compared to

ones involving turns. However, all of the TPR and FPR values are acceptable, with

TPR reaching 1 for the trajectories involving turns before FPR reaches 0.08.

5.5.3 Robustness Analysis

Next, we evaluate the robustness of VET against both adversaries defined in Sec-

tion 5.1.2. First, we evaluate the remote attacker who injects a spoofed trajectory

as a message. Next, we evaluate the performance of an advanced remote attacker M

who can change the physical parameters of the signal to emulate a target trajectory.

We compute the success probability using the RMSE(·) function.

Remote Attacker: We utilized the data collected to emulate the remote attacker.

Here, the attacker’s actual trajectory differed from the claimed trajectory, as shown

in Fig. 5.7(b). Using the data, we plot two graphs for location and velocity. In

Fig. 5.10(a) and Fig. 5.10(b), we plot the probability of success (pk) from (5.15) for
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Figure 5.9: (a) ROC curve for location data for various RMSE thresholds ϵ, (b) ROC
curve for velocity data for various RMSE thresholds µ, (c) ROC curve for location
data for varying k (number of trajectory points), (d) ROC curve for velocity data for
varying k, (e) ROC curve for location data across different trajectories as shown in
Fig. 5.7(a), (f) ROC curve for velocity data across the same trajectories.
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Figure 5.10: (a) Probability of success for remote M in defeating velocity verification,
(b) probability of success for remote M in defeating location verification, and (c)
probability of success for remote advanced M in defeating velocity verification.

the adversary for B to accept velocity and location, respectively against k the number

of messages for dMB distances between B and M, varied between 100m and 150m.

From the plot, we observe that for k = 3 data points of the trajectory, the probability
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Figure 5.11: Probability of success for remote advanced M in defeating location
verification.

of success for the adversary goes down to the level of 10−5 for both the velocity and

location. Further, we observe that an adversary farther than 120m from the verifier B

has a significantly low success probability in defeating VET. Thus, VET can detect an

adversary who might be using compromised infrastructure to inject data. Moreover,

VET can detect a remote-moving adversary attempting to inject rogue messages.

This attests to our theoretical finding that the probability of success for the remote

adversary is a negligible probability.

Remote Advanced Attacker: Finally, we performed emulation to evaluate the

remote advanced attacker using Matlab. We first computed the wireless channels

hMB and hMX between the vehicle and the verifier B, and the vehicle and the second

verifier X, respectively. The adversary utilized the knowledge of the channel hMX to

emulate the trajectory at X, as shown in Fig. 5.7(c). This signal is received by B

on the hMB emulated by a ray tracing model. B computed the estimated trajectory

using the emulated trajectory to compute the probability of success for the adversary.

Figure 5.10(c) and Fig 5.11 show the plot between the probability of success (pk) from

(5.15) for the adversary against k, for the velocity and location, respectively. We

observed that an advanced adversary M could defeat VET with a success probability
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of 10−6 for k = 5 trajectory data points. Also, here an adversary further than the

distance than dMB ≥ 120m is detected with probability (1− 10−6), for both velocity

and location. This attests to our theoretical finding that the probability of success

for the remote advanced adversary is a negligible probability. Hence, the advanced

adversary M has to be close to B for defeating VET. Even when M is close to B, the

adversary can be detected with certainty when more number k of trajectory points

are collected for authentication.

5.6 Chapter Summary

We propose VET: a framework that verifies the veracity of the crypto-credentials

by authenticating them against physical trajectory and motion vectors (TMVs). The

verifier implements a location and motion-based authentication strategy and verifies

the crypto-credentials based on the acceptability of claimed TMVs against randomly

estimated TMVs. This detects any adversary from remotely injecting spoofed mes-

sages when it is not physically present where it claims to be. We formally analyze

the correctness and robustness of VET using matching conversations. Finally, we

attest to the findings of theoretical analysis with experimental analysis of VET on

the USRP platform. Our experiments show that VET has 97% true positives when

operating without an adversary. We fix the threshold values for evaluation based on

the ROC curve plotted for the location and velocity data. We evaluate both novice

and advanced adversarial behaviors. In the experiments, we show that VET can de-

tect an advanced remote adversary with 99.9% who is capable of manipulating signals

with absolute channel knowledge. In the future, we plan to expand the experimental

evaluations on a UAV platform with both moving provers and verifiers.
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CHAPTER 6

Systematization of Knowledge for Security in Molecular and

Nano-communications

This chapter is based on joint work with Mr. Malcolm I. Anderson, Mr. Truc

T. Duong, Dr. Nirnimesh Ghose, and Dr. Anna Wisniewska. All student authors

contributed equally to the research design, literature review, and systematization

of knowledge presented herein. My primary contribution focused on developing the

security taxonomy and leading the structuring of the bio-inspired security discussion,

specifically regarding cybersecurity solutions for molecular and nanocommunications

and related ideas.

This chapter presents a comprehensive systematization of knowledge on the secu-

rity challenges and defense mechanisms in molecular and nano-communication (MC)

networks. Molecular and nano-based systems face threats like eavesdropping, denial

of service, spoofing, and jamming attacks, as shown in Fig. 6.1. Unlike conventional

wireless communication, MC leverages chemical and biological signal propagation,

introducing unique vulnerabilities in confidentiality, authentication, integrity, and

availability. The chapter surveys prior work that summarizes physical-layer character-

istics, energy efficiency, modulation techniques, and error correction in MC systems.

It highlights that security remains an underexplored area, with limited systematiza-

tion of threat models, attack surfaces, and countermeasures tailored to the molecular
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Molecular and Nano Communication Security

Confidentiality

Attacks:
Eavesdropping

Solutions:
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channels

Authentication
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Solutions:
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works, authentication for
nano-communication

Integrity

Attacks:
Message modification, re-
play

Solutions:
DNA-based error correc-
tion, ISI mitigation, ML-
driven modulation

Availability

Attacks:
Jamming, blackhole, sentry

Solutions:
Biofilm suppression, de-
fense against biofilm-based
attacks

Figure 6.1: Overview of molecular and nano communication security.

scale. By compiling existing surveys and research trends, this chapter identifies crit-

ical gaps, such as the lack of end-to-end security frameworks, insufficient analysis of

bio-inspired cryptography, and the need for adaptive, noise-resilient mechanisms for

sensitive applications like in-body healthcare and targeted drug delivery.

6.1 Prior Surveys and Gaps

The security challenges in molecular and nano-network communication have been

a growing concern. Various researchers have surveyed these challenges, focusing on

the limitations of traditional methods and exploring bio-inspired cryptography as a

potential solution—the need to address vulnerabilities and improve the robustness of

molecular and nano-communication systems. For example, a Time-Division Diffusion

(TDD) network is increasingly critical due to the devastating consequences of security

attacks. Despite these risks, security considerations within molecular communication

(MC) systems have historically been underexplored. The unique nature of molecu-

lar communication, which relies on transmitting and receiving information through

molecules, introduces distinct security challenges that differ significantly from con-

ventional communication systems. This section reviews existing survey efforts in this
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domain, emphasizing their contributions to understanding security in molecular and

nano-communication networks. Moreover, it identifies critical gaps, such as the lack

of comprehensive threat models and insufficient exploration of system-specific vulner-

abilities, underscoring the need for targeted research to effectively address security

concerns in MC systems.

6.1.1 Prior Systematization of Knowledge

Numerous surveys have summarized the physical layer of molecular communica-

tion (MC) systems, providing foundational insights into their unique characteristics

and challenges. Abbas et al. summarized energy efficiency, emphasizing optimizing

power utilization for nano-devices to enable sustainable communication in resource-

constrained environments [1]. Hasan et al. [70] and Darchini et al. [44] surveyed trans-

mission paradigms inspired by social behaviors and biological interactions, aiming to

enhance the reliability and effectiveness of molecular networks. Similarly, Kuran et

al. compiled modulation techniques tailored to molecular communication, presenting

strategies to improve signal accuracy and reliability [90].

