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Abstract—The ongoing explosion of embedded wireless capa-
bilities in contemporary systems has made the availability of
wireless spectrum insufficient. The proposed solution to this
problem is dynamic spectrum access (DSA) technology where
wireless devices (secondary users) opportunistically forage for
unused spectrum (for example, TV whitespace and 3.5GHz
bands) arising when the licensed users are idle. We put forward
a novel bio-social protocol for DSA networks in which the
secondary users forage for bands with low contention. The SUs
estimate utilization using a novel wireless physical layer signature
method to provide security against rogue nodes that seek to
benefit by injecting spoofed traffic on behalf of other SUs. We
report on the system performance of this formally specified model
of bio-social behavior, using simulations that are parameterized
by hardware testbed measurements. The results show that a more
accurate estimation of band contention improves the efficiency
of resource utilization. More broadly, the findings point to the
importance of biosocial paradigms in the design of distributed
leaderless resource sharing schemes for the wireless ecosystem.

Index Terms—Dynamic spectrum access, bio-social network-
ing, cognitive radio networks, Internet of Things, contention-
sensing.

I. INTRODUCTION

The widespread embedding of wireless communication ca-
pabilities is impacting systems across many domains like
home automation, industrial automation, agricultural automa-
tion, and national security automation. This dramatic ongoing
shift has led to a shortage of wireless bands relative to
the co-existing wireless systems that consume them. The
shortage can be tackled by using vacant wireless bands (e.g.
TV whitespace and 3.5GHz bands) in different localities, as
proposed in the Dynamic Spectrum Access (DSA) paradigm.
In DSA, during the absence of a licensed or primary user of a
wireless band (e.g. TV broadcast on 400-600MHz or satellite
communications on 3.5 GHz), unlicensed users or secondary
users (SUs) can make use of bands. Faced with increasingly
denser deployments of independent DSA networks that lack
a coordination framework, constituent SUs find themselves
competing over limited resources of varying characteristics.
While the FCC’s open access paradigm “allows unlimited
numbers of unlicensed users to share frequencies”, it “does
not provide any right to protection from interference.” Channel

scarcity, usage dynamism, and “no right of protection from
interference” poses self-coexistence and performance chal-
lenges for secondary users. The root cause of the problem is a
major focus on preserving the interest of the primary user in
secondary-primary user interaction. There has been very little
focus on studying the SU-SU interaction paradigm.

The current research on resource allocation in wireless
communication has been inspired by the co-use of resources
in animal and human populations [1], [2]. State-of-the-art has
modeled communication resource allocation after the foraging
strategies of animal societies [1]–[6]. The autonomous and
intelligent SUs in the dynamic spectrum access environment
are capable of learning, sensing, and adapting to the dynamic
environment. Thus, SUs may evolve much as biological sys-
tems have while competing over limited resources.

In previous work, the authors defined a bio-inspired foraging
behavioral model for cognitive radio communication where
secondary users stochastically transition between a foraging
(idle) state and consume (transmitting) state [5], [6]. This
idea is orthogonal to previous works where the secondary
users are always transmitting [1]–[4]). The authors showed
how social deference, where a secondary user chooses to stop
consuming a band prior to transmitting all of its buffered data
to defer to co-users, may achieve fairness in utilization [6]. The
authors defined a social contention avoidance behavior model,
where secondary users determine the contention in a band
before deciding to transmit, significantly improving channel
utilization.

In this work, we extend the bio-social model by leveraging
unforgeable wireless physical layer sensing of co-users in a
band. More specifically, we extend our previous behavioral
model by incorporating imperfect “real-world” knowledge
about band contention as compared to the assumption of
instantaneous perfect knowledge of the band of interest (BoI)
occupancy level in [5]. We then investigate the performance
of the contention-sensing model by comparing it to a behav-
ioral model where SUs are indifferent to band contention.
Furthermore, the previous work assumed MAC / Physical
address for packet sniffing to determine contention in the
band [5]. However, this opens up the security challenge
where misbehaving SUs can spoof the addresses to skew the
occupancy level estimation of co-existing SUs to gain an978-1-6654-0066-4/21/$31.00 ©2021 IEEE



unfair share of band usage. To tackle such a misbehaving
SU, in this work, we propose a novel technique of utilizing
wireless physical (PHY) layer signatures for estimating band
usage. Specifically, we propose to utilize the received signal
strength (RSS) to count the number of SU in the band. The
SU estimates the usage of the band by observing the level
of RSS and comparing it with previously observed RSS with
acceptable errors. The main advantage of utilizing RSS is the
fast detection of SUs, occurring within a few starting samples
of transmission. We collected the band utilization data on
a USRP testbed and compute a curve for the probability of
detection. The probability detection function is then utilized
in the resource allocation algorithm derived from the resource
conflict/sharing in a social setting. We show that SUs with the
ability to estimate band contention levels using RSS detection
have a performance advantage over SUs without such an
ability.

