
RadioNet: Robust Deep-Learning
Based Radio Fingerprinting

Haipeng Li1, Kaustubh Gupta2, Chenggang Wang1,

Nirnimesh Ghose2, Boyang Wang1
1 University of Cincinnati, USA; 2 University of Nebraska-Lincoln;

IEEE CNS 2022

Authenticating wireless devices over Radio Frequency
(RF) signals at the physical layer.

Radio Fingerprinting

Tx1

Tx2

Tx3

Rx

Server
Training Phase

Tx1

Tx2

Tx3

Rx

Server
Authentication Phase

Tx4

Which Tx?

It is Tx2

Why Feasible?

• Hardware imperfections (I/Q imbalance, phase noise,
nonlinear distortion, etc.) lead to minor shifts in RF signals.

• Each transmitter has unique hardware imperfections

Phase
noise

Nonlinear
distortion

Figures are from S. Riyaz, “Deep learning convolutional Neural Networks for Radio Identification,” IEEE Magazine, Sept., 2018

Limitations in Radio Fingerprinting

• Deep learning achieves high accuracy in same-day
• IEEE Magazine’18, INFOCOM’19, EuroS&P’20.
• Same-day: train with Day 1, test with Day 1

• Significant Performance drop in a cross-day scenario
• MobiHoc’19, Globecom’19, INFOCOM’20,
• Cross-day: train with Day 1, test with Day 2

• Example: 20 transmitters (USRPs), CNN as classifier
• Same-day accuracy: 99%
• Cross-day accuracy: 5% (random guess)

Limitations in Radio Fingerprinting

• Slicing windows are often used to pre-process RF signals to
inputs of neural networks

• The selection of parameters in pre-processing has not
been rigorously discussed

1 2 3 … L L+1 L+2 … … … … M

I/Q Samples in One Transmission

Slicing window with size L and stride 1

1 2 3 … L

2 3 … L L+1

3 … L L+1 L+2

Trace 1

Trace 2

Trace 3

Slicing window

Slicing window

Slicing window

Our Contributions

• Improve robustness of Radio Fingerprinting from 3 aspects:

1. Demonstrate that parameters of pre-processing have
significant impacts to accuracy (from extremely high to
random guess)

2. Improve cross-day accuracy with adversarial domain
adaptation

3. Introduce device rank as a more robust metric

Adversary Domain Adaptation

• Given source data and target data, ADA minimizes the
discrepancy between source & target in a feature space

Feature
Extractor

Source
Classifier

Domain
Discriminator

Source Data

Target
Training Data

LC

LD

∂LC
∂θC

∂LC
∂θF

−λ∂LD
∂θF

λ∂LD
∂θD

GRL

Back-
propagation

Back-
propagation

Features

Domain label

Class label

Loss

Loss

Our Method with ADA

• Source: Day 1; Target: Day 2
• Train ADA with a large amount of RF signals from Day 1 and

a small amount of RF signals from Day 2
• Tune k-NN for better classification for Day 2

Feature
Extractor

Source
Classifier

Domain
Discriminator

Source Data

Target
Training Data

Feature
Extractor k-NNInput Output

Freeze Tune

Training with Source & Target Training Data

Tuning with Target Data
Features

Features

Testbed and Datasets

• NEU dataset (from INFOCOM’20):
• 1 USRP as receiver, 20 USRP as transmitters
• RF signals from 2 days

• HackRF-10 dataset (Ours)
• 1 receiver, 10 transmitters
• HackRF One, GNU Radio
• WiFi, BPSK 1/2, Indoor
• RF signals from 2 days
• 3 transmissions per day
• 30 secs per transmission
• 3.26 million I/Q samples collected

Receiver
Transmitters

Our testbed

• Collect I/Q samples before FFT and after Equalizer
• Time domain, Frequency domain, Time-Frequency Domain

• Parameters in Pre-Process: Window Size L and Stride s

SDR
Receiver FFT

Operations
WiFi Frame
Equalizer

I/Q Data
After Equalizer

….
I/Q Data

Before FFT

1 2 3 … L L+1 L+2 … … … … M

I/Q Samples in One Transmission

Slicing window with size L and stride 1

1 2 3 … L

2 3 … L L+1

3 … L L+1 L+2

Trace 1

Trace 2

Trace 3

Slicing window

Slicing window

Slicing window

Evaluation Setting

• Two CNN: Homegrown (INFOCOM’19) and DF (CCS’18)
• Keras and Tensorflow (Nvidia Titan RTX)
• Training (64%), Validation (16%), Testing (20%)

Conv
Layer

Conv
Layer

FC
LayerInput Output

Conv
Layer

Conv
Layer

Pooling
Layer

Input Output

Dropout

Block 1 Block 2 Block 3 Block 4 FC
Layer

Each Block:

Homegrown

DF

Evaluation Metric

• Accuracy: Given N test traces, x traces are predicted
correctly. Acc = x/N

• Device Rank: aggregate scores of transmitters over N
traces, sort the aggregated scores, report the rank of the
correct transmitter