Farsad et al. summarized error correction mechanisms critical for data integrity

in the noisy environments characteristic of MC channels [57]. Additionally, Qiu et al.

reviewed advanced signal processing techniques to enhance system robustness under

dynamic and unpredictable conditions [138]. Applications such as in-body healthcare

networks were explored by Chude-Okonkwo et al., highlighting the practical implica-

tions of molecular communication technologies in real-world scenarios [39].

Despite these advancements, these surveys often provide only cursory treatment

of security challenges in MC systems, recognizing them as an essential yet underex-

plored research area [90,105,138]. Loscri et al. highlighted the unique vulnerabilities

of MC networks, such as the random mobility of molecules and the shared medium,
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which make conventional cryptographic approaches ineffective [105]. This gap high-

lights the need for dedicated security solutions tailored to the molecular propagation

environment.

Researchers advocate for bio-inspired security techniques that leverage biological

processes to address these challenges and develop innovative cryptographic proto-

cols. These adaptive mechanisms respond to environmental changes, and robust

error correction systems are designed for the intrinsic noise and interference of MC

systems [105,139]. These solutions are vital for ensuring the security, reliability, and

scalability of MC systems as they expand into critical applications, including health-

care and environmental monitoring.

The prior surveys have significantly systemized the knowledge of molecular and

nano-network communication challenges. Dressler et al. explored the limita-

tions of conventional cryptographic methods in the context of molecular and nano-

communication systems and proposed bio-inspired cryptography as a promising alter-

native [53]. They highlighted the necessity of developing robust security frameworks

tailored to the unique constraints of these systems. Despite the critical consequences

of security breaches in molecular and nano-based systems, such as targeted drug de-

livery (TDD) networks and in-vivo communication systems, the field has historically

paid limited attention to addressing security comprehensively [53,76,137].

In addition to Dressler’s work, several researchers have surveyed and sought to

address unresolved security challenges within molecular communication (MC) net-

works. Loscri et al. [105], Andreasson et al. [12], and Nakano et al. [120] surveyed the

development of defense mechanisms tailored to the distinct nature of MC systems.

Efforts include leveraging biological systems, such as the immune system, to create

novel, bio-inspired techniques for enhancing security [183]. These works highlight the

importance of interdisciplinary collaboration and innovative methodologies to ensure
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the security and privacy of MC systems while addressing the challenges posed by their

unconventional communication paradigms.

6.1.2 Gaps in Systematization of Knowledge

Substantial obstacles persist in the organization of security within molecular and

nano-communication systems, although considerable advancements in the examina-

tion of essential aspects such as message integrity, confidentiality, authentication and

availability which are vital elements for secure communication in MC contexts. De-

spite progress, current research inadequately addresses some essential facets of secu-

rity in a systematic manner. The deficiencies in the organization and synthesis of

knowledge impede the establishment of a coherent framework for secure molecular

communication systems and diminish the practical applicability of existing results.

Principal deficiencies emcompass:

6.1.2.1 Lack of Cross-Layer Integration

Existing surveys frequently limit security talks to specific layers of communication

protocol stacks, such as the physical or network layer, without investigating how

vulnerabilities and solutions spread across layers. For example, Kuran et al. outline

modulation strategies at the physical layer [90], whereas Farsad et al. concentrate on

error correction techniques [57]. However, most studies do not explore how remedies

at one layer may interact with or impact vulnerabilities at other layers. This divided

approach inhibits a comprehensive understanding of end-to-end security, which is

required for creating strong molecular communication systems.
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6.1.2.2 Limited Focus on Active Threats

There aren’t many surveys that methodically cover current dangers unique to

molecular communication systems, like denial-of-service (DoS) attacks, spoofing, and

malicious interference. Although Dressler et al. highlight the drawbacks of conven-

tional cryptography techniques and offer bio-inspired substitutes, they do not go into

detail about particular threat models or countermeasures [53] . Similar to this, Loscri

et al. discuss weaknesses brought on by molecular mobility and shared media, but

they don’t go into great depth on how active attackers may take use of these charac-

teristics [105]. Furthermore, reviews such as those by Qiu et al. underscore secrecy

rate and physical layer security however fails to summarize the nature of attacks in

developing bio-nano settings [137]. Significant knowledge gaps exist about the effects

of active threats on molecular communication systems due to a lack of attention.

6.1.2.3 Inadequate Application-Specific Context

Surveys often generalize security concerns without customizing their study for

unique applications, such as targeted drug delivery (TDD), in vivo health monitor-

ing, or environmental monitoring. Chude-Okonkwo et al. highlights applications

such as TDD but inadequately consider the distinct security needs in these areas [39].

While both Chude-Okonkwo et al. and Wang et al. emphasizes on biomedical and

environmental uses, the generalization restricts the applicability of security insights

to certain use situations, hindering the advancement of context-sensitive security sys-

tems [39,183]. Abbas et al. explored energy efficiency in nano-devices but neglect the

distinct security ramifications of healthcare applications, where data confidentiality

and integrity are paramount [1]. Current studies rarely examine how the specific de-

mands of these applications affect the design of security protocols, hence constraining
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their practical applicability.

6.1.2.4 Absence of Structured Taxonomies

Numerous surveys lack systematic categorization of risks, vulnerabilities, and se-

curity measures. Nakano et al. offers a comprehensive overview of molecular com-

munication, although they fail to deliver a systematic taxonomy of security concerns

and responses [121] . A structured taxonomy would facilitate comparison assessments

as noted in Huang et al. [76]. The lack of such taxonomies hinders the methodical

evaluation of previous work, the comparison of various techniques, and the effective

identification of neglected regions.

6.1.2.5 Insufficient Discourse on Standardization and Protocols

Existing surveys seldom address the necessity for standardized security standards

in molecular communication systems. Unlike regular communication methods, molec-

ular communication systems do not possess specified security criteria. Surveys con-

ducted by Farsad et al. [57] and Kuran et al. [90] neglect to highlight this crucial

element, which is vital for guaranteeing interoperability and promoting extensive

adoption.

6.1.2.6 Inadequate Interdisciplinary Perspectives

Molecular communication entails interdisciplinary collaboration, integrating biol-

ogy, chemistry, physics, and engineering. Nevertheless, current surveys frequently

exhibit a limited scope and neglect to incorporate ideas from burgeoning disciplines

such as quantum computing, machine learning, and bioinformatics. Dressler et al. [53]

and Loscri et al. [105] address interdisciplinary approaches but fail to examine how

these domains could enhance novel security solutions.
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6.2 Cybersecurity Overview for Molecular and Nano-

Communication

Molecular communication (MC), nano-communication, and the Internet of

Bio-Nano Things (IoBNT) are emerging paradigms enabling communication between

nano-scale devices or within biological systems [5, 58, 120]. In MC, information is

transmitted by encoding it into the properties or distribution of molecules, allowing

communication among biological cells, organisms, or nano-scale devices. Molecules

are released into mediums such as water, air, or biological fluids, with information

encoded in the molecular concentration [92,98], type [10], or release timing [108,193].

These encoded molecules propagate through the medium to deliver information to a

receiver.

MC has been extensively applied in nanotechnology, synthetic biology, and

biomedicine. Notable applications include targeted drug delivery [7, 8, 125], environ-

mental monitoring [147], and hybrid communication between synthetic and biological

systems [7]. These advancements demonstrate the significant potential of MC in

addressing real-world challenges across various domains.