II. BASELINE MODEL (BM) OF BIOSOCIAL BEHAVIOR

For the baseline model (following [5]), we propose to utilize
a discrete time stochastic process with n secondary users S =
{s1, s2, ..., sn} competing over m orthogonal spectrum bands
B = {b1, b2, ..., bm}. The secondary users operate according
to the finite state machine (FSM) in Fig. 1. Although all
SUs run the same 2-state FSM, arc transition probabilities
vary dynamically over time, and non-uniformly across SUs,
based on each individuals’ stochastic estimate of the true
dynamic channel occupancy.

The finite state machine has two discrete states Q =
{qc, qf} and a state variable, the band of interest (BoI), which
takes on different values b ∈ B over time. Two time-varying
functions, αt : S → B and γt : S → {qf , qc}, are defined to
indicate the BoI and the state of SU s at time t, respectively.

Fig. 1. Finite state machine

If αt(s) = bi and γt(s) = qf , then SU s chooses one of
the following at (t+ 1):

1) With probability Pfc, s stays in the band bi by moving
to qc, i.e. αt+1(s) = bi and γt+1(s) = qc.

2) With probability (1 − Pfc), s commits to qf , i.e.
αt+1(s) = bj and γt+1(s) = γt(s) (j 6= i) selected
uniformly from B.

If αt(s) = bi and γt(s) = qc, then s chooses one of the
following (t+ 1):

1) With probability Pcf , s switches to qf , i.e. αt+1(s) = bj
and γt+1(s) = qf (j 6= i) selected uniformly from B.

2) With probability (1− Pcf ), s commits to qc, using band
bi, i.e. αt+1(s) = αt(s) and γt+1(s) = γt(s).

A secondary user is “observing” BoI b ∈ B in the foraging
state qf . In the consume state qc, the SU is transmitting in its
BoI and receives a reward R(k)

R(k) = B · log2

(
1 +

GsPs∑k
i=1 Gi Pi + ω

)
(1)

where k = |{s′ ∈ S|αt(s′) = αt(s)}| gives the number of
secondary users co-existing in the band, Ps (or Pi) is the
transmit power for SU s (or i), Gs is the channel gain of s, B
is the bandwidth of the channel, and ω is the ambient white
Gaussian noise power level. Equation (1) is consistent with
information theoretic modeling used frequently in spectrum
sharing literature [7]. To extract the effects of the proposed
novel paradigm, we do not include shadowing or pathloss. We
assume that all secondary users transmit at the same power
level P, experiencing the same channel gain G.

Since an SU s enjoys reward R(k) when it is in the consume
state qc, the reward for all SUs’ at a discrete time t is given
by

Wt =

m∑
i=1

kt(i)R(kt(i)), (2)

where the occupancy of the band b is given by kt(i) =
|α−1t (i) ∩ γ−1t (qc)|.

Transmitter reconfigurations are needed when SUs transition
to the consume state by re-entering (or entering) the trans-
mission band. This is assumed to be an expensive operation
compared to the receiver reconfiguration when switching to
qf . Therefore, in our model, each SU s is charged a fixed
cost c for switching bands by transitioning to qc from qf . The
switching cost for the system at time t is Ct = c|Mt| where
c is a constant and

Mt = {s ∈ S | γt−1(s) = qf ∧ γt(s) = qc} (3)

captures the SUs that switched from qf to qc at time t. The
instantaneous average utility for each SU at t is

It =
1

n
(Wt − Ct). (4)

The average utility per SU up to time T is

UT =
1

T

T∑
t=1

It. (5)

In the Baseline Model (BM), SUs transition according
to the FSM in Fig. 1 when they have data to transmit.
This is modeled by introducing a system-wide transmission
probability parameter px which governs the FSM transitions.
Each SU switches from the forage state to the consume state
with probability Pfc = px, and from the consume state to the
forage state with a probability Pcf = (1− px).

