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Abstract. There has been significant progress in autonomous vehicles:
autonomous automobiles, unmanned aerial vehicles, and many more are
improving our quality of life and making it safer. However, this also
opens up a new attack paradigm: now, an adversary can take control of
these autonomous systems to cause life-threatening scenarios. It becomes
possible due to the broadcast nature of wireless communication, which
connects autonomous vehicles in an ad-hoc network. Traditional crypto-
algorithms alone cannot tackle the problem as the crypto-credentials can
be compromised or even issued to adversarial parties. We propose VET: a
framework that verifies the veracity of the crypto-credentials by authen-
ticating them against physical trajectory and motion vectors (TMVs).
The verifier implements a location and motion-based authentication to
verify the crypto-credentials based on the acceptability of claimed TMVs
against randomly estimated TMVs. This prevents any adversary from re-
motely injecting spoofed messages when it is not physically present. We
formally analyze the correctness and robustness of VET using match-
ing conversations. Finally, we attest to the findings of the theoretical
analysis using an experimentally analyzed VET on the USRP platform.
Our experiments show that VET has 97% true positives when operating
without an adversary. Also, VET can detect advanced remote adversaries
with 99.9% who is capable of manipulating signals with absolute channel
knowledge.

Keywords: Location and Motion based-Authentication · Autonomous
VANET · Frequency-of-Arrival · Direct Location Estimation

1 Introduction

Various autonomous systems such as connected autonomous vehicles (CAVs)
and [46], unmanned aerial vehicles (UAVs) [32] are inter-connected via ad-
hoc networks for efficient implementation. In CAVs, safe and efficient traffic
control can be improved through V2X communications [13]. UAV swarm mo-
tion [21], efficient control by a ground station [18], geofencing, and midair col-
lision avoidance [58] is efficiently performed when UAVs communicate. Thus,
verifying the authenticity and integrity of the CAV and UAV communication
is important. For example, a rogue CAV can broadcast spoofed messages, such
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as moving slowly, which will cause more traffic to be routed to an alternate
route. Or a CAV can broadcast a spoofed emergency braking message due to
a fake accident, disrupting safe traffic motion. Similarly, in UAVs, a misbe-
having UAV can disrupt swarm motion or break the geofencing to move into
no-fly zones. Thus, verifying the message integrity and source authentication of
messages injected by the nodes in these ad-hoc networks becomes paramount.

Fig. 1. The verifier B performs verification
of a prover A’s credentials based on motion
state vectors in the presence of an attacker
M capable of spoofing trajectories.

Classic cryptographic solutions such
as digital signatures or message au-
thentication codes can provide source
authentication and message integrity
verification [40]. However, this does
not prevent a remote adversary from
injecting spoofed messages through
compromised infrastructure [1, 9, 50]
either by utilizing compromised cre-
dentials [20] or legitimately issued
credentials. For CAVs, a certification
authority can certify the public key
infrastructure (PKI) credentials for
each vehicle registered [20]. UAVs are issued credentials to control and blacklist
UAVs; however, these credentials can be compromised to spoof fake motion data
to break the geofencing [55]. It is crucial to verify the vehicles’ physical veracity
and credentials. By this, we mean that if a vehicle claims to be at a certain
location, is it physically there? This imposes a more stringent restriction on an
adversary to be in the physical vicinity where it is attempting to inject messages.
This provides security comparable to computational security by imposing strict
restrictions on the capability to defeat the system.

Moreover, if an adversary is in the path of traffic, causing disruption, it will
also be affected. To perform such verification, we propose to utilize a novel lo-
cation and motion-based authentication architecture. Initially, all the credentials
are given limited connectivity until their trajectory and motion claims are au-
thenticated before each session.