Nano-communication enables nanoscale devices to exchange information us-

ing electromagnetic (EM), acoustic, and molecular communication mechanisms.

These systems find applications in nanotechnology, nanorobotics, nanomedicine, and

nanoscale sensor networks, allowing nano-machines to coordinate and cooperate on

tasks such as drug delivery, sensing, and nanoscale assembly activities.

The Internet of Bio-Nano Things (IoBNT) extends the Internet of Things

(IoT) paradigm by integrating nanoscale devices and biological components into the

IoT ecosystem. IoBNT facilitates seamless communication, data exchange, and con-

trol between bio-nano devices, nano-machines, biological systems, and conventional
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IoT devices through nano-communication techniques and traditional wireless com-

munication protocols. Researchers leverage IoBNT for diverse applications, including

implantable medical devices in healthcare, smart sensors in agriculture, and environ-

mental monitoring systems, where the fusion of biological and nano-scale systems

provides innovative and efficient solutions.

Although MC, nano-communication, and IoBNT are primarily designed for nano-

scale operations, they often function at the micro-scale. In MC, information-carrying

molecules interact with micro-scale biological structures such as cells, tissues, or mi-

crofluidic channels. Nano-communication facilitates interactions between nanoscale

devices and more extensive systems via EM waves or molecular signaling within mi-

crofluidic environments. Similarly, IoBNT applications may involve communication

at the micro-scale, enabling interactions between embedded micro-scale sensors, actu-

ators, and devices in biological systems, bridging the gap between nano- and macro-

scale systems.

Cybersecurity in molecular and nano-communication presents unique challenges

due to these technologies’ novel and evolving nature. Unlike traditional commu-

nication systems, molecular and nano-communication rely on fundamentally differ-

ent principles, such as the stochastic diffusion of molecules or nanoscale EM wave

propagation, which limit the direct applicability of classical encryption methods and

security models [76]. The unique constraints of these systems—such as limited com-

putational capabilities, energy constraints, and the physical properties of the com-

munication medium—further exacerbate these challenges.

Research in this field has primarily focused on the physical layer of molecular

communication (MC) networks, investigating signal propagation, noise analysis, and

channel capacity [2,66,67,103,132,133]. While this work has advanced the reliability

of MC, it has not fully addressed the security implications. Current methods lack
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tailored approaches to ensure confidentiality, integrity, and availability—critical com-

ponents for securing communication involving sensitive data, such as in healthcare,

targeted drug delivery, and environmental monitoring. Next let us dive into various

cyber attacks and their effects on MC or nano-communications.

6.2.1 Eavesdropping

Vulnerabilities in molecular communication networks can result in harmful attacks,

particularly in scenarios involving malicious devices within the propagation range.

These devices can intercept information molecules (IMs) as they diffuse through the

medium toward their intended recipient. If the molecular communication (MC) sig-

nals propagate in the direction of a malicious device, the attacker can eavesdrop on

the transmitted message [118]. This issue is especially critical in diffusion-based and

flow-based MC systems, where IMs are freely broadcast throughout the medium to

maximize the likelihood of message delivery. These methods inadvertently increase

the risk of interception by malicious entities [76, 78,162,170].

In healthcare applications, such vulnerabilities can expose private patient data to

adversaries, leading to significant privacy breaches. Beyond passive eavesdropping,

attackers can execute more damaging active attacks [12]. For instance, intercepted

data can be altered to introduce false information, disrupting network operations.

Such actions can compromise critical mechanisms, such as the precise timing of drug

delivery in targeted drug delivery systems, potentially causing adverse effects on pa-

tient health or sabotaging medical treatments. These risks highlight the need for

secure communication protocols specifically designed for the unique characteristics of

molecular communication systems.



170

6.2.2 Message Modification Attack

In molecular and nano-communication networks, the limited communication range

of nano-devices often necessitates multi-hop transmission, where messages pass

through multiple intermediary nodes to reach their intended destination. This multi-

hop architecture introduces a vulnerability to message modification attacks, as shown

in Figure 6.2a. Malicious nodes between the sender and the receiver can intercept

the transmitted message, alter its content, and relay the modified version [140]. Such

interference can lead to unintended and potentially harmful outcomes, such as issuing

false commands to trigger actions like the premature release of medicine in healthcare

applications [40]. Addressing this threat requires robust integrity verification mech-

anisms and secure routing protocols designed for the unique constraints of molecular

and nano-communication networks.

6.2.3 Replay Attack

Malicious nano-devices can exploit previously intercepted messages through eaves-

dropping to perform replay attacks, as shown in Figure 6.2b. By capturing legitimate

commands from authorized devices, attackers can resend these messages repeatedly

to disrupt system functionality [122]. This can result in harmful outcomes, such

as triggering the unintended and repetitive release of drugs in healthcare applica-

tions, potentially leading to overdoses or other severe consequences. To mitigate such

threats, molecular and nano-communication networks must implement robust coun-

termeasures, including message authentication codes (MACs), timestamping, and

nonce-based mechanisms to ensure the uniqueness and validity of each transmitted

command. These solutions are essential to safeguard against unauthorized retrans-

missions in these sensitive networks [124,136].
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6.2.4 Wormhole Attack

An attacker can create a network wormholes by relaying messages between distant

nodes, bypassing the established communication pathways, as shown in Figure 6.3a.

This unauthorized link can be exploited to intercept messages, modify their content,

or disrupt the network’s logical flow, causing confusion and potential system failures.

Such attacks compromise the integrity, confidentiality, and reliability of the commu-

nication network, making the development of robust routing protocols and secure

authentication mechanisms critical to mitigating these vulnerabilities [169].

6.2.5 Sybil Attack

An attacker can deploy multiple fake identities within the network to manipulate

communication or gain unauthorized access to the system, as shown in Figure 6.3b.

These counterfeit identities can disrupt network operations by propagating misleading

data, causing network congestion, or undermining trust-based protocols [105, 191].

Such attacks compromise the integrity and reliability of the system, highlighting the

need for robust identity verification and trust mechanisms to safeguard molecular and

nano-communication networks.

6.2.6 Impersonation Attack

Unauthorized nano-machines can mimic legitimate devices within the network,

gaining access to critical data or disrupting operations, as shown in Figure 6.4. These

impersonation attacks pose significant security risks, particularly in systems where

accurate device identification is vital [197]. For instance, in healthcare networks, an

attacker could impersonate a valid medical nano-machine, allowing access to sensitive

patient information or issuing harmful commands [88]. Such actions could lead to de-
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(a) Message modification attack

(b) Replay attack

Figure 6.2: Attacks that compromise confidentiality and integrity.

vice malfunctions, erratic behavior, or even failure of critical therapeutic functions,

emphasizing the need for stringent authentication protocols and secure communica-

tion mechanisms in molecular and nano-communication systems.

6.2.7 Jamming Attack

Attackers can introduce noise or interfering molecules into the communication

channel, effectively disrupting signal transmission and reception, as shown in Fig-

ure 6.6a. These jamming attacks degrade the signal-to-noise ratio (SNR), making

it challenging for receivers to interpret the intended messages accurately [158, 166].

Such attacks are brutal in life-critical systems, where precise molecular communica-

tion is essential to trigger medical responses or manage autonomous nano-machines.

Disrupted communication in these contexts could result in delayed or incorrect thera-
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(a) Wormhole attack

(b) Sybil attack

Figure 6.3: Attacks that compromise confidentiality and integrity.

peutic actions, leading to severe consequences for patient safety or system reliability.

Robust noise mitigation and interference detection techniques are critical to counter-

ing such threats effectively [22,65,112].