III. DETECTION MODEL FOR CHANNEL CO-USE

Now we describe the process of computing the band occu-
pancy level from the hardware testbed data. First, we present
the extraction of real-world node detection parameters from
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Fig. 2. Setup for capturing real-world data on the USRP platform with three
transmitters and one receiver.

the USRP platform. Finally, we present the extraction of the
curve from the data, which is the input for the evaluation of
the bio-social-inspired model.

A. Collecting Testbed Measurements

We captured the contention function f(t, nb, px) as the
holistic effect of varying the number of SUs nb, and the
system-wide transmission probability px with time t. Fur-
ther, we implemented fast-detection at the SUs using PHY-
layer characteristics to pinpoint the number of active SUs
in a particular band. The motivation of using PHY-layer as
compared to MAC addresses is that detection can be made
within the first few samples received in contrast to extracting
MAC address after receiving the whole frame. The PHY-
layer characteristics candidates can be (a) the frequency offset
[8], (b) the received signal strength [9], (c) the In-phase and
quadrature components origin offset [10], (d) the channel
impulse response [11], (e) the angle of arrival for the incoming
signal [12], and (f) the transient radio state [13]. Some of
these proposed methods are challenging to implement for fast
detection. The techniques utilizing I/Q origin offset, channel
impulse response, and frequency offset require reception of
the complete preamble before making the detection. The AOA
parameter requires the detector to be capable of very narrow
antenna beams when the SUs are close to each other. Such
narrow beams can be implemented by a parabolic antenna
[14], or by utilizing an antenna array [15]. In either of the
cases the hardware is extremely expensive, such as if two 50ft
(2.45GHz center frequency) away SUs are separated by 4ft, the
base station will need 50-element antenna arrays to perform
detection using a line-of-sight path. Therefore, for the fast-
detection strategy, we implement a received signal strength
(RSS) strategy. In this strategy, the receiver or the detector
SU marked received frames from different SUs, if they are
received at different RSS. This is under the assumption that
the transmitting SUs are transmitting at the same power and
are separated by enough distance such that the channel from
the transmitter to the receiver is sufficiently different [16].

1) Setup: To evaluate the band occupancy level, we placed
three USRP devices acting as the transmitting SUs in our
indoor laboratory. The SU received was implemented by
another USRP device placed 4ft away from the transmitters.
The transmitters were set to transmit at 20dBm, with 100
samples long frame with 1ms symbol duration. The devices
were synchronized in time and center frequency of 2.45GHz.
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Fig. 3. Detection probability f(t, nb, px) with varying time when number
of nodes are fixed to 3.

The SUs transmitted their data according to time division
multiple access and selected to transmit in the assigned slot
according to px. The sampling frequency was set to 2MHz.
The experimental setup is shown in Fig 2.

2) Data Captured: During the experiment, we captured the
I/Q data using LabView and performed the signal processing
on MATLAB [17]. To perform fast detection, we averaged the
power of the first 20 samples corresponding to 10 symbols.
The receiver marked the frame as received from a new node if
the power received differed from previously received powers
by 5%. Formally, the receiver used the following equation to
count the number of nodes.

n =

(
nb + 1

P ∪ {Pt}

)
when Pt /∈ P ∀ t = {0, . . . , T}, (6)

where nb is the number of SUs, Pt is the average power of
first 20 samples starting at time t, and T is the total time.

We performed simulation with the experimental data as
the ground truth to generate data for the number of SUs
nb = 5, 7, 10. In the post-processing we captured the band
occupancy level f(t, nb, px) as the fraction of the detected
number of SUs and the actual number of SUs present in the
band. Figure 3 shows the detection probability with increasing
time when we fixed the actual number of SUs to 3 and varied
the individual transmission probability. In Fig. 4, we show
the detection probability with increasing time when we fixed
the individual transmission probability to 0.75 and varied the
number of SUs. From the plots, we observe that the detection
probability increases with increasing time, and eventually all
the nodes are detected. We see this behavior because of the
TDMA followed by the nodes.

