# RadioNet: Robust Deep-Learning Based Radio Fingerprinting

Haipeng Li<sup>1</sup>, Kaustubh Gupta<sup>2</sup>, Chenggang Wang<sup>1</sup>,

Nirnimesh Ghose<sup>2</sup>, Boyang Wang<sup>1</sup>

<sup>1</sup> University of Cincinnati, USA; <sup>2</sup> University of Nebraska-Lincoln;

IEEE CNS 2022





### Radio Fingerprinting

#### Authenticating wireless devices over Radio Frequency (RF) signals at the physical layer.



## Why Feasible?

- Hardware imperfections (I/Q imbalance, phase noise, nonlinear distortion, etc.) lead to minor shifts in RF signals.
- Each transmitter has unique hardware imperfections



Figures are from S. Riyaz, "Deep learning convolutional Neural Networks for Radio Identification," IEEE Magazine, Sept., 2018

## Limitations in Radio Fingerprinting

- Deep learning achieves high accuracy in same-day
  - IEEE Magazine'18, INFOCOM'19, EuroS&P'20.
  - Same-day: train with Day 1, test with Day 1
- Significant Performance drop in a cross-day scenario
  - MobiHoc'19, Globecom'19, INFOCOM'20,
  - Cross-day: train with Day 1, test with Day 2
- Example: 20 transmitters (USRPs), CNN as classifier
  - Same-day accuracy: 99%
  - Cross-day accuracy: 5% (random guess)

## Limitations in Radio Fingerprinting

- Slicing windows are often used to pre-process RF signals to inputs of neural networks
- The selection of parameters in pre-processing has not been rigorously discussed



I/Q Samples in One Transmission

Slicing window with size L and stride 1

### Our Contributions

- Improve **robustness** of Radio Fingerprinting from 3 aspects:
  - Demonstrate that parameters of pre-processing have significant impacts to accuracy (from extremely high to random guess)
  - 2. Improve cross-day accuracy with adversarial domain adaptation
  - 3. Introduce device rank as a more robust metric

#### Adversary Domain Adaptation

 Given source data and target data, ADA minimizes the discrepancy between source & target in a feature space



### Our Method with ADA

- Source: Day 1; Target: Day 2
- Train ADA with a large amount of RF signals from Day 1 and a small amount of RF signals from Day 2
- Tune k-NN for better classification for Day 2



#### Training with Source & Target Training Data

#### Tuning with Target Data



### Testbed and Datasets

- **NEU dataset** (from INFOCOM'20):
  - 1 USRP as receiver, 20 USRP as transmitters
  - RF signals from 2 days
- HackRF-10 dataset (Ours)
  - 1 receiver, 10 transmitters
  - HackRF One, GNU Radio
  - WiFi, BPSK 1/2, Indoor
  - RF signals from 2 days
  - 3 transmissions per day
  - 30 secs per transmission
  - 3.26 million I/Q samples collected





- Collect I/Q samples before FFT and after Equalizer
- Time domain, Frequency domain, Time-Frequency Domain
- Parameters in Pre-Process: Window Size L and Stride s



I/Q Samples in One Transmission

Slicing window with size L and stride 1

### **Evaluation Setting**

- Two CNN: Homegrown (INFOCOM'19) and DF (CCS'18)
  - Keras and Tensorflow (Nvidia Titan RTX)
  - Training (64%), Validation (16%), Testing (20%)



#### **Evaluation Metric**

- Accuracy: Given N test traces, x traces are predicted correctly. Acc = x/N
- **Device Rank**: aggregate scores of transmitters over N traces, sort the aggregated scores, report the rank of the correct transmitter
- Why device rank is better than accuracy?
  - Hardware imperfections are difficult to learn
  - Aggregated scores are more robust