6.2.8 Blackhole Attack

Malicious nano-machines can deploy chemo-attractants to lure legitimate nano-

machines toward them, as described in prior studies [55,164], as shown in Figure 6.6b.

This tactic disrupts the communication flow by diverting nano-machines from their in-

tended trajectories, which is critical due to the limited communication range of these

devices. The resulting diversion prevents legitimate nano-machines from perform-
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Figure 6.4: Impersonation attack that compromises confidentiality and integrity.

Figure 6.5: Sentry attack that compromises availability.

ing essential tasks, such as drug delivery, or enables other malicious nano-machines

to avoid detection and inflict further damage. Additionally, chemo-attractants may

interfere with other systems within the medium. For instance, in biological envi-

ronments, such as the human body, these attractants could lure immune cells like

lymphocytes away from infection sites, weakening the immune system’s ability to

suppress harmful pathogens. This exploitation of chemo-attractant signaling demon-

strates a dual threat, disrupting nano-machine networks and compromising natural

biological defense mechanisms [63].
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6.2.9 Sentry Attack

Malicious nano-devices can deploy chemo-repellents to obstruct legitimate nano-

devices or nano-machines from reaching their intended destinations, as noted in pre-

vious studies [55, 164], as shown in Figure 6.5. This tactic hinders the ability of

legitimate devices to carry out their tasks, such as drug delivery or detecting abnor-

malities caused by malicious nano-devices. By delaying or preventing legitimate nano-

machines from sensing and neutralizing abnormal behavior, chemo-repellent attacks

amplify the damage inflicted by other malicious entities within the network. Further-

more, this attack can have far-reaching consequences beyond the nano-communication

system itself. For instance, chemo-repellents could block the interaction of specific

organisms or environmental chemicals, impeding processes such as pollutant break-

down. In such cases, chemical treatments designed to mitigate environmental damage

might be ineffective, leading to long-term ecological harm [63].

6.3 Cybersecurity Solutions for Molecular and Nano Com-

munications

In this Section, we survey the existing solutions to the attacks we discussed in the

previous section.

6.3.1 Confidentiality and Privacy

Research on molecular and nano-communication security has primarily focused on

ensuring Confidentiality and Privacy [68, 78, 118, 145, 160, 161, 163]. Confidentiality

protects information molecules (IMs) from being accessed by unintended entities. In

contrast, privacy ensures that the identities and actions of nano-machines remain
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(a) Jamming attack.

(b) Blackhole attack.

Figure 6.6: Attacks that compromise availability.

undisclosed. However, maintaining secrecy in these systems is challenging due to

the shared propagation medium, which allows eavesdroppers to intercept and decode

molecular signals. Such attacks may even involve benign nano-machines unintention-

ally capturing IMs due to their proximity to the communication range. Detecting

eavesdroppers in molecular communication (MC) is particularly difficult because of

the nanoscale environment and the stochastic nature of molecular diffusion. Fur-

thermore, nano-machines limited computational power and energy constraints hinder

the deployment of classical cryptographic methods for Confidentiality and privacy

protection. Confidentiality and privacy techniques such as diffusive molecular timing

(DMT) [160] augment secrecy against eavesdropping and replay attacks by incorpo-
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rating randomization and obfuscation for adversaries.

6.3.1.1 Secrecy Enhancements in Diffusive Molecular Timing Channels

Sharma et al. [160] proposed methods to improve secrecy in Diffusive Molecular

Timing (DMT) channels. Their work analyzed the effects of an interferer and an

eavesdropper (Eve) on secrecy performance. Introducing an interfering node in the

Alice-Eve communication link demonstrated how confusion could be created for Eve,

enhancing secrecy in noise and interference-limited environments. In another work,

Sharma et al. [161] studied the mutual relationship between Bob and Eve by exam-

ining their distances from Alice. They found that increasing the variance of Eve’s

distance negatively affected the system’s secrecy. However, their studies primarily

focused on point-source scenarios, neglecting the complexities introduced by dynamic

channel conditions and more generalized receiver designs.

6.3.1.2 Information Theoretic bounds

Understanding molecular and nano-communication systems requires the applica-

tion of information theory to establish theoretical bounds on performance metrics,

such as channel capacity, mutual information, and secrecy capacity [159]. These

bounds are critical for designing efficient and secure communication protocols, espe-

cially in complex environments like biological systems. Researchers leverage these

methods to optimize molecular communication systems for diverse applications, en-

suring reliable and secure data transmission despite the inherent challenges of diffusion-

based and nanoscale communication [118,163,170].

Channel capacity defines the maximum information transfer rate a commu-

nication channel can reliably support. For molecular communication systems, this

depends on factors like diffusion rates, molecular degradation, distance, and envi-
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ronmental conditions [78]. For instance, in diffusion-based systems, the capacity is

constrained by stochastic molecular propagation and inter-symbol interference (ISI).

Theoretical expressions for channel capacity in Alice-to-Bob and Alice-to-Eve commu-

nication have been modeled and explored extensively [118, 134]. These formulations

help characterize and improve communication efficiency in molecular systems.

Mutual information quantifies the information shared between a transmitted

signal and the received signal, accounting for the stochastic nature of diffusion and

environmental noise [78]. Despite unpredictable diffusion dynamics, this metric eval-

uates how well information molecules transmit meaningful data. Researchers have

analyzed mutual information to optimize system designs for reliable communication

in noisy environments [134].

Secrecy capacity represents the maximum secure data transmission rate be-

tween two parties (e.g., Alice and Bob) while ensuring that an eavesdropper (Eve)

cannot decode the intercepted data. Researchers employ various techniques, such

as chemical camouflage or receptor-specific targeting, to enhance secrecy in molec-

ular communication. Probabilistic models for molecule absorption and ISI provide

insights into secrecy vulnerabilities and solutions [78]. Secrecy capacity can be ex-

pressed mathematically as:

Cs = max
PX|Y

I(X;Y )AB −max
PX|Z

I(X;Z)AE. (6.1)

where I(X;Y )AB is the mutual information between the transmitted signal X and

the received signal at Bob Y , I(X;Z)AE is the mutual information between the trans-

mitted information molecule signal X and the received signal at Eve Z. PX|Y and

PX|Z are the conditional probability distributions of X given Y and Z respectively.

Secrecy capacity can also be represented in terms of their channel capacity [78] as:
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Cs = max{CAB − CAE, 0}. (6.2)

Interference-Based Security: Sharma et al. [160] introduced interference

nodes to disrupt eavesdropper communication in diffusive molecular timing (DMT)

channels, enhancing secrecy by confusing Eve.

Dynamic Environmental Analysis: Studies have explored how varying dis-

tances and diffusion conditions affect secrecy performance [118, 161], providing in-

sights into designing adaptive protocols.

Multi-Node Communication: While most studies focus on single transmitter-

receiver scenarios, research by Sabu et al. [145] and Huang et al. [75] expanded this

to multi-receiver setups. These analyses consider factors like molecule hitting prob-

abilities and receiver distance but have yet to incorporate eavesdropping scenarios

comprehensively.

Most studies on MC security [117,118,160,161] have focused on single-transmitter,

single-receiver setups with a single eavesdropper. However, real-world molecular com-

munication systems often involve multiple transmitters and receivers. Sabu et al. [145]

extended this by exploring communication between a single transmitter and multi-

ple fully absorbing receivers in a 3D medium. Their analysis provided an analytical

expression for the hitting probability of IMs and examined the influence of receiver

distance on detection performance. Similarly, Huang et al. [75] characterized commu-

nication between a single transmitter and two absorbing receivers in a 1D medium.

