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Authenticating wireless devices over Radio Frequency 
(RF) signals at the physical layer.

Radio Fingerprinting
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Why Feasible?

• Hardware imperfections (I/Q imbalance, phase noise, 
nonlinear distortion, etc.) lead to minor shifts in RF signals. 

• Each transmitter has unique hardware imperfections
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Figures are from S. Riyaz, “Deep learning convolutional Neural Networks for Radio Identification,” IEEE Magazine, Sept., 2018



Limitations in Radio Fingerprinting

• Deep learning achieves high accuracy in same-day  
• IEEE Magazine’18, INFOCOM’19, EuroS&P’20.  
• Same-day: train with Day 1, test with Day 1 

• Significant Performance drop in a cross-day scenario  
• MobiHoc’19, Globecom’19, INFOCOM’20,  
• Cross-day: train with Day 1, test with Day 2 

• Example: 20 transmitters (USRPs), CNN as classifier  
• Same-day accuracy: 99% 
• Cross-day accuracy: 5% (random guess) 



Limitations in Radio Fingerprinting

• Slicing windows are often used to pre-process RF signals to 
inputs of neural networks   

• The selection of parameters in pre-processing has not 
been rigorously discussed 
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Our Contributions 

• Improve robustness of Radio Fingerprinting from 3 aspects:  

1. Demonstrate that parameters of pre-processing have 
significant impacts to accuracy (from extremely high to 
random guess) 

2. Improve cross-day accuracy with adversarial domain 
adaptation  

3. Introduce device rank as a more robust metric  



Adversary Domain Adaptation

• Given source data and target data, ADA minimizes the 
discrepancy between source & target in a feature space 
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Our Method with ADA 

• Source: Day 1; Target: Day 2 
• Train ADA with a large amount of RF signals from Day 1 and 

a small amount of RF signals from Day 2 
• Tune k-NN for better classification for Day 2 

Feature 
Extractor

Source 
Classifier

Domain
Discriminator

Source Data

Target 
Training Data

Feature 
Extractor k-NNInput Output

Freeze Tune

Training with Source & Target Training Data

Tuning with Target Data
Features

Features



Testbed and Datasets 

• NEU dataset (from INFOCOM’20): 
• 1 USRP as receiver, 20 USRP as transmitters 
• RF signals from 2 days 

• HackRF-10 dataset (Ours) 
• 1 receiver, 10 transmitters  
• HackRF One, GNU Radio 
• WiFi, BPSK 1/2, Indoor 
• RF signals from 2 days 
• 3 transmissions per day  
• 30 secs per transmission 
• 3.26 million I/Q samples collected
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• Collect I/Q samples before FFT and after Equalizer  
• Time domain, Frequency domain, Time-Frequency Domain 

• Parameters in Pre-Process: Window Size L and Stride s  

SDR
Receiver FFT

Operations
WiFi Frame
Equalizer

I/Q Data
After Equalizer

….
I/Q Data

Before FFT

1 2 3 … L L+1 L+2 … … … … M

I/Q Samples in One Transmission

Slicing window with size L and stride 1

1 2 3 … L

2 3 … L L+1

3 … L L+1 L+2

Trace 1

Trace 2

Trace 3

Slicing window 

Slicing window 

Slicing window 



Evaluation Setting

• Two CNN: Homegrown (INFOCOM’19) and DF (CCS’18) 
• Keras and Tensorflow (Nvidia Titan RTX) 
• Training (64%), Validation (16%), Testing (20%)
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Evaluation Metric

• Accuracy: Given N test traces, x traces are predicted 
correctly. Acc = x/N 

• Device Rank: aggregate scores of transmitters over N 
traces, sort the aggregated scores, report the rank of the 
correct transmitter    

• Why device rank is better than accuracy? 
• Hardware imperfections are difficult to learn  
• Aggregated scores are more robust



Stride s Neural 
Networks

NEU dataset
(Random guess 5%)

HackRF dataset
(Random guess 10%)

Same-Day Cross-Day Same-Day Cross-Day

s=1
Homegrown 99.74 6.26 99.76 20.40

DF 99.95 6.08 99.99 21.85

s=144
Homegrown 26.47 7.59 59.31 24.75

DF 50.02 6.90 68.63 26.90

s=L=288
Homegrown 16.90 8.72 52.31 25.83

DF 14.24 7.31 60.47 27.80

s=2L=596
Homegrown 11.61 8.68 45.93 26.23

DF 5.88 5.70 47.30 26.86

The impact of stride s on accuracy 
(Time domain, window/trace length L = 288)

Should choose stride s s.t. there is no overlaps across traces



NEU: stride s = L = 288, accuracy is only 16.9%, device rank 
still converges to 1 (authenticate correctly) after 35 traces 
(around 37 milliseconds of RF transmissions) 
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Low accuracy does not necessarily mean failing to authenticate
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Cross-day also affects device rank, but not for every transmitter 



Trace 
length L

Neural 
Networks

NEU dataset
(Random guess 5%)

HackRF dataset
(Random guess 10%)

Same-Day Cross-Day Same-Day Cross-Day

L=144
Homegrown 22.94 7.13 52.59 25.15

DF 55.16 7.33 64.43 27.57

L=288
Homegrown 16.96 8.72 52.13 25.83

DF 14.24 7.31 60.47 27.80

L=576
Homegrown 13.29 9.26 46.27 26.49

DF 6.56 5.82 57.78 27.90

The impact of trace length L on accuracy
Time domain, stride s = L

A greater L should be chosen whenever it is possible



Domain Neural 
Networks

HackRF dataset
(Random guess 10%)

Same-Day Cross-Day

Time
Homegrown 48.07 13.13

DF 54.96 14.01

Frequency
Homegrown 50.49 27.67

DF 59.71 28.74

Time-Frequency
Homegrown 50.51 12.64

DF 60.21 15.74

Comparison among different domains of I/Q data

Frequency domain is more robust in cross-day



• Fine-tuning (WiSec’21) v.s. Our method based on ADA 
• N: No. of traces per transmitter from Day 2 
• Baseline (N = 0): train Day 1 test Day 2 directly 

Domain Method
N

0 10 100 200 400 800

Frequency
Fine-tuning 25.98 34.95 46.45 49.98 52.56 55.17

ADA 25.98 33.82 47.82 53.95 59.94 65.24

Time-Frequency
Fine-tuning 17.19 31.46 45.60 50.85 53.62 56.04

ADA 17.19 29.22 42.42 54.41 58.30 64.22

Accuracy in the cross-day (HackRF-10 dataset)

Both methods improve cross-day accuracy

Ours is better when N>=200



• Baseline (N = 0): train Day 1 test Day 2 directly 

Device rank in cross-day is also improved by ADA
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Discussions and Future Work

• Complex-value neural networks 
• IQ samples are complex values  
• Operations (e.g., max) are not defined over complex 

values 
• Transfer learning over complex values  

• How frequent we need to tune a classifier?  

• Can we tune without labeled data from Day 2?



Thank you! Q&A 

This work is partially supported by NSF (CNS-1947913) 

Code and datasets: https://github.com/UCdasec/RadioNet 

https://github.com/UCdasec/RadioNet

