
MACHINE LEARNING BASED DEVICE TYPE CLASSIFICATION FOR IOT

DEVICE RE- AND CONTINUOUS AUTHENTICATION

by

Kaustubh Gupta

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Nirnimesh Ghose

Lincoln, Nebraska

May, 2022

MACHINE LEARNING BASED DEVICE TYPE CLASSIFICATION FOR IOT

DEVICE RE- AND CONTINUOUS AUTHENTICATION

Kaustubh Gupta, M.S.

University of Nebraska, 2022

Adviser: Nirnimesh Ghose

Today, the use of Internet of Things (IoT) devices is higher than ever and it is

growing rapidly. Many IoT devices are usually manufactured by home appliance

manufacturers where the security and the privacy is not the foremost concern. When

an IoT device is connected to a network, currently, there does not exist a strict

authentication method that verifies the identity of the device, allowing any rogue

IoT device to authenticate to an access point. This thesis addresses the issue by

introducing methods for continuous and re-authentication of static and dynamic IoT

devices respectively. We introduce mechanisms and protocols for authenticating a

device in a network through leveraging Machine Learning (ML) to classify not only

if the device is IoT or not but also the type of IoT device attempting to connect to

the network with an accuracy over 95%. Furthermore, we compare different types of

machine learning classifiers to best estimate the types of IoT device and use them to

develop a stricter and more efficient method for authentication.

iii

DEDICATION

To my parents for always supporting me and making it possible for me to chase my

dreams.

iv

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude and appreciation to my

academic advisor Dr. Nirnimesh Ghose for his advice, support, motivation, and

patience throughout the last two years. Through his vast knowledge and experience,

he taught me where to explore, how to think while performing research and how to

present my work. I am extremely fortunate to have him as my advisor and as my

mentor. This thesis would have been impossible without his guidance.

I am grateful to Dr. Byrav Ramamurthy for his support and guidance throughout

my time as an undergraduate and then as a graduate student. My career as a graduate

student at the University of Nebraska - Lincoln would not have been possible without

him.

I would like to thank Dr. Lisong Xu and Dr. Byrav Ramamurthy for serving on

my master’s committee and for providing insightful and valuable input that helped

me make this thesis better.

I am extremely grateful to my mother Kanika Gupta, my father Sandeep Gupta,

and my sister Anubhuti Gupta for their love, prayers, support, and guidance through-

out my life; you have always been my source of inspiration, confidence, and success.

I am also grateful and fortunate to have my partner and best friend Kelbie Schnieder

and her parents Patti Schnieder and Kent Schnieder. Your love, care and support

give me the strength to overcome any difficulties that I may face.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 3

2 Background and Related Work 6

2.1 Machine Learning Based Authentication 6

2.2 Proximity Based Related Work . 8

3 Models and Preliminaries 10

3.1 System Model . 10

3.2 Adversary Model . 12

3.3 Security Requirement . 12

3.4 Preliminaries - Machine Learning Models 13

3.4.1 Supervised Learning (SL) . 14

3.4.2 Random Forest Classifier . 14

3.4.3 K-Nearest Neighbors Classifier 15

3.4.4 Gradient Boosting Classifier 16

vi

3.4.5 Support Vector Machine Classifier 17

3.4.6 Gaussian Naive Bayes Classifier 18

4 Protocol 19

4.1 Device Fingerprint Generation . 19

4.2 Device Type Classification . 21

4.2.1 RADTEC: The Protocol . 22

5 Security Analysis 25

5.1 Analysis of RADTEC . 25

5.2 Analysis of the Classification Technique 26

5.3 Discussion . 27

6 Implementation 30

6.1 Dataset . 30

6.2 Device Identification . 31

6.2.1 Algorithm selection . 32

6.2.2 Data Pre-processing . 32

6.2.2.1 Data Cleaning and Splitting 32

6.2.2.2 Standardizing Features 33

6.2.2.3 Numerical Imputation 33

6.2.2.4 Feature Engineering 33

6.3 Training and Testing . 35

7 Results 36

7.1 F1 Score . 36

7.2 Accuracy Score . 38

vii

8 Conclusion and Future Work 41

8.1 Future Work . 42

Bibliography 43

viii

List of Figures

1.1 Thesis Overview . 4

3.1 System Model . 11

3.2 Supervised Learning . 14

3.3 Random Forest Classifier . 15

3.4 K-Nearest Neighbors Classifier . 16

3.5 Gradient Boosting Classifier . 17

3.6 Support Vector Machine Classifier . 18

4.1 Verifier . 22

6.1 Feature Importance Scores . 34

7.1 F1 scores for Random Forest Classifier (RFC), Gradient Boost Classifier

(GBC), K-Nearest Neighbors Classifier (KNN), Support Vector Machine

Classifier (SVM), and Gaussian Naive Bayes Classifier (GNB). 38

7.2 Accuracy vs Model plot for Confidence Interval 39

ix

List of Tables

4.1 Features with corresponding importance score. 20

6.1 List of IoT devices and their classes . 31

6.2 Time required for training each model and the average time required to

classify one device. 35

7.1 Upper bound and lower bound of 95% Confidence Interval (CI) 40

1

Chapter 1

Introduction

The Internet of Things (IoTs) stems from the idea of interconnecting most contem-

porary devices in the network. Many of these devices are wirelessly connected to

facilitate the deployment process. Recently, there has been an explosion of embed-

ding wireless capabilities in several devices, which is expected to reach 42 billion

devices worldwide by 2025 [17]. Network connected devices include devices such as

internet-enabled appliances, medical devices, smart locks, wearables, home monitor-

ing sensors, cameras, industrial sensors and actuators, and many more [3, 19, 13].

These devices collect a large amount of sensitive information about the user’s where-

abouts, health, behavior, and environment [13]. They are also responsible to perform

tasks that are safety-critical, such as safe flying of UAVs, automatically regulating

one’s heart rate and delivering drugs, controlling entry to one’s residence, controlling

gas and electric appliances, etc. [13]. For example, a smart garage door provides ac-

cess to the house premises, a remotely programmed pacemaker controls the electrical

pulses applied to the heart [42, 13], and a smart insulin pumps continuously monitor

and adjust insulin delivered to diabetic patients [18, 13].

The security of these devices is prone to two significant vulnerabilities; first, the

insecurities and vulnerabilities in the firmware and second, the secrets utilized to

2

bootstrap security are prone to compromise. The Common Vulnerabilities and Ex-

posures (CVE) database of vulnerabilities alone consists of over 900 records related

to the keyword “IoT” depicting the vulnerabilities of firmware [10]. Furthermore,

the compromised secrets can be utilized by an unauthorized party to inject/modify

sensitive data [5, 38, 8, 15, 11]. Therefore, both vulnerabilities compromise the secu-

rity of the whole network. One of the available ways to address this issue is to use

a policy-based access control to prevent insecure devices from taking control of the

home network [23]. However, the state-of-the-art requires manual configuration of

the policies and is not capable of automatically distinguishing device capabilities to

enforce the policy.

1.1 Motivation

Previous work includes several attempts to improve the authentication process of an

IoT device with a network. Different approaches include authentication based on the

proximity of the IoT device, while others provide methods of authentication through

machine learning by predicting if a device is IoT or not IoT, or by predicting the class

of an IoT device such as cameras, hubs, electronics. However, none of the previous

state-of-the-art solutions such as proximity-based solutions provide an extensive pro-

tocol or methods that are completely independent of any interaction by the user after

the initial authentication or machine learning-based solutions where the protocol is

independent of vulnerable network characteristics such as the MAC address and a

protocol that identifies the type of IoT device with high accuracy and provides a

complete and efficient solution that can be used in the real-world.