• Why device rank is better than accuracy?
• Hardware imperfections are difficult to learn
• Aggregated scores are more robust

Stride s Neural
Networks

NEU dataset
(Random guess 5%)

HackRF dataset
(Random guess 10%)

Same-Day Cross-Day Same-Day Cross-Day

s=1
Homegrown 99.74 6.26 99.76 20.40

DF 99.95 6.08 99.99 21.85

s=144
Homegrown 26.47 7.59 59.31 24.75

DF 50.02 6.90 68.63 26.90

s=L=288
Homegrown 16.90 8.72 52.31 25.83

DF 14.24 7.31 60.47 27.80

s=2L=596
Homegrown 11.61 8.68 45.93 26.23

DF 5.88 5.70 47.30 26.86

The impact of stride s on accuracy
(Time domain, window/trace length L = 288)

Should choose stride s s.t. there is no overlaps across traces

NEU: stride s = L = 288, accuracy is only 16.9%, device rank
still converges to 1 (authenticate correctly) after 35 traces
(around 37 milliseconds of RF transmissions)

0 10 20 30 40 50
The Number of Traces

1

3
5
7

9
11

13
15
17

19
D

ev
ic

e
R

an
k

stride = 144
stride = 288
stride = 576
stride = r

0 4 8 12 16 20
The Number of Traces

1
2

3
4

5
6
7

8
9

10

D
ev

ic
e

R
an

k

stride = 144
stride = 288
stride = 576
stride = r

Device Rank
(NEU Dataset)

Same-day

Device Rank
(Our Dataset)

Same-day

Low accuracy does not necessarily mean failing to authenticate

0 20 40 60 80 100
The Number of Traces

1

3
5
7

9
11

13
15
17

19
D

ev
ic

e
R

an
k

Same Day
Cross DayAverage

Device Rank
(NEU Dataset)

0 100 200 300 400 500
The Number of Traces

1
3
5
7
9

11
13
15
17
19

D
ev

ic
e

R
an

k

Individual Device Rank
(NEU Dataset), Cross-day

Cross-day also affects device rank, but not for every transmitter

Trace
length L

Neural
Networks

NEU dataset
(Random guess 5%)

HackRF dataset
(Random guess 10%)

Same-Day Cross-Day Same-Day Cross-Day

L=144
Homegrown 22.94 7.13 52.59 25.15

DF 55.16 7.33 64.43 27.57

L=288
Homegrown 16.96 8.72 52.13 25.83

DF 14.24 7.31 60.47 27.80

L=576
Homegrown 13.29 9.26 46.27 26.49

DF 6.56 5.82 57.78 27.90

The impact of trace length L on accuracy
Time domain, stride s = L

A greater L should be chosen whenever it is possible

Domain Neural
Networks

HackRF dataset
(Random guess 10%)

Same-Day Cross-Day

Time
Homegrown 48.07 13.13

DF 54.96 14.01

Frequency
Homegrown 50.49 27.67

DF 59.71 28.74

Time-Frequency
Homegrown 50.51 12.64

DF 60.21 15.74

Comparison among different domains of I/Q data

Frequency domain is more robust in cross-day

• Fine-tuning (WiSec’21) v.s. Our method based on ADA
• N: No. of traces per transmitter from Day 2
• Baseline (N = 0): train Day 1 test Day 2 directly

Domain Method
N

0 10 100 200 400 800

Frequency
Fine-tuning 25.98 34.95 46.45 49.98 52.56 55.17

ADA 25.98 33.82 47.82 53.95 59.94 65.24

Time-Frequency
Fine-tuning 17.19 31.46 45.60 50.85 53.62 56.04

ADA 17.19 29.22 42.42 54.41 58.30 64.22

Accuracy in the cross-day (HackRF-10 dataset)

Both methods improve cross-day accuracy

Ours is better when N>=200

• Baseline (N = 0): train Day 1 test Day 2 directly

Device rank in cross-day is also improved by ADA

0 10 20 30 40 50
The Number of Traces

1
3
5
7
9

11
13
15
17
19

D
ev

ic
e

R
an

k

Baseline
N = 100
N = 200
N = 400
N = 800

0 10 20 30 40 50
The Number of Traces

1
2
3
4
5
6
7
8
9

10

D
ev

ic
e

R
an

k

Baseline
N = 100
N = 200
N = 400
N = 800

Average Device Rank
(NEU Dataset), Cross-day with ADA

Average Device Rank
(Our Dataset), Cross-day with ADA

Discussions and Future Work

• Complex-value neural networks
• IQ samples are complex values
• Operations (e.g., max) are not defined over complex

values
• Transfer learning over complex values

• How frequent we need to tune a classifier?

• Can we tune without labeled data from Day 2?

Thank you! Q&A

This work is partially supported by NSF (CNS-1947913)

Code and datasets: https://github.com/UCdasec/RadioNet

https://github.com/UCdasec/RadioNet