B. Modeling the testbed data

In the experiment, we captured a total of 3 million data
points. We utilized a regression model to fit a curve to the
data [18]. We start the derivation of the curve from the plots
in Fig. 3. In the plots, we observed the range f(·) is [0, 1] with
maximum slope of α/π, and takes the central value at t = C,
where C ∝ nb/px and α ∝ 1/nb·px. This gives

f(t, C, α) =
1

π

[
atan (α · (t− C)) + π

2

]
. (7)

From Fig. 3 we observed that the individual the system wide
transmission probability px is inversely proportional to C and
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Fig. 4. Detection probability f(t, nb, px) with varying time when transmis-
sion probability of each node is fixed to 0.75.

α. Further, from Fig. 4 we observed that the number of nodes
nb is directly proportional to C and inversely proportional to
α. Combining these two observations, (7) takes central value
when t = µ1·nb/px with a slope µ1/nb·px·π. Thus we can re-
write (7) as

f(t, nb, px) =
1

π

[
atan

(
µ2 · t
nb · px

− µ1 · µ2

p2x

)
+
π

2

]
. (8)

Now, we learn the values of µ1 and µ2 from the curve
fitting function on MATLAB with the data collected from the
experiments. We estimated values of µ1 = 24.095 with 0.0033
standard error and 8.76 × 10−18 p-value and µ2 = 0.070
with 0.000088 standard error and 7.19 × 10−22 p-value. The
estimated values are significant as the p-value is less than 0.05.
We now utilize this curve as the input for the bio-social model
developed to evaluate the performance.

IV. COMBINING THE BASELINE & DETECTION MODELS

In this section, we enable SUs to perform contention sensing
in bands to enhance the baseline model described in Section II.
We extend our previous model [5] by incorporating the USRP
testbed data presented in Section III to achieve a realistic
model with respect to contention sensing. The extension
affects both the FSM transition probabilities and the BoI
switching mechanism as described next.

SUs operates according to the finite state machine, as shown
in Figure 1. In the contention-sensing model (CSM), an SU
has the ability to determine whether the occupancy level in
the band is high or low. This is achieved by utilizing a fixed
system-wide band contention threshold parameter τ . When
an SU is consuming band αt(s) = b while in the qc state:

1) The probability of switching from qc to qf increases to
Pcf = pc + ε if kt(b) > τ (band occupancy is high).

2) The probability of switching from qc to qf decreases to
Pcf = pc − ε if kt(b) 6 τ (band occupancy is low).

When an SU is observing band αt(s) = b while in the qf
state:

1) The probability of switching from qf to qc increases to
Pfc = pf + ε if kt(b) 6 τ (band occupancy is low).

2) The probability of switching from qf to qc decreases to
Pfc = pf − ε if kt(b) > τ (band occupancy is high),

where pf and pc were determined in our previous work [5]
to maximize utility and used here to facilitate comparison.

The selection of the contention bias parameter ε assists to
regulate how sensitive secondary users are towards the chance
of contention with other SUs in bands and must satisfy 0 6
ε 6 min(pc, pf ). If τ is low, or ε is high, SUs will be less
tolerant to contention and spend more time looking for low
occupancy bands; they will also be equally hesitant to leave
low occupancy bands.

As in the baseline model, each SU operates according to
the system-wide transmission probability px. If an SU has
data to transmit in the output buffer, it will determine the
contention using function f(t, nb, px) (Eq. 8) where t is the
time spent in the current BoI, nb is the number of SUs in
the BoI, and px is the system wide transmission probability.
When an SU estimates the band occupancy level, it follows
the procedure described above to transition between states in
the FSM. More specifically, when an SU is in state qf , the
transition probability

Pfc = px · f(t, nb, px) · (pf + ε)

when occupancy is low (kt(b) 6 τ) and

Pfc = px · f(t, nb, px) · (pf − ε)

when occupancy is high (kt(b) > τ). When an SU is in state
qc, the transition probability

Pcf = px · f(t, nb, px) · (pc + ε)

when occupancy is high (kt(b) > τ) and

Pcf = px · f(t, nb, px) · (pc − ε)

when occupancy is low (kt(b) 6 τ).
When an SU is in the forage state qf , it decides whether

to switch to a different BoI. Based on the occupancy level
detection probability function f(·), SUs in the contention-
sensing population must remain in their BoI for a significant
period of time to accurately detect band occupancy. The BoI
switching procedure is augmented to depend both on the
detection probability f(·) and the contention in the band. If
an SU is in the forage state qf , it will switch bands with
probability f(·) only if occupancy is high (kt(b) > τ). In
other words, an SU will switch bands when it has estimated
the occupancy and determined that the contention in the band
is too high.