To advance the previous work done to improve the authentication of an IoT device

3

in a network, the goal of this thesis is to propose a protocol that introduces the

following key-important features that have not yet been addressed in any of the

previous state-of-the-art solutions;

• The scenario of credential compromise has not been addressed in previous work.

The effect of the compromise can be reduced by minimizing the user interaction

after initial password authentication of the IoT device with the access point.

One way to achieve this is to automate the IoT authentication process through

the use of machine learning.

• Several existing machine learning models do not classify the type of IoT device;

therefore, the machine learning models should be able not only to classify a

device as IoT or not IoT, but also to classify the type of IoT device that attempts

to authenticate with the network with high accuracy.

• If the primary machine learning model cannot classify a device with high ac-

curacy, the protocol should take further steps to provide a classification using

backup machine learning methods.

• The proposed protocol should consume the least amount of time and memory

for each authentication instance and should not depend on the vulnerable char-

acteristics of the device or the network, such as MAC addresses, which can

easily be spoofed.

1.2 Contribution

The proposed technique utilizes cross-layer data including network, data link, trans-

port, and application to perform the device type level classification. The intuition is

to fingerprint the IoT device behavior and prevent them from having advanced access

4

available to non IoT devices such as computers and smartphones. However, this still

leaves vulnerable IoT devices as the weak link to the network. Such as in a home

network, it would not prevent monitoring IoT devices such as a camera to perform

actuation such as opening a garage door. The deployed policy will give the same level

of capabilities to all IoT devices.

Figure 1.1: Thesis Overview

In this thesis, we address the case where a vulnerable IoT device can be compro-

mised by an adversary, where it can be manipulated to 1. capture network traffic,

2. poison the network by uploading malicious packets and, 3. actuate a device to

perform activities of some other type of device, such as allowing a smart camera to

operate as a garage door opener, as shown in Fig. 1.1 showing the overview of the

setup.

Thus, to tackle this problem, we propose using the existing deployment of the

device type policy [23] with an ML-based device type classification to limit network

access according to device capabilities. In contrast to existing work, we propose a

novel technique to perform device-type classification and re- and continuous authen-

5

tication of the devices accordingly. RADTEC - Re- and continuous Authentication

based on Device TypE Classification utilizes cross-layer data (network, data link,

transport, and application) to perform classification into six categories: Home As-

sistant, Smart Camera, Smart Electrical and Lighting, Smart Sensor, and Non-IoT

devices. The re- and continuous authentication is based on the credentials presented

by a device match the device type in the database. This prevents any adversary from

compromising the preloaded secret of a monitoring device and from being able to

actuate devices on the network. The main contribution of our work is as follows:

• We present a device type-based re- and continuous authentication protocol. The

protocol is capable of preventing any adversary with a compromised secret from

imitating more advanced devices.

• We perform extensive theoretical security analysis to prove the security of the

proposed technique against an advanced adversary capable of compromising

weak IoT devices.

• We perform extensive experimentation by utilizing the available data [37] for

our ML-based device type classification technique to show the performance of

various classifiers based on algorithms including Random Forest [32], K-Nearest

Neighbors [30], Support Vector Machine [33], Gradient Boosting [29], and Gaus-

sian Naive Bayes [31]. We also show that the Random Forest Classifier [32] is

the most efficient in performing accurate classifications.

6

Chapter 2

Background and Related Work

The problem of developing a strict authentication protocol for IoT devices has re-

cently been tackled, where some researchers have proposed machine learning-based

techniques to differentiate several types of IoT devices from non-IoT devices, while

others have proposed proximity-based solutions. In this section, we discuss the work

done by several researchers in the related area. We then describe the outcomes and

limitations of their work.

2.1 Machine Learning Based Authentication

In recent work, the authors have provided a system capable of automatically identify-

ing the type of IoT device through the use of machine learning (ML) and limiting the

communication of vulnerable devices to minimize damage inflicted on the network

[24]. However, the protocol relies on MAC addresses to identify a new device try-

ing to authenticate with the network, which can be spoofed. Furthermore, the work

does not consider the case where a previously authenticated device is compromised

or a re-authentication process for every time the device is reintroduced into the net-

work. Bremler et al. focus on distinguishing between IoT a Non-IoT (NoT) devices

through the use of ML classifiers to assign relevant security policies to the device [7].

7

However, among several drawbacks, the biggest limitation is demonstrated by their

classification technique since their classification model is only capable of classifying

a device as IoT or not-IoT. Not addressing this issue would allow the adversary to

compromise a vulnerable device to actuate activities that should only be performed

by a different kind of device, for example, using a vulnerable smart camera to open

a lock or a garage door. In another work, the authors aim to automatically detect

suspicious IoT devices in a network through the Random Forest classifier and white

list devices that are classified as trustworthy [22]. The drawback of this approach is

that if a vulnerable device that has already been whitelisted is compromised by an

adversary, it would give the adversary unrestricted access to the network, since the

network is not capable of identifying the change in device behavior. In other work,

the authors propose IoT security solutions based on ML techniques, including rein-

forcement learning, unsupervised learning, and supervised learning to improve IoT

systems spoofing resistance and detection and to authenticate a device to protect

data privacy [41]. Their work attempts to detect an attack through several machine

learning techniques; however, each attack is identified through a different machine

learning model, which can end up utilizing a large number of resources such as mem-

ory and time. Furthermore, in our opinion, if the models are trained to detect an

attack by observing a certain pattern, the attack in real-life might differ from what

the models are trained to identify which could potentially leave attacks undetected.

A survey related to ML-based classification techniques to detect and identify legit-

imate and rogue IoT devices to provide security where conventional approaches that

use cryptographic protocols cannot be applied [21]. However, the paper demonstrates

limitations as it does not present a complete and formal authentication protocol that

can incorporate the ML techniques presented in order to protect the network from

8

certain attacks in real life. An in-depth survey of different machine learning tech-

niques that can be used in the field of IoT to intelligently monitor the security of

IoT devices to implement certain security measures such as authentication, network

and application security, access control, and encryption is presented in [4]. The work

focuses mainly on detecting attacks by monitoring the behavior of the IoT device;

however, it does not extend machine learning classification techniques to differentiate

between several types of IoT devices.

Finally, for our work, we utilize the data collected by [37]. The authors of the

data present an IoT device type classification method that uses multiple classifiers

trained on different types of quantifiable and textual data such as DNS query content,

port numbers, cipher suite, etc. Finally, they present a combined classifier with an

accuracy over 99%. However, even though they provide a highly accurate model for

classifying the different types of IoT devices, they do not provide a formal authenti-

cation protocol that can utilize the proposed classification techniques. Furthermore,

we believe that our approach is more efficient, as it relies only on quantifiable data

to provide a classification.

2.2 Proximity Based Related Work

The state-of-the-art proximity-based solution proposed in [44] is based on several

physical activities performed by a user, such as moving a smartphone towards and

away from an IoT device and rotating the smartphone to authenticate an IoT device.