Researchers have performed veracity verification of messages by compar-
ing them to estimated data from the wireless physical layer. The state-of-the-
art methods for position and velocity estimation utilize time difference of Ar-
rival (TDoA) [6], frequency of arrival (FoA) [34, 43], received signal strength
(RSS) [3,12,33], or angle of arrival (AoA) [52]. However, they have several limi-
tations, like inaccurate measurement, unreliable, and inefficiency. Further, some
of these works considered more than one verifier [34, 52]. If they considered a
single verifier, the verification needed fixed reflectors for a rich multipath envi-
ronment [3,12,43]. Also, these are vulnerable to several attacks, especially when
the location of the verifier is known [11] where the rogue attacker can claim to be
the verifier and receive relevant information from the incoming prover. Different
approaches use out-of-band methods for tracking and estimating the position
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and velocity of vehicles like the use of light detection and ranging (LiDaR) [26],
cameras [54], radar [2], etc. but these out-of-band methods have been known to
be very expensive, require extra external hardware, and are easily compromised
by a remote attacker [27]. It still leaves a void to develop a method that can
perform reliable veracity verification with a single verifier and no assumptions of
the wireless environment. This will make the developed method agnostic to the
application and can be implemented in Non-Line-of-sight (NLoS) environments
of CAVs and the Line-of-sight (LoS) environment of UAVs.

We propose a framework for credential VErification using Trajectory and
Motion Vectors (TMVs) for autonomous vehicles. VET utilizes a location and
motion-based authentication strategy to grant or restrict access to a prover. As
compared to the state-of-the-art [3, 34, 43, 52], VET is capable of performing
verification with a single verifier, which can be either stationary or in motion
with no requirements on the environment. This applies to Line-of-Sight (LoS)
communication scenarios, such as UAVs. This strategy prevents an adversary
from gaining control of the communication system as we do not assume any
implicit trust within the communication range of the network.

Moreover, the verifier randomly collects the signals from a prover to estimate
the TMVs. Hence making it impossible for an advanced adversary to inject a tar-
geted spoofed trajectory even by performing signal-level manipulation. Consider
Fig. 1, a Prover A broadcasts its messages containing claimed TMVs utilizing
the secret credential received by the verifier B. The verifier further captures the
PHY-layer properties, such as FoA, for estimating the TMVs. We propose to
estimate the TMVs for two types of signals, one intended for B and the other
intended for other entities within the communication range. It should be noted
that the verifier B is not required to communicate with other entities in the
range. The verifiers accept A’s credentials if the claimed TMVs are within the
acceptable range of the estimated TMVs. To the best of our knowledge, this is the
first work to incorporate location and motion-based authentication to authorize
and authenticate vehicles based on the integrity of TMVs.

Main Contributions: Our major contributions are as follows.

– We develop a location and motion-based authentication for vehicular net-
work security protocol that can prevent the exploitation of valid or compro-
mised credentials from injecting spoofed messages. As compared to state-of-
the-art [3, 6, 12, 33, 34, 43, 52], VET, in addition to verifying the credentials
efficiently, also verify the veracity of the source’s physical location using a
single verifier agnostic to wireless channel conditions. Our protocol is immune
to advanced signal manipulation attacks and scalable and interoperable.

– We perform the verification by comparing the claimed TMVs with randomly
estimated TMVs at different times. Thus, an adversary who is unaware of
the time to perform a signal manipulation attack for spoofing ghost TMVs
is detected. Further, we utilize a frequency of arrival after compensating for
wireless channel effects to compute both position and velocity. This makes
it applicable to both LoS and NLoS real-world scenarios.
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– We formally analyze the security of our protocol against various active adver-
saries with advanced signal manipulation techniques based on the principles
of matching conversations [7]. We prove negligible success probability for an
advanced adversary with increasing TMVs.

– We further performed various experimental tests and evaluations of the per-
formance of our protocol on the USRP platform. We showed a high true pos-
itive rate for an acceptable false positive rate when no adversary is present
and proved the negligible success probability of adversaries with emulated
experiments using real-world data.

Paper Organization: In Section 2, we discuss the prior art and contrast
them with VET. Further, Section 3 presents the system and threat model with
the preliminaries. VET: The protocol is presented in Section 4 with security
analysis in Section 5 and experimental analysis in Section 6. Finally, concluding
in Section 7.