However, neither study incorporated the presence of eavesdroppers, leaving a gap in

understanding security implications in multi-node scenarios.
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6.3.2 Authentication

Due to the unique nature of molecular communication (MC) and the constraints in

developing lightweight security mechanisms, traditional authentication schemes are

not directly applicable to molecular and nano-communication systems. Designing

authentication methods for nano- and micro-scale biological environments requires

significant adaptation to overcome challenges such as limited computational capac-

ity, memory, energy constraints, and environmental variability. Nano-machines often

lack the processing power and memory to perform complex encryption or decryp-

tion tasks, which makes implementing conventional security mechanisms impractical.

Environmental factors, such as molecule degradation in biological fluids or variable

diffusion rates, create fluctuating communication channels that complicate consistent

authentication. Communication in MC systems is prone to noise, inter-symbol inter-

ference (ISI), and unintended interactions with other molecules, affecting the reliabil-

ity of authentication signals. DNA-based and bio-inspired systems like Bioblock [115]

guarantee origin integrity mitigating impersonation, sentry, and Sybil attacks.

6.3.2.1 Bio-Inspired Authentication Approaches

Recent work has explored deoxyribonucleic acid (DNA)-based molecular security

devices that adapt traditional access control methods to molecular environments.

Zhang et al. [200] introduced a robust two-factor authentication system combining

DNA strand displacement and enzyme cleavage mechanisms. Their approach utilized

molecular locks activated by the correct sequence of nicking enzymes, offering secu-

rity comparable to electronic password systems. Bu et al. [31] leveraged peptides’

recognition properties for sensing, encoding, and encryption. They demonstrated se-

cure molecular-level information processing and protection using Pb2+-binding pep-
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tides. Liu et al. developed cryptographic methods using artificial molecules like

p-nitrophenol (PNP) to encode and encrypt data. They incorporated fluorescent

molecules to expand detection capabilities and introduced security functions that

allowed hidden and encrypted information to be revealed under specific conditions.

6.3.2.2 Blockchain-Inspired Frameworks

Misra et al. [115] proposed Bioblock, a blockchain-inspired framework for MC that

uses protein-based cryptography. The system uses plasmids as carriers of genetic sig-

natures to create blocks that serve as decentralized records. While Bioblock enhances

security and eliminates the need for centralized controllers, its consensus mechanism

increases delays and energy consumption, posing a trade-off between performance and

robustness.

6.3.2.3 Authentication for Nano-communication

Nano-devices often interact with macro-scale networks, forming a nano-IoT ecosys-

tem. Rana et al. [141] proposed an ECC-based framework for secure communication

between nano-devices, nano routers, and macro devices. Their system incorporated

electromagnetic and molecular communication modes, maintaining a lightweight yet

secure approach. Zafar et al. [197] introduced an artificial neural network (ANN)-

based technique for profiling normal and abnormal behaviors at nano-device interface

points. Their particle swarm optimization algorithm enhanced accuracy while main-

taining low computational costs. Galal et al. [60] explored machine learning models

for traffic analysis in electromagnetic nanonetworks. They demonstrated improved

packet filtering and anomaly detection using techniques like support vector machines

(SVM) and random forests.
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6.3.3 Integrity Verification

naIntegrity verification in molecular and nano communication is critical to ensuring

the correctness and reliability of transmitted data. However, due nto unique chal-

lenges—such as interference, biological noise, environmental variability, and the inher-

ent constraints of nano-devices—innovative, interdisciplinary approaches are required.

This section discusses various strategies for achieving data integrity, categorized by

error correction, lightweight coding methods, and machine learning applications. Er-

ror correction techniques, such as DNA coding and lightweight channel protocols,

protect against modification and deterioration during transmission [84,201].

6.3.3.1 Error Detection and Correction Techniques

Error correction and detection techniques ensure data integrity in molecular and

nano communication systems. These methods enable nano-machines to identify and

correct errors introduced by noisy channels or malicious interference.

DNA-Based Error Correction: Numerous researchers have employed DNA

as a medium for error correction due to its stability and high information density.

Erlich et al. [54] introduced DNA Fountain, a coding-theoretic approach capable of

storing complex datasets, such as an operating system and a movie, within DNA

oligonucleotides. This approach enables accurate data retrieval using minimal se-

quencing coverage. Similarly, Zhang et al. [201] proposed a hybrid encoding scheme

that combines minimal Hamming distance and multiple sequence alignment to ad-

dress sequence defects. Kloosterman et al. [84] further developed a correction tech-

nique for DNA microscopy data, achieving up to 20% error correction, with potential

applications for adjacency-based datasets such as Hi-C data [178].
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6.3.3.2 Lightweight Channel Coding

Lightweight coding techniques are essential in nano-communication systems, where

devices have constrained energy, memory, and processing capacity. These techniques

mitigate issues like inter-symbol interference (ISI) while remaining computationally

efficient.

ISI Mitigation: Jing et al. [79] proposed a lightweight channel coding scheme

to mitigate ISI in biosensor networks. By ensuring that codewords lacked consecutive

or trailing 1-bits, the scheme avoided molecular accumulation within the channel,

improving the bit error rate (BER). This method offers simplicity, reduced time com-

plexity, and suitability for resource-constrained nano-devices.

Probabilistic Constellation Shaping: Tang et al. [177] combined Reed-

Solomon error correction codes with probabilistic constellation shaping (PCS) to

optimize communication in diffusion-based molecular systems. Their approach uses

molecular shell mapping to reduce energy consumption while addressing ISI. By inte-

grating error correction with PCS, their scheme improved BER and robustness, even

under resource limitations and channel variability.

6.3.3.3 Machine Learning Applications

Machine learning (ML) techniques have been increasingly explored to improve the

reliability of molecular communication systems. By leveraging ML models at nano-

receivers, it is possible to compensate for channel imperfections and reduce ISI.

ML-Driven Modulation Schemes: Kim et al. [82] proposed a modulation

scheme called concentration-shifted key position (CSKP) for molecular communica-

tion. They integrated a classification-based machine learning model at the nano-

receiver, enabling it to outperform conventional maximum likelihood receivers. The
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ML model effectively learned and compensated for channel bias, enhancing commu-

nication reliability. However, despite these advancements, the application of machine

learning in molecular and nano-communication security still needs to be explored.

6.3.4 Availability

The availability and reliability of molecular and nano communication channels are

essential for continuous and dependable operation, particularly in critical applica-

tions like early disease detection, food safety, and environmental monitoring. Ensur-

ing robust communication requires addressing environmental variability, biological

interference, molecular degradation, and resource constraints. However, malicious

nano-machines can disrupt communication pathways, rendering legitimate systems

ineffective. This section explores the challenges of jamming, biofilm suppression, and

denial-of-service (DoS) attacks and discusses proposed strategies to mitigate these

disruptions. Resilient availability protocols can counteract wormhole, jamming, and

blackhole attacks with adaptive interference detection and quorum-sensing biofilm

suppression techniques.

6.3.4.1 Disruptive Attacks in Molecular and Nano Communication

Jamming attacks are intentional disruptions in molecular communication,

wherein rogue devices emit signals or reactive molecules to interfere with legitimate

transmissions. Such attacks distort communication pathways, degrade signal quality,

and increase error rates, potentially causing false alarms or undetected errors.

Luo et al. [107] developed a proof-of-concept for nano-plate interfacial jamming,

demonstrating its application in controlled molecular diffusion across liquid-liquid

interfaces. Using disk-shaped kaolinite nano-particles, they created smart jamming

platelets capable of dynamically blocking molecular transport. While disruptive in



185

malicious contexts, this concept has also inspired targeted applications in drug deliv-

ery and chemical separations.

Natural systems offer analogous examples of malicious jamming. For instance,

parasitic wasps emit chemical compounds mimicking host pheromones to infiltrate

colonies and lay eggs [47]. These biological strategies emphasize the importance of

robust security protocols to prevent similar disruptions in molecular systems.