The work provides a notable contribution in the field of IoT device authentication;

however, it requires a significant amount of work to be performed by the user. Further-

more, the authors only address initial authentication and do not discuss the measures

9

that must be taken if an already authenticated vulnerable device is compromised.

In other work, the authors propose a proximity-based user authentication solution

for voice-powered IoT devices [14]. The work presents a voice-based distance esti-

mation technique to authenticate IoT devices using technologies such as Bluetooth,

speakers, and microphone. However, the biggest constraint for the proposed method

is that it is only applicable to voice-powered IoT devices. Shafagh and Hithnawi pro-

pose another proximity-based solution for IoT device authentication by solely utilizing

the wireless communication interface [35]. Their method attempts to differentiate a

legitimate request for authentication from an illegitimate one by the use of ambient

radio signals that estimates the proximity of an IoT device. However, their solution

presents limitations, since it does not account for a device in close proximity being

compromised due to its security vulnerabilities, which could lead an adversary to per-

form attacks such as actuation, poisoning the network, and capturing network traffic.

The techniques used for device identification in [25] only identify if a device has been

compromised and do not provide a formal authentication protocol that can utilize

the proposed solution to authenticate an IoT device before establishing a connection

with the network. Finally, in other work, the authors propose a device identification

based on fingerprint recognition of the wireless device chipset [27]. However, their

solution is not capable of identify a compromised legitimate device.

10

Chapter 3

Models and Preliminaries

In this chapter, we first present the system model, which consists of three main

components: legitimate devices, a hub, and a verification server. Next, we discuss

the adversary model, which discusses several possible ways that an adversary can

exploit a vulnerable device to: 1. capture network traffic, 2. poison the network by

injecting malicious packets, and 3. actuate a device to perform activities of some other

type of device. Furthermore, we present the security requirements of the RADTEC

protocol to authenticate devices based on device-type classification, and finally, we

give a brief overview of the machine learning techniques and algorithms we employ

in this thesis.

3.1 System Model

The system model identified for this work is similar to a network containing IoT de-

vices. The main components of the system are shown in Fig. 3.1, which are:

Legitimate devices (D): Legitimate devices have already established trust with

the network using any existing technique [40, 39, 12]. There is no limitation to the

security requirement and capabilities of the devices.

11

Figure 3.1: System Model

Hub (A): The hub is responsible for serving legitimate devices. The hub also

performs initial trust establishment and verification of existing credentials. The hub

provides the connection between the devices and the Internet and is able to see the

headers of various layers.

Verification Server (V): The verification server is responsible for performing device

type classifications based on the traffic pattern. The verification server is accessed

by the hub as a cloud service. The hub collects the traffic pattern and transmits it

to the verification server to receive the classification. A and V are assumed to have

a trusted communication channel. This channel can be realized using any contem-

porary cryptographic technique so that an authenticated encryption AE K(·) can be

implemented [6].

12

3.2 Adversary Model

The adversary (M) is capable of compromising any of the legitimate devices by any

method such as but not limited to exploiting the firmware vulnerabilities, or database

compromise of pre-shared secrets [20, 26]. The adversary can utilize compromised

knowledge to hijack a vulnerable device in the network as an attempt to,

• Poison the network by injecting malicious packets,

• Capture network traffic to extract sensitive data,

• Actuate a device to perform activities of some other type of device.

We assume that the adversary has no prior knowledge of the traffic pattern of any

compromised legitimate device. This is a reasonable assumption because the adver-

sary, when learning the compromised secrets, does not have access to the legitimate

device to capture and perform traffic pattern analysis.

3.3 Security Requirement

The security requirement of RADTEC is to authenticate devices based on the classifi-

cation of the device type. The hub is responsible for the verification of the credentials

and for the comparison of claimed and observed device types based on the traffic

pattern. The hub and the verification server can be assumed to be a single entity as

a secured gateway. The secured gateway performs: 1) initial trust establishment, 2)

policy-based network access, and 3) re- and continuous and authentication of devices.

The first can be achieved using any of the existing methods [40, 39, 12]. The as-

sumption here is that, after the initial user-initiated trust establishment, each device

13

is assigned independent credentials. This is already present in existing technologies

such as WiFi Protected Setup (WPS), where device-specific Pre-Shared Keys (PSK)

are assigned for WPA2 or WPA 3 [39]. These keys can be utilized for any subsequent

authentication or to build future security properties of integrity verification or confi-

dentiality.

For the second, the network can implement levels of network access based on

known vulnerabilities of a device type [24]. To implement these policies on a mi-

crolevel, we developed a classification technique that can distinguish between various

types of IoT devices. The known vulnerabilities of these device types can be extracted

from a vulnerability database such as the Common Vulnerabilities and Exposures

(CVE) [10] and utilized to tailor the policies.

Finally, the intuition behind the third is to provide an additional modality during

the re- and continuous authentication phase. In addition to the credentials, the

behavior of the device should match previously known behavior. The secured gateway

saves the traffic fingerprints with the credentials and utilizes them as parameters

for during re-authentication. Therefore, an adversarial device now not only has to

compromise credentials, but also mimics the known traffic pattern of the compromised

device to authenticate with the network.

3.4 Preliminaries - Machine Learning Models

In this section, we describe supervised learning and five different types of supervised

machine learning algorithms used to classify the type of IoT device in the network.

These algorithms include the Random Forest Classifier, K-Nearest Neighbors, Sup-

14

port Vector Machine Classifier, Gradient Boost Classifier, and Naive Bayes Classifier.

3.4.1 Supervised Learning (SL)

Supervised Learning is a sub-category of machine learning where the learning of an

algorithm is supervised. This essentially means that the algorithm is taught by using

examples. As shown in Fig.3.2, the data collected is first labeled into its respective

categories by a supervisor. This data is then pre-processed and split into train and

test datasets. The algorithm uses training data that consist of labeled input data for

training, where it searches for patterns and then correlates each data point with its

respective label. Then, for prediction, the unsupervised machine learning algorithms

take the unseen test data and attempt to make a determination of its label by using

patterns learned during the training process.

Figure 3.2: Supervised Learning

3.4.2 Random Forest Classifier

The Random Forest Classifier is based on a decision tree like structure at its core,

and it can be categorized as an ensemble-based learning method used for making

classifications. The algorithm is called ensemble-based because it makes a prediction

using an ensemble of large amounts of different and completely uncorrelated decision

trees. The final result is based on the predictions made by each individual decision

15

tree where the class with the majority of votes is the models final prediction.

Figure 3.3: Random Forest Classifier

3.4.3 K-Nearest Neighbors Classifier

The K-Nearest Neighbor (KNN) classifier is a supervised machine learning algorithm,

mostly used for solving classification problems. The algorithm works by estimating

the test data point in a group, based on its nearest “K” number of neighbors. Fur-

thermore, the algorithm does not require any training; instead, it stores the training

dataset and considers the training data points as neighbors of each test data point

during the classification process. For example, if K=5, the algorithm will look at the

five nearest neighbors (from the training data set) of the test data point, and if three

out of five neighbors belong to class A and two out of five belong to class B, the final

16

classification of the test data point will be class A.

Figure 3.4: K-Nearest Neighbors Classifier

3.4.4 Gradient Boosting Classifier

The Gradient Boosting Classifier is a supervised machine learning algorithm based on

the ensemble technique, which means that it utilizes the predictions made by several

different weak decision trees to give a strong final prediction. The gradient boosting

algorithm uses an additive approach to build the model by typically adding several

decision trees sequentially, where in each iteration, the successor tree utilized the re-

sults generated by its predecessor tree to reduce error. The processes, also shown in

Fig.3.5, effectively reduces the error over several iterations, which helps the algorithm

to provide its final predictions.