2 Related Work

Security in ad-hoc autonomous systems ensures that the information has not
been tampered with and is transmitted from an authenticated source. Prior
works perform additional verification of crypto-credentials can be broadly clas-
sified as in-band or out-of-band (OOB). The in-band solutions performs either
velocity or location verification [4–6, 10, 17, 19, 28, 30, 37, 38, 42, 43, 47, 52, 56].
Whereas, the OOB methods use Lidar [26], cameras [54], radar [2], etc. for veri-
fication. These methods are expensive, require extra external hardware, and are
easily compromised by a remote attacker [27]. As VET is an in-band solution,
we will discuss the details of in-band solutions.

Velocity Verification: Doppler shift measurement and Frequency Differ-
ence of Arrival (FDoA) were used for secure motion verification [38]. However,
the solution is limited to a static and single attacker. In contrast, our VET is
robust against multiple colluding moving attackers. Another method used an
Angle of Arrival (AoA) with Doppler speed for motion verification utilizing a
modified, extended Kalman filter framework [42]. However, this requires two ver-
ifiers with prior trust to perform the verification. Our framework uses a single
verifier, but no trust is required when there are multiple verifiers. In the work
by Ghose and Lazos, they used the Doppler spread to verify air traffic naviga-
tion, but they placed restrictions on the frequency the attacker can control [17].
However, this also requires very wide band transmissions, which is absent in
existing ad-hoc networks in autonomous networks. Another solution relies on
a single verifier, which can verify the motion state information of the moving
prover [43]. They consider performing the verification based on the similarity
of the Doppler shift observed on multipath communication between the prover
and the verifier. In contrast, VET can perform verification even with only one
Line-of-Sight (LoS) communication. Ad-hoc autonomous systems such as vehicle-
to-everything (V2X) networks have physical layer challenges [59] that affect the
uplink communications. The authors [45] performed real-world experiments on
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physical layer security attacks on mmWave communication where the mmWave-
based sensing method was used. In contrast, our method uses a location-based
strategy to grant access to the incoming moving entity. Further, UAV is suscep-
tible to various physical layer attacks [44], [23], [22] especially passive and active
eavesdropping attacks, jamming attacks, and pilot contamination attacks.

Location Verification: The direct position estimation [4] has been used to
estimate the expected position for the moving receiver and stationary transmit-
ter. The differential Doppler is another method used for position determination
which uses a two-step method of measuring the position at each receiver and es-
timating the position based on that measurement. The distance bounding tech-
niques [19], [5], [10] ensure that the RTT(round trip time) for the information
exchange is bounded, and it engages in a challenge-response protocol. The prob-
lem with this method is the communication is time-sensitive and requires a very
accurate system for rapid bit exchange, and also, the communication distance is
low [47]. Most other works on localization and secured verification in the vehic-
ular network are passive, as their only objective is to ensure that motion state
information is securely communicated to the verifier by guaranteeing the mes-
sage is truthful. Some other active autonomous vehicle tracking attacks [30] and
misclassification attacks [28]. Here, detection was done where they performed
the move-in and move-out attacks to hijack a tracker and used Spatiotempo-
ral inconsistencies to detect misclassification of objects. The authors provided a
vision-based solution.

Like all existing works, VET prevents message injection attacks with valid
credentials. However, in contrast to existing works, VET performs an intermin-
gled verification of velocity and position tied to a valid trajectory. Here, the veri-
fier and as well as the attacker can be either static or in motion. The attacker can
also have multiple colluding entities. We do not assume any environmental re-
quirement, which makes VET applicable to both LoS and NLoS communication
models. This makes VET applicable for all the ad-hoc networks of autonomous
vehicles. In Table 1, we compared VET to other works available for the security
of VANET.