Inter-symbol interference (ISI) and jamming share overlapping effects on

molecular communication but differ fundamentally in their origins. ISI occurs unin-

tentionally due to overlapping molecular signals while jamming is a deliberate attack

using external interference. Both, however, degrade signal quality and communication

reliability. Liu et al. [99] explored mitigation strategies for ISI and jamming attacks.

While ISI can be managed with error correction methods, jamming necessitates ad-

ditional measures, such as encoding schemes to obscure molecular signals. Shahbaz

et al. [158] proposed a jamming-resistant encoding scheme based on hopped repeti-

tion codes. The scheme effectively countered memory-less and adaptive jammers by

dynamically altering the pre-shared transmission pattern, ensuring secure and robust

communication.

6.3.4.2 Biofilm Suppression in Communication Systems

Biofilms can disrupt molecular communication by forming protective barriers that

prevent signal propagation. Addressing biofilm formation is critical for maintaining

communication efficiency in nano-communication systems.

Strategies for Biofilm Suppression: Martins et al. [111] demonstrated how

bacteria could cooperate to block nutrients from reaching biofilms, effectively starving

and dismantling the biofilm structure. Similarly, Gulec et al. [65] leveraged quorum

sensing mimickers to disrupt biofilm communication pathways. Their state-based



186

chemical reaction model effectively simulated biofilm breakdown. Martins et al. [112]

further utilized proteomic data to identify proteins critical for biofilm formation. By

deploying synthetically engineered bacteria to emit jamming signals, they suppressed

protein production essential for biofilm stability. The study revealed how the distance

and delay of jamming signals influenced biofilm disruption, providing insights for

designing effective suppression techniques.

Defense Against Biofilm-Based Attacks: Bernal et al. [22] explored strate-

gies to mitigate cyber-bio-attacks, such as distributed denial-of-service (DDoS) at-

tacks on bacteria-based sensors. By employing quorum quenching mechanisms, they

demonstrated the ability to reduce biofilm resilience and mitigate DDoS impacts.

Quorum amplification is another approach adapted to varying attack intensities,

showcasing flexibility in defensive strategies.

6.3.4.3 Impact of Microtubule Jamming

Microtubules, vital components of the cellular cytoskeleton, are responsible for

intracellular transport. Jamming of these transport pathways has been linked to neu-

rological disorders, as motor proteins like kinesin and dynein fail to deliver essential

cellular cargo. Chahibi et al. [35] proposed end-to-end mechanisms to model artificial

molecular motor networks and study cargo movements in neurofilaments. Their find-

ings highlight the role of microtubule jamming in brain illnesses and offer insights into

creating artificial systems to counteract these effects. Hirokawa et al. [73] examined

the roles of molecular motors in neural development, plasticity, and disease. Their

comprehensive review underscores the importance of efficient transport networks for

maintaining cellular health and mitigating the effects of jamming.
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6.4 Gaps in Existing Security Solutions

Current security methodologies for molecular and nano communication (MC) sys-

tems overwhelmingly emphasize confidentiality. However, they must address the in-

tricate challenges of the shared medium and biological randomness inherent in these

systems. Due to the nature of MC, chemical signals are prone to interception by sur-

rounding nano-devices, making it challenging to ensure only the intended recipient

accesses the transmitted information.

Despite the extensive focus on confidentiality in recent research [78, 117, 164, 165,

170], practical strategies to secure MC channels remain inadequate. For instance,

many models assume simplified point-source transmitters and static interferers [160],

limiting their applicability in real-world molecular communication systems. A broader

range of release models and receiver designs should be explored to generalize secrecy

metrics like diffusive molecular timing channel secrecy.

Furthermore, most evaluations of security mechanisms rely on simulations con-

ducted in controlled, bounded environments [163]. These fail to capture the complex-

ities of real-world scenarios, where variable molecular concentrations, unpredictable

movements, and ambient noise significantly impact system security and reliability.

6.4.1 Environmental Influences on Security

Key factors—temperature, distance, diffusion coefficient, and biological diver-

sity—directly affect the performance and security of MC systems. These influences

are insufficiently studied despite their profound impact:

Temperature: Temperature variations alter molecular kinetic energy, impacting

diffusion rates, reaction kinetics, and signal stability [89]. For example, even minor

fluctuations can increase noise or introduce vulnerabilities in signal propagation.
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Distance and Diffusion Coefficients: Signal attenuation and delay over long

distances amplify interference and reduce effective communication, increasing the

likelihood of eavesdropping or denial-of-service (DoS) attacks [56, 117,160].

Biological Variability: Environmental randomness—such as fluid dynamics and

cellular barriers—compounds the challenges of designing secure MC systems. Failure

to account for such variability may result in unreliable communication and higher

susceptibility to interception or signal disruption [4].

6.4.2 Vulnerabilities to Eavesdropping

Most existing works [53, 76, 137] need to address the risks of eavesdropping in

dynamic environments. In dense molecular networks, attackers can intercept chemi-

cal signals without specialized equipment, making it crucial to develop robust coun-

termeasures. Research often overlooks real-world complexities, such as fluctuating

molecular concentrations and unanticipated noise [117,118]. Comprehensive security

frameworks are needed to safeguard MC systems against unauthorized access and

alteration of signals.

6.4.3 Integrity Challenges in MC Systems

Data integrity is essential but increasingly challenging due to noise and biological

interference. Noisy molecular channels distort transmitted data, potentially alter-

ing information molecules (IMs). For example, reactive oxygen species may oxidize

signaling molecules, leading to corrupted communication. Existing integrity mecha-

nisms [32, 93] remain inadequate for dealing with biological noise and environmental

changes, necessitating the development of advanced error detection and correction

techniques.
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6.4.4 Resource Constraints and Lightweight Security Mechanisms

Nano-machines face severe resource limitations, restricting the implementation of

traditional security protocols such as AES or RSA encryption [6, 53]. Lightweight

alternatives inspired by biological systems, such as immune system modeling and

cellular communication pathways, have shown promise [114, 119]. However, research

into biologically inspired security solutions remains in its infancy.

6.4.5 Secrecy Capacity in Molecular Channels

The concept of secrecy capacity—the maximum secure data transmission rate—has

limited applicability in MC systems due to their stochastic behavior and susceptibility

to diffusion and degradation. Studies exploring cooperative jamming, relay nodes, and

adaptive modulation [36,81] highlight potential strategies but often require high levels

of coordination and computational resources, which are infeasible for nano-devices.

6.5 Possible Solution Ideas to Fill the Gaps

Despite the various gaps in security solutions, we propose some possible ideas for

developing robust and accurate security mechanisms tailored to molecular and nano

communication systems.

6.5.1 Advanced Cryptographic Methods

The unique constraints and capabilities of molecular and nanoscale communication

systems necessitate the development of specialized cryptographic methods. These ap-

proaches must be lightweight, resource-efficient, and capable of leveraging the inherent

properties of molecular signals and nanoscale materials. Secure and efficient commu-
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nication mechanisms can be achieved by integrating advanced encryption techniques

with the distinctive characteristics of nano-materials and biochemical processes.

Biochemical and DNA-Based Cryptography: One promising avenue is us-

ing biochemical cryptographic techniques, which exploit molecular interactions and

natural processes to encode information securely. For example, DNA-based cryptog-

raphy utilizes the complexity and diversity inherent in DNA sequences to encode and

decode data [94]. DNA strands can store vast amounts of information compactly,

making this approach particularly effective for systems with strict resource limita-

tions. Unlike conventional digital encryption, which may be computationally infea-

sible for nano-machines, DNA encryption leverages biological properties to achieve

both security and efficiency.