17

Figure 3.5: Gradient Boosting Classifier

3.4.5 Support Vector Machine Classifier

The Support Vector Machine Classifier is a supervised machine learning algorithm,

mostly used for solving classification problems. The algorithm plots all data points

with an ‘n’ number of features in an n-dimensional space, and the coordinate value

of each data point is the value of the feature. Finally, classification is performed by

finding hyperplanes that differentiates the multiple classes, and if a test data point

can be placed within a certain hyperplane, it will share the same class with the data

points in its neighborhood.

18

Figure 3.6: Support Vector Machine Classifier

3.4.6 Gaussian Naive Bayes Classifier

The Gaussian Naive Bayes Classifier is often used for classification jobs where the

values of all features are continuous and distributed in a Gaussian distribution. The

algorithm is called naive because it implies that the presence of any feature is com-

pletely independent of the existence of any other feature. It is based on the Bayes

theorem (Eq.3.1) which helps define the probability of the occurrence of hypothesis

A after the data B, is already given.

P (A|B) =
P (B|A)P (A)

P (B)
(3.1)

19

Chapter 4

Protocol

In this section, we present RADTEC - Re- and Continuous Authentication based on

Device TypE Classification. The main idea is to first perform device type classifi-

cation based on traffic pattern. Then utilizing the device type to perform additional

verification during the authentication process. Before diving into the protocol, we

present the machine learning-based device type classification technique. For device-

type classification, we first generate the fingerprint using features embedded in the

packet and use them to perform device-type classification.

4.1 Device Fingerprint Generation

The traffic from the legitimate device (D) is collected by the hub (A). The hub utilizes

the unique characteristics in the headers of different layers to collect device finger-

print. We chose to utilize the header as they are not encrypted and A does not have

access to the keys shared between D and cloud services. For generating the finger-

print, we propose using the n number of packets {pD(1), pD(2), . . . , pD(n)} for each

device D. For our work, we utilize the data collected by [37]. Initially, we extracted

19 characteristics from each packet, which we define as the feature f(i, j). However,

we chose to consider only the important features as removing unnecessary features

20

would improve efficiency in a real world scenario by reducing the time required for

model training and classification and the required memory. Therefore, we calculate

the importance scores for the features by utilizing the results provided by making

predictions using a basic random forest classifier. We chose seven out of 19 features

for which the importance score is greater than 0.05, as shown in Table 4.1. We first

selected this threshold by keeping the top five most important scores and considered

more features until the model performance was either unchanged or negatively af-

fected.

Feature OSI Model Layer Importance
Score

tcp.port Transport Layer 0.066480
tcp.stream Transport Layer 0.094845

frame.time delta Physical Layer 0.096504
ip.len Network Layer 0.099793
ip.ttl Network Layer 0.102245

tcp.window size Transport Layer 0.125575
frame.time relative Physical Layer 0.163713

Table 4.1: Features with corresponding importance score.

Now, for a packet pD(i), from D we have seven fingerprint characteristics such as,

FD =



fD(1, 1) fD(2, 1) . . . fD(n, 1)

fD(1, 2) fD(2, 2) . . . fD(n, 2)

fD(1, 3) fD(2, 3) . . . fD(n, 3)

...
...

. . .
...

fD(1, 7) fD(2, 7) . . . fD(n, 7)


(4.1)

21

4.2 Device Type Classification

We perform classification of devices into seven different types: smart camera, smart

sensor, smart home assistant, smart electrical and lighting, smart speaker, and non-

IoT. The intuition behind choosing these types are camera and sensors collect in-

formation and home assistants can perform actuation. Thus, this will allow efficient

implementation of policies, preventing information gathering devices from actuating.

In addition, we diversify information gathering devices into cameras and sensors as

they collect data with different levels of privacy invasion. The camera gives more

information about user privacy as compared to the sensors.

We improve the efficiency and accuracy of the classification process by implement-

ing a threshold-based iterative classification technique. The collected dataset is first

divided into 80% for training and 20% for testing, then the five different models are

trained by fitting the training data on each model individually.

1. Initialization: After establishing a secure connection with the verifier, the

hub A transmits the fingerprint AE(FD) to the verification server V, using the

trusted channel.

2. Initial Classifier Evaluation: V selects the initial classifier Cx corresponding

to the hub A. The verifier server V obtains the type TD(i, x) and accuracy

a(i, x). If the accuracy a(i, x) ≥ τ, V transmits AE(TD(i, x)) to A. Otherwise,

V makes table with type and accuracy [TD(i, x); a(i, x)], and sorts it according

to accuracy in descending order.

3. Targeted Classifier Evaluation: V selects three types with highest accuracy

TD(i, x), TD(j, x), and TD(k, x). Further, V evaluates the fingerprint FD using

22

Figure 4.1: Verifier

the three classifiers Ci, Cj, and Ck corresponding to the types with highest

accuracy. If any of the accuracy of the classifiers a(y, y) ≥ τ ∀ y = {i, j, k},

V transmits the corresponding type AE(TD(y, y)) to A. Otherwise, repeat the

step.

4.2.1 RADTEC: The Protocol

The re- and continuous authentication protocol can be utilized for both kinds of

device: the devices re-introduced into the network or the devices constantly present

in the network. The intuition is to utilize the cryptographic credentials and observed

device type for authentication of the device. A device (D) that is being reintroduced

23

into the network or a constantly present device (D) that refreshes the credentials,

presents the credentials from the previous session to the hub (A). The hub verifies

the validity of the credentials and places the device in limited network access. During

the limited network access period, D is allowed to communicate to the Internet but

not to any other entities on the network. This lets the IoT device communicate with

the online service. During this communication, A captures the traffic transmitted

and received by D. Then A transmits the captured traffic to the verification server

(V). The server V computes the fingerprint of the device type based on the traffic

and compares the observed fingerprint of the device type with the fingerprint saved

in the database, and finally, returns the classification results to A.. If verification

is successful, D is given full access to the network according to the deployed policy;

otherwise, the device is disconnected and the credentials are marked as compromised.

Here the adversary (M) can compromise a device and obtain the credential and

attempt to connect to A. However, if the adversary is unaware of the device type

corresponding to compromised credentials, the adversary will be unable to mimic the

traffic pattern and fail the device type verification process. The user will be notified

of the compromise. the legitimate device with compromised credentials will have to

complete the manual initial trust establishment. Formally, the protocol follows the

following steps:

1. Initialization: The user initiates the initial authentication where the device

(D) then transmits the credentials CD := {KD, ID} to the hub A, where KD is

the pre-shared key and ID is the identity of D.

2. Limited Access: After verification of CD, A places D on limited access net-

work. In case of failure, the session is terminated by A.

3. Capture Traffic: The device (D) establishes the connection to the network

24

and transmits data to its cloud service. This traffic TD is captured by A for a

pre-determined time.

4. Device Type Classification: AE(TD) is transmitted by A to the verification

server (V) on the trusted channel. If the MAC address of the device is unknown,

V executes the classification algorithm on T̂D after verifying the integrity and

authenticity of the message. After the device has been successfully verified

through the classification process, the device type fingerprint FD is saved on a

database for future authentication.