Method Approach Moving Static/Moving Static/Moving
Prover Verifier Colluding Attackers

PoF [56] Large-scale RF ✓ × ×
SVM [43] FoA+AoA ✓ ✓ ×

Schafer et al. [38] FoA ✓ × ×
Ghose et al. [17] FoA ✓ × ×
Zhi et al. [45] mmWave ✓ × ✓
Wiggle [14] Challenge-Resp. Prot. ✓ × ×
PEDRO [57] RTT+GPS ✓ × ×

Rony et al. [24] FMCW Radar ✓ × ×
Tithi et al. [49] Friendly Jamming ✓ ✓ ×
Vaas et al. [51] Co-presence Verif. ✓ × ✓
Tirer et al. [48] FoA+Loc. Est. × × ×
Sun et al. [41] RF Based × × ×
VET (Ours) FoA+Loc. Est. ✓ ✓ ✓

Table 1. Related work summary
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3 Models

In this section, we first present the system model followed by the threat model
for VET. We present Table 2, which summarizes the frequently used notations
in this paper.

3.1 System Model

The Legitimate Prover (A): The prover A has legitimate credentials, which
can be either PKI credentials (pK, sK), or symmetric key credentials K. We
assume that A uses an omnidirectional antenna to transmit wireless signals.

The Verifier (B): The signal transmitted by A is received by the verifier
B, when the prover is within the communication range. The trust is established
by performing source authentication of the prover. We assume that there are
one or more truthful verifiers X within the communication range. This is a valid
assumption for CAVs, and there are other vehicles or roadside units or UAVs
with more than one trusted controller and UAVs. However, these verifiers do
not require mutual trust. Each verifier performs VET independently and can
broadcast a failure message in case of a failure. It should be noted that an
adversary can exploit to launch a denial-of-service; such an adversary can be
manually removed. Also, this is orthogonal to VET presented in this paper.

Fig. 2. The prover A attempts to authen-
ticate with the verifier B in the presence of
an adversary M and other entities X within
the communication range.

3.2 Threat Model

We consider a Dolev-Yao attacker
[15]. The adversary M has a valid
credential, which can be either PKI
credential (pkM , sKM ) or symmetric
credential KM , and injecting its mes-
sages to disrupt the acceptable func-
tionalities of a vehicular ad-hoc net-
work. The attacker knows the loca-
tions of all the verifiers but does
not physically control the verifier. M
transmit a message with an intention
for the verifier (B) to accept as the legitimate prover. M also knows all the
channels between legitimate entities. The adversary can either be within the
communication range of B or can compromise static wireless nodes connected to
the internet to realize the attack. Finally, we do not put any restrictions on the
motion of the adversary. Hence, the adversary can be either static or moving.
The attack scenarios for this work are:

Remote Attacker: We consider an attacker located within the verifiers’
communication range and attempting to inject his messages without intentional
modification of PHY-layer data.

Remote Advanced Attacker: In addition to the capability of a remote
attacker, the advanced attacker can intentionally modify the transmitted PHY-
layer level wireless signal.
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Notation Description

A Prover
B Verifier
X One or more truthful verifiers within the communication range
M Adversary
L Claimed trajectory for k time-ordered locations for initial TMVs verification
V Claimed motion for k time-ordered locations for initial TMVs verification
L′ Estimated trajectory for k time-ordered locations for initial TMVs verification
V ′ Estimated motion for k time-ordered locations for initial TMVs verification

L̃′ Estimated trajectory for non A-to-B communication for final TMVs verification

Ṽ ′ Estimated motion for non A-to-B communication for final TMVs verification
M Set of transmitted k messages ({(m(1), t(1)), . . . , (m(k), t(k)})
M̂ Captured k messages
F Frequency of Arrival

F̃ Frequency of Arrival for non A-to-B communication, where t(i) ̸= t′(i)
ϵ Acceptable error for location
µ Acceptable error for velocity
ΠA Prover oracle
ΠB Verifier oracle
ΠX Entity X oracle
ΠM Adversary oracle
tx Message transmissions

pk Probability of success of Adversary with No -Matching
dMB Distance between M and B
hMB Wireless channel between M and B
hMX Wireless channel between M and X
k Number of trajectory data points
RMSE(·) Normalized root mean square error function for TMV Verification.