Molecular Steganography: Molecular steganography represents another inno-

vative direction. In this approach, information is concealed within organic carriers,

such as the chemical signals that cells use to communicate. By embedding data within

these biological pathways, the method ensures discretion and reduces the risk of in-

terception. For instance, chemical signaling molecules can carry encoded information

through established biological channels, thereby hiding messages in plain sight [85].

This approach can complement traditional cryptographic techniques by adding a layer

of obfuscation.

Enzyme-Based and Bio-Inspired Cryptographic Algorithms: Molecu-

lar cryptographic algorithms can further leverage nanoscale biochemical reactions.

Enzyme-based cryptographic systems, for example, use highly selective biological re-

actions to encode and decode data [19,100,175]. These processes are energy-efficient

and secure, making them ideal for constrained environments like nano-machines.

Another bio-inspired approach involves drawing from natural biological processes,

such as protein folding or cellular signaling pathways. These systems are inherently
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complex and difficult to predict or replicate, offering high levels of security. Protein

folding patterns, for instance, could serve as cryptographic keys, providing immense

variability due to the vast number of possible folding configurations [142, 154]. This

natural complexity makes such systems highly resistant to brute-force attacks.

Nano-Particle Cryptography: Nano-particles also present significant poten-

tial for cryptographic applications. These particles can be engineered to store and

transmit cryptographic keys securely. Due to their minuscule size, nano-particles are

challenging to detect and intercept, enhancing communication security. Moreover,

their unique ability to interact with biological systems offers additional opportunities

for secure, context-specific applications [16]. Nano-particles can encode information

using physical or chemical properties, such as surface modifications or fluorescence

patterns, enabling innovative methods for secure communication.

6.5.2 Enhanced Error Correction Protocols

Ensuring data integrity in molecular communication (MC) systems prone to high

noise levels and interference is a critical challenge. To address this, error detection and

correction protocols must be tailored to the unique characteristics of MC channels,

providing robust and efficient solutions for reliable communication.

DNA-Based Error Correction: A promising approach to error correction in

MC involves DNA-based error correction mechanisms. DNA molecules, with their

inherent redundancy and capacity to store vast amounts of information, can be op-

timized for encoding and correcting data errors. When adapted to DNA sequences,

techniques like Reed-Solomon (RS) codes introduce redundancy to transmitted data,

allowing the receiver to detect and correct errors efficiently [195]. RS codes are par-

ticularly advantageous in environments with constrained computational and energy

resources, making them well-suited for molecular and nano-communication systems.
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These lightweight methods provide high reliability while maintaining low computa-

tional complexity, addressing key challenges in MC systems.

Parity and LDPC Codes: Parity codes and low-density parity-check (LDPC)

codes are other error correction strategies applicable to MC channels. Parity-based

methods introduce additional bits to the transmitted data, enabling error detection

and correction at the receiver. LDPC codes, in particular, are highly efficient and

effective in noisy environments due to their ability to handle high error rates [144].

The structured design of LDPC codes allows for scalable implementation in MC

systems, where resource limitations and noise are significant constraints.

Adaptive error correction methods can dynamically adjust the scheme in response

to real-time noise and interference conditions. By applying more robust correction

protocols during high-noise periods and reducing redundancy during low-noise in-

tervals, adaptive methods enhance communication efficiency while ensuring reliabil-

ity [194].

Enhancing Security in Error Correction: While standard error correction

protocols address data integrity, they often lack security measures to protect against

tampering or unauthorized interception. Enhanced secure error correction protocols,

tailored for molecular environments, can address this gap by integrating lightweight

cryptographic algorithms with error correction methods:

XOR-Based Masking: Researchers can ensure confidentiality by combining data

with a secret key or mask before applying error correction. For instance, XORing

the data with a shared secret key renders the information inaccessible to unautho-

rized parties. This operation adds a layer of protection with minimal computational

overhead, making it ideal for resource-limited MC systems.

Lightweight Cryptographic Algorithms: Algorithms such as the Tiny Encryption

Algorithm (TEA) and its variation, the Extended Tiny Encryption Algorithm (XTEA),
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provide secure and computationally efficient encryption options for molecular com-

munication. These algorithms rely on simple operations like addition, XOR, and bit

shifts, ensuring compatibility with the constraints of molecular systems [11,186]. Ad-

ditionally, lightweight stream ciphers, such as Grain and Trivium, can encrypt data

bit by bit, offering efficient encryption for MC systems with modest transmission

rates.

Authentication and Integrity Verification: Integrating keyed hash functions, such

as HMAC (Hash-based Message Authentication Code), with error correction ensures

that only recipients with the correct key can verify message authenticity and integrity

[116]. This method helps secure transmitted data against unauthorized modifications

while maintaining low computational complexity.

Pseudo-Random Permutations: Using pseudo-random permutations to scramble

data with a shared secret key before applying error correction provides an additional

layer of obfuscation. This technique ensures only legitimate parties can reverse the

permutation and access the transmitted message.

6.5.3 Bio-inspired Security Mechanisms

Designing security mechanisms for molecular and nano-communication (MC) sys-

tems using principles inspired by biological systems can provide robust protection

against unauthorized access. Leveraging molecular camouflage, selective receptor

activation, and other adaptive biological strategies ensures that only designated re-

cipients can decode communication while increasing system resilience against inter-

ception.

Molecular Camouflage: Molecular camouflage adapts a biological concept

where organisms blend into their environment to evade predators or threats. In

the context of MC, this approach involves altering the chemical properties of signal
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molecules to mix with environmental background noise, making the communication

signal indistinguishable from common metabolites or environmentally benign chemi-

cals. Such a strategy reduces the likelihood of signal detection by unauthorized enti-

ties [47, 104]. For example, signal molecules could be engineered to mimic naturally

occurring compounds within the medium, effectively disguising the communication

process while maintaining functionality for authorized recipients.

Selective Receptor Activation: Selective receptor activation mirrors receptor-

ligand interactions in biological systems, where only specific receptors can bind to

corresponding ligands. Applying this concept to MC, messages are encoded to en-

sure that only devices or recipients equipped with matching receptors can decode

and interpret the signal [17, 106, 129]. This creates a secure communication channel

where intercepted signals remain inaccessible to unauthorized entities. For instance,

ligands in the transmitted signal could be designed to bind exclusively to receptors

with unique structural or chemical properties, ensuring that only legitimate recipients

respond.

Dynamic Security Mechanisms: Biological systems inherently adapt to

changing environmental conditions, a principle that can enhance security in MC. By

designing communication protocols capable of dynamic security adjustments, systems

can respond to potential threats or interference in real-time. For example:

• Signal encoding schemes can modify their structure or encryption keys in re-

sponse to detected environmental changes or the presence of eavesdroppers [38].

• Dynamic alterations in the properties of signal molecules or receptors could fur-

ther obscure communication processes, making interception increasingly tricky.

Immune-Inspired Biomimetic Security: Drawing inspiration from the im-

mune system, which dynamically recognizes and neutralizes foreign entities, MC sys-
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tems can implement biomimetic security mechanisms to identify and mitigate unau-

thorized access. Similar to how immune responses adapt to evolving threats, commu-

nication networks could:

• Continuously monitor for anomalies in the communication environment.

• Implement countermeasures such as altering molecular signals, scrambling en-

coded messages, or deploying decoy signals to mislead unauthorized entities.

6.5.4 Hybrid Communication Networks

Hybrid communication networks, which combine electromagnetic (EM) and molec-

ular communication (MC), offer a versatile and robust solution to address the inher-

ent weaknesses of each individual communication mode. By dynamically switching

between these modalities based on environmental factors and security needs, these

systems improve reliability, adaptability, and security in diverse operational contexts.