5. Device Type Verification: If the MAC address of the device is known and the

device has been previously authenticated or after the device has been success-

fully classified, V retrieves the stored device type fingerprint FD saved on the

database corresponding to the identity ID. Finally, V performs the verification

F̂ ′
D

?
= FD. and sends the results to A.

6. Full Access: If the verification passes D is granted full access to the network

according to any deployed policy. Otherwise the session is rejected by A and

the credential CD is marked compromised.

7. Continuous-authentication: Any IoT device in the network with full-access

can be re-authenticated at least ‘n’ times a day by using Device Type Verifi-

cation to maintain the security of the network and to identify a compromised

device.

25

Chapter 5

Security Analysis

In this section, we analyze the RADTEC protocol and the classification techniques

used in this paper by discussing the key feature that makes the proposed solution

resistant to multiple attacks. Finally, we discuss some additional scenarios where

the protocol can be implemented to provide complete security to the system, which

involves implementing different authentication techniques based on the behavior of

the device.

5.1 Analysis of RADTEC

Initially, a user initiates the authentication of a new device through the use of device

credentials that utilize cryptographic techniques to create the initial connection be-

tween a device and the hub. RADTEC is capable of identifying whether a device is

known or unknown through the use of above mentioned classification techniques. The

protocol addresses scenarios where an adversary can: 1. exploit a vulnerable device

to inject malicious packets and therefore, poison the network [16], 2. use a vulnerable

IoT device to extract sensitive data even if the network packets are encrypted [2], 3.

compromise a vulnerable IoT device and actuate the activities that would typically

be performed by a different type of device [43]. We detect such attacks by using the

26

classifiers stored in the database as they are trained using the fingerprints of pre-

viously authenticated devices. When a machine learning model is asked to make a

prediction of a dataset that is similar to the dataset on which it was trained, it gives

a highly accurate classification. So, the idea here is that if a device is compromised,

the content of the data packets will change, and we can detect those changes by using

the classifiers in the database, since the fingerprint will now not be similar to the one

used to train the model initially.

Finally, once the verifier sends these results back to the hub, the hub will revoke the

full network access and only grant the device limited access to the network. It will fur-

ther remove the credentials of the compromised device from the list of authenticated

and the device will need to be reintroduced into the network and re-authenticated in

the future. If the device is still compromised during re-authentication, the classifiers

will not be able to provide an accurate classification of the device since the device

fingerprint will still be different. For example, if an IoT camera is compromised, the

classifiers in the verifier will not be able to classify the device as a camera since the

fingerprint collected from the device will not be similar to any IoT camera fingerprint

used to train the classifiers.

5.2 Analysis of the Classification Technique

We take the approach mentioned in this thesis rather than only identifying a new

device based on the MAC address like in [24], where the adversary could easily spoof

the MAC address of an already authenticated device and authenticate itself with the

hub [36]. In our approach, the device is classified every time it needs re-authentication

27

irrespective of its previous authentication with the server. The only time we use the

MAC address is to check if the device already exists in the database; so, even if the

MAC address is spoofed, the classifier in the database will not be able to make a clas-

sification with the highest accuracy since the fingerprint of the device does not match

with the one already stored in the database, creating a contradiction since the MAC

address is the same but the fingerprint of the device is completely different. This

would address the case where a vulnerable device is compromised since the traffic

pattern and, therefore, the fingerprint of the device will now be different from before.

The verifier will automatically be able to send this confirmation to the hub that the

MAC addresses match, but the fingerprint does not match, so this device must be an

illegitimate device.

This is based on the idea that when a machine learning model is trained and tested

on the same or at least similar dataset, it should provide predictions with the highest

accuracy. That is also the reason why we capture the traffic of a new device, and once

it is authenticated, we train a model solely on the fingerprint of the authenticated

device and store that model in the database.

5.3 Discussion

We assume that there are three scenarios in which a device needs to be re- and contin-

uous authentication. In this section, we present different scenarios in which a device

would need to be authenticated within a network to achieve full access.

When a new device is first introduced in the network, the hub collects the

device fingerprint and network information, such as the MAC address of the IoT de-

28

vice, and forwards it to the verifier. The verifier then looks up the MAC address in the

database and realizes that the device has not been previously connected. The device

type-level classifiers along with the targeted classifiers are used to make an accurate

classification of the device, and then, based on the results, the device is granted full

access to the network. The device fingerprint is further used to train a classifier and

store it in a database for future classifications, as explained previously in our protocol.

However, if a previously authenticated device moves in and out of the

network and requires re-authentication, the verifier simply collects the finger-

print of the device and its MAC address and uses it to first confirm whether the

device with the same MAC address has been previously classified. Then the verifier

attempts to make a classification of the device type using the classifier stored in the

database, and, based on the classification results, it notifies the hub to give full or

limited network access to the device.

Finally, if a device that constantly remains inside the network requires

continuous authentication and any device can be continuously authenticated up

to “n” number of times a day. The process of authentication then would be similar

to the re-authentication process.

The protocol addresses all three scenarios by correlating a device MAC address to

the ones previously stored in the database, and then providing authentication by the

use of the classification techniques applied in this paper. Furthermore, if a vulnerable

device is compromised by an adversary and the authentication credentials are stolen,

it will generally be the case that the adversary does not know the type of device.

However, even if the adversary is able to identify the type of device, the adversary

29

will not be able to perform any actions using the vulnerable device, since the classi-

fication model will notice the change in device fingerprint, resulting in blocking the

access given to the device.

It is important to note here that if a device is compromised, it will not be detected

until the next time the device needs to be re-authenticated and during that time, the

adversary can use the compromised credentials to perform malicious activities. This

is acceptable since the security administrator will be able to control the parameters

for performing multiple re-authentications for a device in a certain amount of time.

This process is similar to the frequency at which the key revocation process operates,

which depends on the security requirements of different devices and networks [9].

30

Chapter 6

Implementation

In this section, we discuss the selection of the data set and the process for device

identification. Additionally, we present the implementation techniques used to clas-

sify IoT devices such as data preprocessing involving, data cleaning and splitting,

standardizing features, numerical imputation, and feature engineering. Finally, we

discuss the training of the classifiers used to classify the type of IoT devices.

6.1 Dataset

Traffic between all devices listed in the table and the access point was acquired from

data collected at the University of New South Wales [37]. The data collected include

more than 28 IoT devices such as cameras, motion sensors, health monitors, appli-

ances, etc. A subset of data collected over the period of six months has been made

available as open-source. We chose 15 devices as shown in Table 6.1 and obtained

relevant information from packet capture files by extracting important features using

tshark into comma separated value files (.csv). After capturing the “n” packets from

the pcap file and the “f” features using tshark, we built the fingerprint matrix (n×f).

We further classified the different devices according to the type of device they are and

assigned them a class for the model training and testing process.

31

Device Name Category Class
Amazon Echo Smart Home Assistant 1

Netatmo Welcome Smart Camera 2
Samsung SmartCam Smart Camera 2

Dropcam Smart Camera 2
Insteon Camera Smart Camera 2

Belkin Wemo switch Smart Electric 3
and Lighting

Light Bulbs LiFX Smart Bulb Smart Electrical 3
and Lighting

Belkin wemo motion sensor Smart Sensor 4
Netatmo weather station Smart Sensor 4
Withings Smart scale Smart Sensor 4

Withings Aura smart sleep sensor Smart Sensor 4
Triby Speaker Smart Speaker 5

Samsung Galaxy Tab Non-Iot 0
Laptop Non-Iot 0
iPhone Non-Iot 0

Table 6.1: List of IoT devices and their classes

6.2 Device Identification

The device identification process is done by utilizing the device fingerprint collected

by the hub. The list of devices mentioned above consists of certain types of devices,

but not all types of IoT devices. However, our process for developing the ML model

is scalable. New categories of IoT devices can simply be trained on the combined

classifier and targeted classifiers through the use of device packet capture.