Table 2. Table of Notations

4 VET: Credential Verification using Trajectory and
Motion Vectors

We present a secured, in-band vehicular access control method to verify the
authenticity and integrity of a set of messages transmitted from a legitimate
vehicle A at the verifier. B implements a location based strategy for verification,
where B does not trust A in the start of the communication. For the verification,
B generates a set of trajectory and motion vectors from the carrier frequencies.

4.1 Vehicular Motion State Verifier

The basic idea is for verifier B to authenticate the claimed trajectory observed
for a prover A via a location-based authentication strategy. We exploit the char-
acteristics of the direct position and velocity estimation via the arrival frequency
to verify the prover. The protocol is presented as without generality between a
prover A and a verifier B. It should be noted that simultaneous runs of the
protocol can be initiated between the same prover and different verifiers as the
prover A can simultaneously communicate with various entities. First, we de-
scribe TMVs utilized to develop VET:
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Trajectory and Motion Vectors: The trajectory L of a moving vehicle is
defined as k time-ordered locations

L = {(ℓ(1), t(1)), (ℓ(2), t(2)), . . . , (ℓ(k), t(k))}, (1)

where each location ℓ(i) = (x(i), y(i)) is the geospatial location coordinate at
time t(i). Where 1 ≤ i ≤ k for t(i) and t(i) < t(j) for i < j. Further, the motion
V is defined as k time-ordered locations in the same epoch

V = {(−→v (1), t(1)), (−→v (2), t(2)), . . . , (−→v (k), t(k))}, (2)

where −→v (i) is the velocity at time t(i). These locations and velocities are ob-
tained using the method described in Appendix A.

The protocol is initiated when the prover A is within the communication
range of B. The prover A sends Request to Authenticate message with authenti-
cated encryption using issued credentials. An authenticated encryption function
AE(·) utilizing the shared secret K [7]. This will guarantee the source’s au-
thenticity, message integrity, and confidentiality. When verifiers share a com-
mon secret, AE(·) can be implemented as an encrypt-then-MAC operation.
Whereas for the public key cryptographic scenario, AE(·) can be implemented as
a sign/encrypt/sign (or encrypt/sign/encrypt). Here, the credential can either
be the actual one issued by a trusted authority or a pseudonym credential for
preserving privacy. The verifier B provides the prover limited connectivity if the
credentials are verified.

During the limited connectivity, the verifier B captures the message trans-
mitted to it and extracts the claimed k TMVs L and V, and estimated TMVs
L′ and V ′. First, B verifies the claimed and estimated using a root mean square
error (RMSE) function. If successful, in the same time epoch, the verifier B
captures the frequency of arrival (FoA) F̃ for the messages transmitted by A
but not intended for the B. From these FoA, the verifier B estimates TMVs L̃′

and Ṽ ′, which are shifted in time as compared to claimed. Further, B maps the
claimed TMVs to the same time as estimated TMVs using kinematic equations.
The estimated and claimed TMVs are compared; if these are within the accepted
errors, A’s messages are accepted and granted full access. Formally, the vehicular
motion state verification steps are:

1. Initial Request : Once the prover A is within the communication range
of the verifier B. A transmits a request to authenticate AEK(RTA) to the
verifier B to join.

2. Limited Access Connection: After verifying the authenticity of A’s cre-
dential K, B grants it limited access. During the limited access B captures k
messages transmitted by A as M = {(m(1), t(1)), . . . , (m(k), t(k)}, contain-
ing claimed TMVs: velocity vectors V = {(−→v (1), t(1)), . . . , (−→v (k), t(k)} and
L = {(ℓ(1), t(1)), . . . , (ℓ(k), t(k))}. B also records the FoA
F = {(f(1), t(1)), . . . , (f(k), t(k)}, and computes TMVs: velocity vectors
V ′ = {(−→v (1)′, t(1)), . . . , (−→v (k)′, t(k)} and L′ = {(ℓ(1)′, t(1)), . . . , (ℓ(k)′, t(k))}.
It should be emphasized that the verifier has not yet acknowledged any of
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the critical directives. It is only used for the verifier to extract the relevant
trajectory information of the incoming prover for verification.