#### The impact of stride s on accuracy (Time domain, window/trace length L = 288)

| Stride <i>s</i>  | Neural<br>Networks |          | dataset<br>guess 5%) | HackRF dataset<br>(Random guess 10%) |           |  |
|------------------|--------------------|----------|----------------------|--------------------------------------|-----------|--|
|                  |                    | Same-Day | Cross-Day            | Same-Day                             | Cross-Day |  |
| s=1              | Homegrown          | 99.74    | 6.26                 | 99.76                                | 20.40     |  |
|                  | DF                 | 99.95    | 6.08                 | 99.99                                | 21.85     |  |
| s=144            | Homegrown          | 26.47    | 7.59                 | 59.31                                | 24.75     |  |
|                  | DF                 | 50.02    | 6.90                 | 68.63                                | 26.90     |  |
| s= <i>L</i> =288 | Homegrown          | 16.90    | 8.72                 | 52.31                                | 25.83     |  |
|                  | DF                 | 14.24    | 7.31                 | 60.47                                | 27.80     |  |
| s=2L=596         | Homegrown          | 11.61    | 8.68                 | 45.93                                | 26.23     |  |
|                  | DF                 | 5.88     | 5.70                 | 47.30                                | 26.86     |  |

Should choose stride s s.t. there is no overlaps across traces



NEU: stride s = L = 288, accuracy is only 16.9%, device rank still converges to 1 (authenticate correctly) after 35 traces (around 37 milliseconds of RF transmissions)

Low accuracy does not necessarily mean failing to authenticate



#### Cross-day also affects device rank, but not for every transmitter

#### The impact of trace length *L* on accuracy Time domain, stride *s = L*

| Trace<br>length <i>L</i> | Neural<br>Networks |          | dataset<br>guess 5%) | HackRF dataset<br>(Random guess 10%) |           |  |
|--------------------------|--------------------|----------|----------------------|--------------------------------------|-----------|--|
|                          |                    | Same-Day | Cross-Day            | Same-Day                             | Cross-Day |  |
| L=144                    | Homegrown          | 22.94    | 7.13                 | 52.59                                | 25.15     |  |
|                          | DF                 | 55.16    | 7.33                 | 64.43                                | 27.57     |  |
| L=288                    | Homegrown          | 16.96    | 8.72                 | 52.13                                | 25.83     |  |
|                          | DF                 | 14.24    | 7.31                 | 60.47                                | 27.80     |  |
| L=576                    | Homegrown          | 13.29    | 9.26                 | 46.27                                | 26.49     |  |
|                          | DF                 | 6.56     | 5.82                 | 57.78                                | 27.90     |  |

A greater L should be chosen whenever it is possible

#### Comparison among different domains of I/Q data

| Domain         | Neural    | HackRF dataset<br>(Random guess 10%) |           |  |  |
|----------------|-----------|--------------------------------------|-----------|--|--|
|                | Networks  | Same-Day                             | Cross-Day |  |  |
| Time           | Homegrown | 48.07                                | 13.13     |  |  |
|                | DF        | 54.96                                | 14.01     |  |  |
| Frequency      | Homegrown | 50.49                                | 27.67     |  |  |
|                | DF        | 59.71                                | 28.74     |  |  |
| Time-Frequency | Homegrown | 50.51                                | 12.64     |  |  |
|                | DF        | 60.21                                | 15.74     |  |  |

Frequency domain is more robust in cross-day

#### Accuracy in the cross-day (HackRF-10 dataset)

| Domain         | Method      | Ν     |       |       |       |       |       |
|----------------|-------------|-------|-------|-------|-------|-------|-------|
|                |             | 0     | 10    | 100   | 200   | 400   | 800   |
| Frequency      | Fine-tuning | 25.98 | 34.95 | 46.45 | 49.98 | 52.56 | 55.17 |
|                | ADA         | 25.98 | 33.82 | 47.82 | 53.95 | 59.94 | 65.24 |
| Time-Frequency | Fine-tuning | 17.19 | 31.46 | 45.60 | 50.85 | 53.62 | 56.04 |
|                | ADA         | 17.19 | 29.22 | 42.42 | 54.41 | 58.30 | 64.22 |

- Fine-tuning (WiSec'21) v.s. Our method based on ADA
- N: No. of traces per transmitter from Day 2
- Baseline (N = 0): train Day 1 test Day 2 directly

Both methods improve cross-day accuracy

Ours is better when N>=200



Baseline (N = 0): train Day 1 test Day 2 directly

Device rank in cross-day is also improved by ADA

#### Discussions and Future Work

- Complex-value neural networks
  - IQ samples are complex values
  - Operations (e.g., max) are not defined over complex values
  - Transfer learning over complex values
- How frequent we need to tune a classifier?
- Can we tune without labeled data from Day 2?

## Thank you! Q&A

This work is partially supported by NSF (CNS-1947913)

Code and datasets: <u>https://github.com/UCdasec/RadioNet</u>