32

6.2.1 Algorithm selection

Based on previous work and approaches [4, 41, 7, 24], we decided to use the following

five classifiers: random forest, k-nearest neighbors, gradient boosting, näıve Bayes,

and support vector machine. However, we improved the previous work that classifies

the IoT device and performs only the IoT or non-IoT classification through higher

accuracy and a more efficient classification process. In our research, we not only

classified whether the device was an IoT device or not, but also performed a further

classification of the type of IoT device such as smart cameras, home assistants, smart

switches and plugs, etc.

6.2.2 Data Pre-processing

For better classification results the data was preprocessed by using several techniques.

Following are the techniques used in this paper,

6.2.2.1 Data Cleaning and Splitting

The pcap files had several data points and characteristics that were not relevant.

Therefore, once the pcap files were converted to csv files, we removed packets with

source ethernet addresses that were not required in our model. This included all out-

going traffic from the access point, since it does not require classification and would

only bias the predictions made by the classifier due to the large amounts of such pack-

ets present in the data. The empty columns representing empty values for features

were also removed since they do not provide any contribution to the classification

process. Finally, the entire dataset was labeled in different classes for training and

testing.

33

The data in the csv was loaded into a data frame and the labels were separated

out of the data frame splitting the data into X (features) and Y (labels). Then both

X and Y were randomly split into train and test data sets in a ratio of 80% and 20%

respectively.

6.2.2.2 Standardizing Features

Standardizing features is a requirement for many classifiers to achieve high accuracy.

We used the standard sklearn scale method to standardize the features in our dataset,

which subtracts the mean from the values and then scales it to unit variance,

z =
v −m

s
(6.1)

where, v = values of the sample dataset, m = mean of training samples and s =

standard deviation of the training samples

6.2.2.3 Numerical Imputation

We use numerical imputation to assign a value to missing values in any feature. It

is better than removing the entire packet since that would affect the amount of data

needed to make accurate classifications. Therefore, missing values are imputed to the

median values of each individual feature. This process is done by utilizing the fill na

method provided by the pandas data analysis tool.

6.2.2.4 Feature Engineering

First, we use a random forest search classifier to extract feature importance scores

from the 19 features shown in Fig.6.1. After calculating the importance scores for

34

the features, we set a threshold of 0.05 for the importance score of the features and

eliminated all features with importance scores below the threshold.

Figure 6.1: Feature Importance Scores

The data that we used to classify the type of IoT devices had several features that

were not useful for making predictions. Such features included tcp.urgent pointer,

ip.flags.mf, tcp.analysis.ack rtt, ip.proto, tcp.time delta, ip.flags.df, tcp.flags, tcp.len,

tcp.ack, udp.port, tcp.time relative, tcp.seq. These features were removed from the

dataset because they did not provide any valuable contribution, negatively affected

the required runtime and memory usage, and reduced the accuracy of the classifiers

used.

35

6.3 Training and Testing

After collecting and pre-processing the dataset, 80% of it was used to train each

of these five classifiers individually: Random Forest Classifier (RFC)[32], K-Nearest

Neighbors Classifier (KNN)[30], Support Vector Machine Classifier (SVM)[33], Gra-

dient Boosting Classifier (GBC)[29], and Gaussian Naive Bayes Classifier (GNB)[31].

The training process was performed using the fit method provided by sklearn, which

fits the model onto the data to later provide predictions [28]. During the training

process, the time taken to fully train each model was recorded and is shown in Table

6.2.

During testing, the labels for the test data were predicted by the previously trained

models, and the predicted labels were compared to the actual labels to calculate the

accuracy of the classifications provided by each model. This was done by the use of

accuracy score function provided by the sklearn.metrics library [34]. Finally, the time

required to train each model was calculated and the average time required to classify

a single data point is shown in Table 6.2

Model Train Time Test Time
Gaussian Naive Bayes Classifier 50 ms 0.23 ms

Random Forest Classifier 18.17 sec 0.63 ms
K-Nearest Neighbors Classifier 0.34 sec 0.92 ms

Support Vector Machine Classifier 110 min 3.67 ms
Gradient Boosting Classifier 2.9 min 6.89 ms

Table 6.2: Time required for training each model and the average time required to
classify one device.

36

Chapter 7

Results

In this chapter, we present the results of the classification algorithms employed in

this thesis to identify the device type-level classification. To achieve the most accu-

rate classification of all the IoT devices, we trained five different models including

Random Forest Classifier (RFC), K-Nearest Neighbors (KNN), Support Vector Ma-

chine Classifier (SVM), Gradient Boost Classifier (GBC) and, Gaussian Naive Bayes

(GNB) classifier and then evaluated their performance. The metrics used to analyze

each model performance were the F1 score and the accuracy score.

7.1 F1 Score

The F1 score is an evaluation metric used to determine the performance of a machine

learning classifier and is defined as the harmonic mean of recall and precision. It

gives a better insight about the classification made by each device type classifier as

it not only calculates the number of misclassifications made by the different models

but helps identify the types of mislassifications made.

Precision, also known as the positive predicted value, is the ratio between the

37

number of true correct positives and the total number of instances predicted to be

positive and is given by Eq. 7.1.

Precision =
Number of True Positives

Number of True Positives + Number of False Positives
(7.1)

Recall, also known as sensitivity, is the ratio between the correct true positives

and the total sum of the number of false negatives and true positives and is given by

Eq. 7.2.

Recall =
Number of True Positives

Number of True Positives + Number of False Negatives
(7.2)

The value of the F1 score can range between 0 and 1 where 1 is the highest score

a model can achieve and the values of both precision and recall are the highest. The

formula for the F1 score is given by Eq. 7.3.

F1 Score = 2× Precicion×Recall

Precision+Recall
(7.3)

We calculate the F1 score using the evaluation metric library provided by sklearn

.metrics [1]. The F1 score for each class within each model is plotted in the Fig. 7.1

where class 0 represent non-IoT devices, class 1 represents Home Assistants, class 2

represents Smart Camera, class 3 represents Smart Bulb & Smart Electrical, class 4

represents Smart Sensors, and class 5 represents Smart Speaker. The highest average

F1 score for all classes was provided by the Random Forest Classifier (RFC) where

it can further seen that the model is near perfect for differentiating between an IoT

and a non-IoT device.

38

0 1 2 3 4 5
Classes

0.0

0.2

0.4

0.6

0.8

1.0
F1

-S
co

re

F1-Score for Classes Predicted RFC

0 1 2 3 4 5
Classes

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

F1-Score for Classes Predicted GBC

0 1 2 3 4 5
Classes

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

F1-Score for Classes Predicted KNN

0 1 2 3 4 5
Classes

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

F1-Score for Classes Predicted GNB

0 1 2 3 4 5
Classes

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

F1-Score for Classes Predicted SVM

Figure 7.1: F1 scores for Random Forest Classifier (RFC), Gradient Boost Classifier
(GBC), K-Nearest Neighbors Classifier (KNN), Support Vector Machine Classifier
(SVM), and Gaussian Naive Bayes Classifier (GNB).