3. Initial TMVs Verification: B computes the Root Mean Square Error
(RMSE) of location as:

RMSE(ℓ(i), ℓ(i)′) =

√√√√∑k
i=1

(
ℓ(i)−ℓ(i)′

ℓ(i)′

)2

k
.

The RMSE of velocity is as follows;

RMSE(−→v (i),−→v (i)′) =

√√√√∑k
i=1

(−→v (i)−−→v (i)′
−→v (i)′

)2

k
.

B then performs verification:

RMSE(ℓ(i), ℓ(i)′)
?
≤ ϵ ∀ 1 ≤ i ≤ k,

RMSE(−→v (i),−→v (i)′)
?
≤ µ ∀ 1 ≤ i ≤ k,

where RMSE(·) is a normalized root mean square error function, and ϵ and µ
are the acceptable error. If B passes the check, A grants B partial access and
accepts M as valid. Else, B disregards M and terminates the connection of
A. Also, B broadcasts a signal notifying FAILED authentication of A.

4. Estimating TMVs for non A-to-B communication: During the same
time epoch, verifier records FoA F̃ = {(f̃(1), t′(1)), . . . , (f̃(k), t′(k)}, where
t(i) ̸= t′(i), from the transmissions (tx) from A not intended for B. Next

the verifier B computes corresponding velocity vectors Ṽ ′ = {(
−→
ṽ′ (1), t′(1)),

. . . , (
−→
ṽ′ (k), t′(k)}, and trajectory vectors L̃′ = {(ℓ̃′(1), t′(1)), . . . , (ℓ̃′(k), t′(k))}.

5. Interpolating Claimed TMVs: The estimated TMVs
−→
ṽ′ (i), t′(i) and

(ℓ̃′(i), t′(i)) are interpolated to synchronize with claimed TMVs (−→v (i), t(i))
and (ℓ(i), t(i)) using cubic spline interpolation methods for a timeseries data
[29].

6. Final TMVs Verification: The RMSE of location is calculated as:

RMSE(ℓ(i), ℓ̃′(i)) =

√√√√∑k
i=1

(
ℓ(i)−ℓ̃′(i)

ℓ̃′(i)

)2

k
.

The RMSE of velocity is computed as:

RMSE(−→v (i),
−→
ṽ′ (i)) =

√√√√∑k
i=1

(−→v (i)−
−→
ṽ′ (i)

−→
ṽ′ (i)

)2

k
.

Finally, B performs verification:

RMSE(ℓ(i), ℓ̃′(i))
?
≤ ϵ ∀ 1 ≤ i ≤ k,
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RMSE(−→v (i),
−→
ṽ′ (i))

?
≤ µ ∀ 1 ≤ i ≤ k,

where RMSE(·) is a normalized root mean square error function, and ϵ and
µ are the acceptable error. If B passes the check, A grants B full access and
accepts M as valid. Else, B disregards M and terminates the connection of
A. Also, B broadcasts a signal notifying FAILED authentication of A.

A B

Initialization:
AEK(RTA)−−−−−−−−−−→ Grants limited Access

Captures Claimed Messages:

M = {(m(1), t(1)), . . . , (m(k), t(k)} AEK(M)−−−−−−−−→ M̂, also capture
F = {(f(1), t(1)), . . . , (f(k), t(k)},

extract
V = {(−→v (1), t(1)), . . . , (−→v (k), t(k)}
L = {(ℓ(1), t(1)), . . . , (ℓ(k), t(k))}.

compute
V ′ = {(−→v (1)′, t(1)), . . . , (−→v (k)′, t(k)}
L′ = {(ℓ(1)′, t(1)), . . . , (ℓ(k)′, t(k))}.

Initial TMVs Verification: RMSE(−→v (i),−→v (i)′) =

√∑k
i=1

(
−→v (i)−−→v (i)′

−→v (i)′

)2

k
,

Partial access.