Addressing Electromagnetic Interference with Molecular Communi-

cation: Electromagnetic interference (EMI) presents a significant challenge to tra-

ditional communication systems, particularly in environments with high EM noise,

such as industrial settings or conflict zones. Hybrid networks effectively mitigate this

limitation by integrating molecular communication, which operates discreetly and in-

dependently of electromagnetic channels. Due to its short range and low detectability,

MC ensures secure transmission when EM channels are compromised or disrupted.

For instance, during signal jamming or eavesdropping, the system can switch to MC

to maintain message integrity and confidentiality.

Enhancing Security Through Redundancy: Hybrid networks leverage multi-

channel redundancy to enhance security and reliability. These systems ensure robust

data delivery even during disruptions in one channel by transmitting critical messages
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through both MC and EM modalities. This redundancy strengthens the network’s

resilience to failures caused by signal deterioration, jamming, or other security vul-

nerabilities [120]. For example, the simultaneous use of EM and MC can safeguard

communication by providing alternative pathways for message transmission, effec-

tively reducing the likelihood of data loss or interception.

Advantages of Molecular Communication in Secure Transmissions:

MC offers unique advantages in secure communication due to its covert and

biologically-inspired nature. Unlike EM signals, which are relatively more straight-

forward to intercept and decode, molecular signals require specific receptors for de-

tection, making them inherently resistant to eavesdropping [57]. This property makes

MC particularly valuable in sensitive applications, such as military operations or in-

dustrial settings, where maintaining secrecy is paramount. The ability to encode

messages into biochemical signals further enhances security by masking communica-

tion within biological processes.

Dual-Layered Security with Modern Encryption Techniques: Hybrid

networks enhance security by combining the stealth capabilities of MC with advanced

encryption techniques applied to EM communication. This dual-layered approach

mitigates security threats, including data interception and unauthorized access at-

tempts. For example, encryption algorithms like AES or lightweight cryptographic

methods can secure EM transmissions, while the intrinsic properties of MC ensure

low detectability and restricted access to molecular signals. These measures create a

comprehensive security framework that protects data integrity and confidentiality.

Application Scenarios for Hybrid Networks:

• Biomedical Applications: The Internet of Bio-Nano Things (IoBNT) hybrid

networks play a critical role in biomedical applications, such as drug delivery,
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where nano-machines interact with the human body to release medication at

precise locations. Secure biochemical communication between nano-machines

ensures only intended recipients activate, reducing errors and adverse effects.

This capability significantly improves the precision and safety of medical in-

terventions, making hybrid networks an essential component of IoBNT sys-

tems [157].

• Environmental Monitoring: In high-EMI environments, such as industrial

zones or disaster areas, hybrid networks enhance the accuracy and security

of environmental data collection. Molecular communication ensures reliable

transmission of ecological data despite electromagnetic noise, preserving data

integrity and improving monitoring precision [192]. This ensures consistent and

secure data flow, even in challenging operational settings.

Challenges in Implementing Hybrid Communication Networks: While

hybrid communication networks provide significant benefits, several challenges must

be addressed to realize their full potential:

• Mode Switching Protocols: Designing efficient protocols for seamless tran-

sitions between EM and MC modes without data loss or delay is critical.

• Interference Management: Ensuring that molecular signals and electromag-

netic waves do not interfere with one another during concurrent operation.

• Energy Efficiency: Nano-machines involved in molecular communication typ-

ically have limited energy resources. Optimizing energy use is essential to pro-

long operational lifespans.
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• Data Integrity and Synchronization: Coordinating data transmission

across two distinct communication modalities while maintaining synchroniza-

tion is complex.

6.5.5 Decentralized Authentication Systems

Adaptable and decentralized authentication systems can be designed for nanode-

vices by leveraging their intrinsic properties and interactions, mimicking biological

processes such as quorum sensing, the immune system, and swarm intelligence. These

approaches establish trust and authenticate devices without reliance on centralized

control, ensuring resilience and scalability.

Quorum Sensing for Decentralized Authentication: Quorum sensing, a bi-

ological mechanism bacteria use to coordinate behavior based on population density,

offers an effective model for decentralized authentication. Nanodevices can utilize

quorum sensing principles to collectively determine device authenticity by exchang-

ing signaling molecules. When a sufficient concentration of signals is detected, a

coordinated action—such as granting access or verifying authenticity—can be trig-

gered. This mechanism ensures distributed decision-making and improves security by

reducing reliance on a central authority [34].

Immune System-Inspired Key Distribution: The immune system is an-

other biological analogy for decentralized key distribution. As the immune system

disseminates antibodies to detect and neutralize pathogens, nanodevice networks can

dynamically distribute cryptographic keys. These keys are generated and shared

based on interaction patterns within the network, ensuring no single point of fail-

ure. This dynamic, distributed approach enhances resilience to attacks, as keys are

adapted and redistributed in response to changing conditions or threats [45].

Adaptive Authentication Protocols: Adaptive authentication protocols can
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dynamically adjust according to the network’s operational requirements and threat

levels. These protocols may update trust thresholds, quorum signal requirements,

or cryptographic key rotation intervals in response to environmental changes or de-

tected risks. For example, during high-threat periods, the network may increase the

number of authentication signals needed or implement stricter validation criteria.

This dynamic adaptability enhances the system’s robustness, enabling it to respond

effectively to evolving threats.

Swarm Intelligence for Self-Organizing Authentication: Nanodevice net-

works can employ swarm intelligence algorithms inspired by natural systems like ant

colonies and bird flocks. In swarm intelligence, individual entities follow simple, lo-

calized rules, resulting in emergent, organized behavior. Nanodevices can use similar

algorithms to self-organize and manage authentication processes without centralized

oversight. Such systems can adapt seamlessly to the addition or removal of devices

and continuously optimize authentication protocols in response to network changes.

These methods increase scalability and resilience while minimizing vulnerabilities as-

sociated with centralized systems [23,24].

Autonomous Verification Systems: Nanomachines can independently incor-

porate autonomous verification systems to validate other devices’ authenticity. These

systems can employ lightweight cryptographic methods, such as public-key cryptog-

raphy, digital signatures, or hash-based algorithms, to verify device identity and

communication integrity. Autonomous verification reduces dependence on a central

authority and enhances network resilience against attacks targeting centralized com-

ponents. Distributed ledger technologies, such as blockchain, could further bolster

these systems by ensuring tamper-proof transaction records and facilitating trustless

verification [42,203].



200

6.6 Chapter Summary

The advancements in molecular and nanoscale communication (MC) systems can

potentially revolutionize fields such as healthcare, environmental monitoring, and

smart technology. However, these cutting-edge systems introduce unique security

vulnerabilities, including susceptibility to eavesdropping, data integrity breaches, and

malicious interference. Addressing these challenges necessitates the development of

novel security mechanisms tailored to the molecular communication paradigm, such

as bio-inspired encryption, efficient error correction methods, and adaptive, resource-

efficient protocols.

Future research should focus on integrating security measures that align seam-

lessly with the biological environments in which these systems operate. Leveraging

innovative solutions like DNA-based cryptographic techniques, multi-layered security

frameworks, and biomimetic strategies offers a promising path forward. The confi-

dentiality, integrity, and availability of transmitted data must remain at the forefront

of MC system design to ensure these networks are robust, reliable, and suitable for

real-world applications.

This study provides a comprehensive overview of the current state of security in

MC systems, identifies existing gaps, and highlights potential research directions. By

addressing these challenges, researchers can drive the development of secure molecular

and nanoscale communication systems, facilitating their adoption in critical applica-

tions and unlocking their full transformative potential.
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