V. EXPERIMENTAL EVALUATIONS

We utilize a probabilistic discrete event simulator to com-
pute utility measurements for various SU societies over time.
SUs move according to the FSM in Figure 1. To facilitate
comparison with previous results, we use the same parameters
as in [6] listed in Table V.

We begin by comparing utility UT of the contention-sensing
society versus the baseline society. In Fig. 5, the x-axis varies
transmission probability px while the y-axis shows the utility
obtained by the baseline and the contention-sensing societies
with varying τ . The contention-sensing scheme outperforms
the baseline society for all values px < 0.97. Regardless of the
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Fig. 5. Utility UT over transmission probability px
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contention threshold τ , the most significant difference in utility
UT between the contention-sensing and baseline societies,
occurs for intermediate values of px. Figure 6 shows UT the
percentage difference in utility obtained by the contention-
sensing population (for different values of contention threshold
τ ), normalized over the utility acquired by the baseline model.
The contention-sensing society enjoys up to a 35% increase in
utility when compared to the baseline model. The insignificant
advantage when the transmission probability px > 0.97 is due
to the influence of px on the FSM transition probabilities. For
example, when px = 0.99 the transition probability from the
consume state to the forage state becomes very small (since
1 − px = 0.01) and SUs stay in their bands for extended
periods of time. When the transmission probability is very
high, the consume-to-forage transition probability is governed
by px and the contention sensing mechanism has little to no
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Fig. 7. % diff. time in band over trans. prob. px = {0.25, 0.5, 0.75}
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TABLE I
PARAMETERS FOR BASELINE MODEL

Parameter Description Value
m Number of bands 5
n Number of SUs 30
Ps Transmission power of node s 4 W
B Capacity per band 20 MHz
c Cost of transmitter reconfig 30% * B
pf qf to qc Trans. prob. 0.12
pc qc to qf Trans. prob. 0.2
ε Contention bias 0.05
τ Contention threshold varies
px Transmission probability varies

effect on the transitions between states.
In the proposed model, SUs do not enjoy instantaneous per-

fect knowledge of the band occupancy. Instead, SUs estimate
the band contention using the detection probability function
f(·) derived from the testbed experiments. In Fig. 7, the x-axis
varies with transmission probability px while the y-axis shows
the percentage difference in the average time spent in the
BoI per SU in the contention-sensing population (for different
values of contention threshold τ ), normalized by the average
time spent in the BoI per SU in the baseline population. In
Fig. 7, there is a significant increase in the average time spent
in a BoI for the contention-sensing population when compared
to the baseline population. For example, when px = 0.25
the contention sensing society with comfort threshold τ = 1
spends on average 142% more time in a band than the baseline
population. The contention-sensing population experience an
increase in the average time spent in the band when px is
decreasing and the number of SU in the band is increasing
(which is consistent with the testbed results). Despite the
increase in average time spent in a band due to imperfect
knowledge of occupancy level, the contention-sensing model
utilizes the bands more efficiently with respect to the utility
when compared to the baseline.

In the experiments described above we assumed a fixed
population size of n = 30. To determine the scalability of
the experimental results, we vary the SUs to bands ratio. In
Fig. 8, the x-axis varies the number of SUs n, while the y-
axis shows the percentage difference in utility UT obtained
by the population (for different values of contention threshold
τ ), normalized by the utility obtained by the baseline. For
example, when the population reaches n = 90, the contention-
sensing society achieves 10% more utility when compared



to the baseline. Figure 8 shows a significant increase in the
difference in utility for the contention-sensing population as
the SUs to bands ratio increases. Even with the increased
SUs to bands ratio, the contention in a band is governed
by the contention-threshold parameter τ , which allows the
contention-sensing population to amplify their performance
advantage when compared to the baseline model.