RMSE(ℓ(i), ℓ(i)′) =

√∑k
i=1

(
ℓ(i)−ℓ(i)′

ℓ(i)′

)2

k
.

RMSE(−→v (i),−→v (i)′)
?

≤ ϵ,

RMSE(ℓ(i), ℓ(i)′)
?

≤ µ,

Computes TMVs’s : tx (Transmission not to B)
Sniff Packets−−−−−−−−−−−→

F̃ = {(f̃(1), t′(1)), . . . , ( ˜f(k), t′(k)},
t(i) ̸= t′(i),
compute

Ṽ ′ = {(
−→
ṽ′ (1), t′(1)), . . . , (

−→
ṽ′ (k), t′(k)},

L̃′ = {(ℓ̃′(1), t′(1)), . . . , (ℓ̃′(k), t′(k))}.

TMVs Interpolation: From t(i)′ to t(i) using cubic spline interpolation:
V = {(−→v (1), t(1)), . . . , (−→v (k), t(k)},
L = {(ℓ(1), t(1)), . . . , (ℓ(k), t(k))}.

Final TMVs Verification: RMSE(−→v (i),
−→
ṽ′ (i)) =

√∑k
i=1

(
−→v (i)−

−→̃
v′(i)

−→̃
v′(i)

)2

k
,

RMSE(ℓ(i), ℓ̃′(i)) =

√∑k
i=1

(
ℓ(i)−ℓ̃′(i)

ℓ̃′(i)

)2

k
.

RMSE(−→v (i),
−→
ṽ′ (i))

?

≤ ϵ,

RMSE(ℓ(i), ℓ̃′(i))
?

≤ µ,

Decision:
Broadcast Decision←−−−−−−−−−−−−−− Decision ¡FAIL or SUCCESS¿,

Full access. AcceptM, grant B full access.

Fig. 3. Vehicular Motion Vectors Verifier Protocol.

Figure 3 formally presents the steps of VET. A remote adversary M who
cannot modify the physical characteristics of the transmitted signal is detected in
Step 3, as the claimed TMVs are for the emulated trajectory while the estimated
TMVs are the actual trajectory of M . Further, an advanced adversary M who
with the knowledge of channel to the verifier B can craft the FoA to match
the emulated and the claimed TMVs. Such as the adversary is detected by
Step 6, as in Step 4 the verifier B captures the FoAs when the adversary will be
communicating with any other entity present in the vicinity. Such communication
can be detected by noting the sender and receiver in the header [8].
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We will present a more detailed discussion on the robustness of the protocol
in the next section. Here, it is assumed that the advanced adversary is attempt-
ing to emulate different trajectories at different verifiers. This is an acceptable
assumption as all the verifiers will have different physical locations. Hence, em-
ulating the same physical trajectory will force M to emulate different perceived
trajectories at different verifiers.
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Fig. 4. (a) A timeline for the interpolation, (b) ROC curve for location data for various
interpolation techniques, (c) ROC curve for velocity data for various interpolation
techniques.