7.2 Accuracy Score

The accuracy score is an evaluation metric used for machine learning models to mea-

sure their performance by determining the ratio between the number of correct predic-

39

tions made by the classifier and the total number of predictions to be made (Eq. 7.4).

Additionally, the percentage of this score can be calculated to obtain the accuracy of

a classifier in terms of a percentage.

Accuracy Score =
Number of correct predictions

Number of total predictions
(7.4)

The function to calculate the accuracy of our machine learning models used to perform

multi-class classification was provided by the sklearn.metrics library [34]. After mak-

ing the predictions, we established that the Random Forest Classifier (RFC) was the

most accurate model for making predictions with an accuracy of 95.2%. The second

most accurate classifier was the Gradient Boost Classifier (GBC) with an accuracy of

94.8%, then the K-Nearest Neighbors Classifier (KNN) with accuracy 93.3%, Support

Vector Machine Classifier (SVM) with accuracy of 88.3%, and finally the Gaussian

Naive Bayes Classifier (GNB) with accuracy of 76.8%.

Figure 7.2: Accuracy vs Model plot for Confidence Interval

40

Furthermore, using the accuracy score, we also determine the 95% confidence

interval for each classifier. The method essentially provides an upper bound and a

lower bound for accuracy, which represents all the possible values accuracy can have.

Therefore, when any device needs classification, there will be a 95% likelihood for it

to be classified will lie between that range and is given by the following equation,

95% Confidence Interval = 1.96 ×
√

(accuracy × (1 − accuracy))

n
(7.5)

The upper and lower bounds of the 95% confidence interval for each classifier are

shown in the Table7.1 and its plot is shown in Fig.7.2.

Model CI Upper Bound CI Lower Bound
Random Forest Classifier 0.9527 0.9513

K-Nearest Neighbors Classifier 0.9338 0.9322
Support Vector Machine Classifier 0.8840 0.8820

Gradient Boosting Classifier 0.9487 0.9473
Gaussian Naive Bayes Classifier 0.7694 0.7666

Table 7.1: Upper bound and lower bound of 95% Confidence Interval (CI)

41

Chapter 8

Conclusion and Future Work

In this thesis, we proposed the RADTEC protocol as a solution to improve the secu-

rity of IoT devices. Through the use of several machine learning and cryptographic

techniques, RADTEC addresses the events in which an adversary can exploit a vul-

nerable device to: 1. capture network traffic, 2. poison the network by injecting

malicious packets, and 3. actuate a device to perform activities of some other type

of device. We then performed the security analysis of our protocol and presented

the implementation of device type level classification that utilizes cross-layer data,

including network, data link, transport, and application, and it was carried out using

five classifiers, where the performance of each classifier was measured using the accu-

racy and F1 score evaluation metrics.

We used the Random Forest Classifier, Gradient Boost Classifier, K-Nearest-

Neighbors Classifier, Support Vector Machine Classifier, and the Naive Bayes Clas-

sifier to identify whether a device in the network is an IoT device or not, and then

further classified the type of IoT device. Of all models, the Random Forest Classifier

was able to make the most accurate prediction with an accuracy score of 95.2% and

the highest average F1 score. Finally, the time required to train the models and the

average time taken to classify a single data point were recorded for all classifiers.

42

Gaussian Naive Bayes Classifier was found to be the fastest classifier for training and

testing; however, we prefer to use the Random Forest Classifier, as it still required less

time than most other models for training and testing and provided the most accurate

results.

8.1 Future Work

While we have provided a solution to improve IoT security, there are other important

issues that still need to be addressed. Therefore, in our future work we plan to

train classification models for several more types of IoT devices. We will also collect

more data and include additional features from the packet capture for each type of

device to provide more accurate classifications. In addition to the machine learning

classifiers used in this thesis, we will perform device type level classification using

several other types of classifiers and apply model fine-tuning techniques to improve

their performance.

43

Bibliography

[1] sklearn.metrics.f1 score. https://scikit-learn.org/stable/modules/

generated/sklearn.metrics.f1_score.html. [Online; accessed 24-Mar-2022].

[2] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu, M. Conti,

A.-R. Sadeghi, and S. Uluagac. Peek-a-boo: I see your smart home activities,

even encrypted! In Proc. of ACM Conference on Security and Privacy in Wire-

less and Mobile Networks, pages 207–218, 2020.

[3] T. Ahmad and D. Zhang. Using the internet of things in smart energy systems

and networks. Sustainable Cities and Society, page 102783, 2021.

[4] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani.

A survey of machine and deep learning methods for internet of things (IoT)

security. IEEE Communications Surveys & Tutorials, 22(3):1646–1685, 2020.

[5] T. Armerding. The 18 biggest data breaches of the 21st

century. https://www.csoonline.com/article/2130877/

the-biggest-data-breaches-of-the-21st-century.html, 2018. [Online;

accessed 10-Feb-2020].

[6] M. Bellare and C. Namprempre. Authenticated encryption: Relations among

notions and analysis of the generic composition paradigm. In Proc. of CRYPTO,

pages 531–545. Springer, 2000.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html

44

[7] A. Bremler-Barr, H. Levy, and Z. Yakhini. IoT or not: Identifying IoT devices in

a short time scale. In Proc. of Network Operations and Management Symposium,

pages 1–9. IEEE, 2020.

[8] R. Chatterjee, P. Doerfler, H. Orgad, S. Havron, J. Palmer, D. Freed, K. Levy,

N. Dell, D. McCoy, and T. Ristenpart. The spyware used in intimate partner

violence. In Proc. of IEEE Symposium on Security and Privacy (SP), pages

441–458, 2018.

[9] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. T. Polk, et al.

Internet x. 509 public key infrastructure certificate and certificate revocation list

(CRL) profile. RFC, 5280:1–151, 2008.

[10] CVE. IoT search results. https://cve.mitre.org/cgi-bin/cvekey.cgi?

keyword={IoT}. [Online; accessed 20-Mar-2022].

[11] D. Freed, J. Palmer, D. Minchala, K. Levy, T. Ristenpart, and N. Dell. “A

Stalker’s Paradise”: How Intimate Partner Abusers Exploit Technology. In Proc.

of CHI Conference on Human Factors in Computing Systems, page 667. ACM,

2018.

[12] N. Ghose, L. Lazos, and M. Li. SFIRE: Secret-free in-band trust establishment

for COTS wireless devices. In Proc. of IEEE INFOCOM, pages 1529–1537, 2018.

[13] N. Ghose, L. Lazos, and M. Li. In-band secret-free pairing for cots wireless

devices. IEEE Transactions on Mobile Computing, 2020.

[14] N. Z. Gong, A. Ozen, Y. Wu, X. Cao, R. Shin, D. Song, H. Jin, and X. Bao.

Piano: Proximity-based user authentication on voice-powered internet-of-things

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword={IoT}
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword={IoT}

45

devices. In Proc. of International Conference on Distributed Computing Systems

ICDCS, pages 2212–2219. IEEE, 2017.

[15] S. Havron, D. Freed, R. Chatterjee, D. McCoy, N. Dell, and T. Ristenpart.