Finally, we evaluate the overall performance of the real-
world contention-sensing model with respect to contention
level detection to our previous contention-sensing model [5].
As discussed above, Fig. 5 shows that (1) the contention-
sensing model outperforms the baseline model, (2) the
contention-sensing model reaches maximum utility when con-
tention threshold τ = 0, and (3) as population size n increases,
there is an increase in the difference in utility between
the behavioral models. These results are consistent with our
previous work and show that the contention-sensing model
has a performance advantage over networks where SUs ignore
contention levels in bands. Furthermore, the performance of
the model tackles the problem of a misbehaving SU capable
of emulating the MAC / physical addresses. The wireless PHY
layer signature method ensures fast BoI utilization estimation
to improve the performance of the model.

VI. CONCLUSIONS

A dense wireless population competing over insufficient
resources causes complex co-existence hurdles. Analyzing bio-
inspired strategies and the study of animal foraging behavior
plays a significant role when undertaking these challenges. In
this paper, we considered a bio-social behavioral model where
secondary users in DSA networks estimate the contention
of a band while foraging for a vacant spectrum band. We
implemented USRP hardware-tested data-induced simulation
experiments trained in a well-specified precise model to assess
the contention-sensing system.

We showed that the contention-sensing scheme provides up
to 35% more utility when compared to a behavioral model
where SUs are indifferent to the contention in bands. We
showed that, even though there is an overhead with respect to
time while estimating the contention of a band, the contention-
sensing model outperforms the baseline no-sensing model for
all settings of px < 0.97. When the transmission probability
is high px < 0.97, the contention-sensing mechanism has
a reduced effect, and performance between the two soci-
eties is insignificant. Furthermore, we implemented a wireless
physical layer signature method for utilization estimation on
a USRP testbed platform. The signature method provides a
secure system by tackling rogue SUs capable of spoofing MAC
/ physical addresses to skew other SUs’ estimations.

REFERENCES

[1] J. Li, H. Zhao, A. S. Hafid, J. Wei, H. Yin, and B. Ren, “A bio-inspired
solution to cluster-based distributed spectrum allocation in high-density
cognitive internet of things,” IEEE Internet of Things Journal, vol. 6,
no. 6, pp. 9294–9307, 2019.

[2] O. A. Oki, P. Mudali, M. Adigun, and T. O. Olwal, “Using biologically-
inspired foraging approach for spectrum reconfiguration in distributed
cognitive radio network,” in Proc. of IEEE 5G World Forum (5GWF).
IEEE, 2018, pp. 488–492.

[3] S. Bitam, A. Mellouk, and S. Zeadally, “Bio-inspired routing algorithms
survey for vehicular ad hoc networks,” IEEE Communications Surveys
& Tutorials, vol. 17, no. 2, pp. 843–867, 2014.

[4] F. Goudarzi, H. Asgari, and H. S. Al-Raweshidy, “Traffic-aware vanet
routing for city environments—a protocol based on ant colony optimiza-
tion,” IEEE Systems Journal, vol. 13, no. 1, pp. 571–581, 2018.

[5] A. Wisniewska and B. Khan, “Contention-sensing and dynamic spectrum
co-use in secondary user cognitive radio societies,” in 2014 international
wireless communications and mobile computing conference (IWCMC).
IEEE, 2014, pp. 157–162.

[6] A. Wisniewska, B. Khan, A. Al-Fuqaha, K. Dombrowski, and M. A.
Shattal, “Social deference and hunger as mechanisms for starvation
avoidance in cognitive radio societies,” in Proc. of International Wireless
Communications and Mobile Computing Conference (IWCMC). IEEE,
2016, pp. 1063–1068.

[7] T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley & Sons, 2012.

[8] J. Hua, H. Sun, Z. Shen, Z. Qian, and S. Zhong, “Accurate and efficient
wireless device fingerprinting using channel state information,” in Proc.
of IEEE Conference on Computer Communications. IEEE, 2018, pp.
1700–1708.

[9] N. Ghose, L. Lazos, and M. Li, “HELP: Helper-enabled in-band device
pairing resistant against signal cancellation,” in Proc. of 26th USENIX
Security Symposium, 2017, pp. 433–450.

[10] Y. Ren, L. Peng, W. Bai, and J. Yu, “A practical study of channel
influence on radio frequency fingerprint features,” in Proc. of IEEE In-
ternational Conference on Electronics and Communication Engineering
(ICECE). IEEE, 2018, pp. 1–7.

[11] F. Adamsky, T. Retunskaia, S. Schiffner, C. Köbel, and T. Engel, “Wlan
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