Clinical computer security for victims of intimate partner violence. In Proc. of

USENIX Security Symposium, pages 105–122, 2019.

[16] S.-Y. Hwang and J.-N. Kim. A malware distribution simulator for the verification

of network threat prevention tools. Sensors, 21(21):6983, 2021.

[17] IDC. IoT growth demands rethink of long-term storage strategies, says idc, Jul

2020.

[18] J. Kesavadev, B. Saboo, M. B. Krishna, and G. Krishnan. Evolution of insulin

delivery devices: from syringes, pens, and pumps to DIY artificial pancreas.

Diabetes Therapy, 11:1251–1269, 2020.

[19] R. S. Lee. Smart city. In Artificial Intelligence in Daily Life, pages 321–345.

Springer, 2020.

[20] J. Liu and W. Sun. Smart attacks against intelligent wearables in people-centric

internet of things. IEEE Communications Magazine, 54(12):44–49, 2016.

[21] Y. Liu, J. Wang, J. Li, S. Niu, and H. Song. Machine learning for the detection

and identification of internet of things devices: A survey. IEEE Internet of

Things Journal, 9(1):298–320, 2021.

[22] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer, J. D.

Guarnizo, and Y. Elovici. Detection of unauthorized IoT devices using machine

learning techniques. arXiv preprint arXiv:1709.04647, 2017.

46

[23] C. Meraki. Applying policies by device type. https://documentation.meraki.

com/MR/Group_Policies_and_Block_Lists/Applying_Policies_by_Device_

Type, 2021. [Online; accessed 14-Feb-2021].

[24] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and S. Tarkoma.

IoT sentinel: Automated device-type identification for security enforcement in

IoT. In Proc. of International Conference on Distributed Computing Systems

(ICDCS), pages 2177–2184. IEEE, 2017.

[25] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.-

R. Sadeghi. DÏoT: A federated self-learning anomaly detection system for IoT.

In Proc. of International conference on distributed computing systems (ICDCS),

pages 756–767. IEEE, 2019.

[26] S. Pallavi and V. A. Narayanan. An overview of practical attacks on BLE based

IoT devices and their security. In Proc. of ICACCS, pages 694–698. IEEE, 2019.

[27] P. Robyns, E. Marin, W. Lamotte, P. Quax, D. Singelée, and B. Preneel.

Physical-layer fingerprinting of LoRa devices using supervised and zero-shot

learning. In Proc. of ACM Conference on Security and Privacy in Wireless

and Mobile Networks, pages 58–63, 2017.

[28] Scikit-Learn. Developing scikit-learn estimators. https://scikit-learn.org/

stable/developers/develop.html. [Online; accessed 24-Mar-2022].

[29] Scikit-Learn. Sklearn.ensemble.gradientboostingclassifier. https:

//scikit-learn.org/stable/modules/generated/sklearn.ensemble.

GradientBoostingClassifier.html. [Online; accessed 22-Mar-2022].

https://documentation.meraki.com/MR/Group_Policies_and_Block_Lists/Applying_Policies_by_Device_Type
https://documentation.meraki.com/MR/Group_Policies_and_Block_Lists/Applying_Policies_by_Device_Type
https://documentation.meraki.com/MR/Group_Policies_and_Block_Lists/Applying_Policies_by_Device_Type
https://scikit-learn.org/stable/developers/develop.html
https://scikit-learn.org/stable/developers/develop.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

47

[30] Scikit-Learn. Sklearn.ensemble.kneighborsclassifier. https://

scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsClassifier.html. [Online; accessed 22-Mar-2022].

[31] Scikit-Learn. Sklearn.ensemble.naivebayes.gaussiannb. https://

scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.

GaussianNB.html. [Online; accessed 22-Mar-2022].

[32] Scikit-Learn. Sklearn.ensemble.randomforestclassifier. https://

scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html. [Online; accessed 22-Mar-2022].

[33] Scikit-Learn. Sklearn.ensemble.svm.svc. https://scikit-learn.org/stable/

modules/generated/sklearn.svm.SVC.html. [Online; accessed 22-Mar-2022].

[34] Scikit-Learn. sklearn.metrics.accuracy score. https://scikit-learn.org/

stable/modules/generated/sklearn.metrics.accuracy_score.html. [On-

line; accessed 24-Mar-2022].

[35] H. Shafagh and A. Hithnawi. Poster: come closer: proximity-based authentica-

tion for the internet of things. In Proc. of Annual International Conference on

Mobile Computing and Networking, pages 421–424, 2014.

[36] Y. Sheng, K. Tan, G. Chen, D. Kotz, and A. Campbell. Detecting 802.11 mac

layer spoofing using received signal strength. In Proc. of IEEE INFOCOM, pages

1768–1776. IEEE, 2008.

[37] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vish-

wanath, and V. Sivaraman. Classifying IoT devices in smart environments us-

 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

48

ing network traffic characteristics. IEEE Transactions on Mobile Computing,

18(8):1745–1759, 2018.

[38] M. Vanhoef and F. Piessens. Key reinstallation attacks: Forcing nonce reuse in

WPA2. In Proc. of ACM Conference on Computer and Communications Security

(CCS). ACM, 2017.

[39] M. Vanhoef and E. Ronen. Dragonblood: Analyzing the dragonfly handshake of

wpa3 and eap-pwd. In Proc. of IEEE S&P. IEEE, 2020.

[40] H.-A. Wen, T.-F. Lee, and T. Hwang. Provably secure three-party password-

based authenticated key exchange protocol using weil pairing. IEEE Proceedings-

Communications, 152(2):138–143, 2005.

[41] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu. IoT security techniques based on

machine learning: How do IoT devices use ai to enhance security? IEEE Signal

Processing Magazine, 35(5):41–49, 2018.

[42] Z. Yi, F. Xie, Y. Tian, N. Li, X. Dong, Y. Ma, Y. Huang, Y. Hu, X. Xu,

D. Qu, et al. A battery-and leadless heart-worn pacemaker strategy. Advanced

Functional Materials, 30(25):2000477, 2020.

[43] J. Yun, I.-Y. Ahn, J. Song, and J. Kim. Implementation of sensing and actuation

capabilities for IoT devices using oneM2M platforms. Sensors, 19(20):4567, 2019.

[44] J. Zhang, Z. Wang, Z. Yang, and Q. Zhang. Proximity based IoT device authen-

tication. In Proc. of IEEE INFOCOM, pages 1–9. IEEE, 2017.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution

	Background and Related Work
	Machine Learning Based Authentication
	Proximity Based Related Work

	Models and Preliminaries
	System Model
	Adversary Model
	Security Requirement
	Preliminaries - Machine Learning Models
	Supervised Learning (SL)
	Random Forest Classifier
	K-Nearest Neighbors Classifier
	Gradient Boosting Classifier
	Support Vector Machine Classifier
	Gaussian Naive Bayes Classifier

	Protocol
	Device Fingerprint Generation
	Device Type Classification
	RADTEC: The Protocol

	Security Analysis
	Analysis of RADTEC
	Analysis of the Classification Technique
	Discussion

	Implementation
	Dataset
	Device Identification
	Algorithm selection
	Data Pre-processing
	Data Cleaning and Splitting
	Standardizing Features1007
	Numerical Imputation1007
	Feature Engineering1007

	Training and Testing

	Results
	F1 Score
	Accuracy Score

	Conclusion and Future Work
	Future Work

	Bibliography