4.2 Interpolating TMVs

In Step 5, of VET the estimated TMVs need to be interpolated for synchronizing
with claimed TMVs, as shown in Fig. 4(a) such that the comparison can be made
between the estimated and claimed trajectories. We perform the interpolation
utilizing cubic spline interpolation [29,39] because of its high accuracy, smooth-
ness, flexibility, robustness, and less noisy interpolation when modeling trajec-
tory motion profiles. Compared to other interpolation techniques like piecewise
linear interpolation [25], r-cubic spline [36], and polynomial interpolation [16],
cubic spline produces a smoother curve. Piecewise linear interpolation [25] has
a high granularity of the TMV data but only does well when the vehicle is mov-
ing on a straight line at constant velocity. It is not as robust as cubic-spline for
interpolating TMV in the real world. Linear interpolation works well in ideal sce-
narios, but in our experiments, the vehicles move at changing speeds at different
times. Piecewise polynomial interpolation, like quadratic spline, is not the best
interpolation technique compared to cubic spline and r-cubic spline regarding
accuracy and smoothness, especially for complex scenarios. r-cubic spline [36] is
simpler and faster but less accurate because its interpolation is based on simple
recurrence equations, unlike the cubic spline which requires solving tri-diagonal
matrix-vector equations. In Fig. 4 (b) and (c), we show that cubic spline has the
best performing ROC curve as compared to other techniques for location and
velocity, respectively, when we account for a trajectory with 90◦ turn. We used
the data we collected for evaluations; please refer to Section 6.1 for more details.
Although we do note that cubic spline is more computationally expensive, it
is acceptable for our model as a not computationally limited verifier performs
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all the computations. Moreover, we need accuracy and smoothness of the curve,
especially for irregular data points, rather than speed for VET. The cubic spline
interpolation of both the location and velocity is performed using the following
equation:


S0(t) = Ỹ0 + b0(t− t′0) + c0(t− t′0)

2 + d0(t− t′0)
n ∀ t ∈ [t′0, t

′
1],

...

Sn(t) = Ỹn−1 + bn−1(t− t′n) + cn−1(t− t′n)
2 + dn−1(t− t′n)

n ∀ t ∈ [t′n−1, t
′
n].

(3)
where Ỹ can be either velocity −→v or location ℓ of the vehicle at time t′,

computing the parameters for b, c, d is obtained from solving a system of linear
equations and substitution. The result will be a TMV curve that is smooth and
more continuous than other forms of interpolations.

5 Security Analysis

In this section, first, we analyze the correctness of VET followed by robustness
analysis against the adversary presented in Section 3.2. For the formal analysis of
the protocol, we will utilize the idea of matching conversation [8]. The main idea
is that two entities can mutually authenticate each other in the presence of an
adversary if and only if they have the same chronology of exchanged messages.

5.1 Correctness Analysis

We discuss the correct implementation of VET when there is no adversary
present. We consider the prover A and verifier B to be modeled by an Oracle
model. We define the protocol transcript at A and B as ΠA and ΠB , respec-
tively as observed by the oracle Π. In the transcripts, the received messages are
denoted by a hat notation. The transcripts of the messages exchanged between
A and B are:

ΠA = {AEK(RTA);m(1); tx(1); . . . ;m(k); tx(k)}, (4)

ΠB = { ̂AEK(RTA); m̂(1); t̂x(1); . . . ; m̂(k); t̂x(k)}, (5)

for ease of depiction, we have skipped the timestamps for the messages. Several
communicating oracles are also possible in a distributed way, but each oracle is
unique.

The matching conversation is a way of authenticating an entity, which is
the prover A. Both A and B will get the same long-lived key K, which would
be unknown to anyone else. Once the communication is correct, the verifier
B confirms or denies the prover A. That is, at the end of the conversation,
the decision (η), from the verifier B is to confirm (C) or reject (R) the prover
A (η, C,R). Although rejection can occur before the end of the conversation,
confirmation only happens at the end.
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The prover oracle (ΠA) sends a message AEK(RTA), which contains the re-

quest to authenticate. The verifier oracle (ΠB) receives the message ̂AEK(RTA).
It decrypts the message to check if the correct key K was used and grants the
prover partial access. Next the prover oracle (ΠA) transmits the message m(1)
where ΠB extracts trajectory and motion vectors (TMVs) ℓ(1) and v(1). This is

followed by ΠA transmits a message txA(1) not intended for ΠB . From t̂xA(1)
transmission ΠB records the Frequency of Arrival (FoA) f̃(1). Now the verifier

estimates the velocity
−→
ṽ′ (1) and location ℓ̃′(1). Finally, compare the estimated

and claimed velocities and locations based on the RMSE in Step 6 after interpo-
lating the estimated to synchronize with the claimed in Step 5. It is straightfor-
ward to show if the message m(1) and the transmission tx(1) are from the same
prover oracle ΠA. The estimated and claimed will be within the acceptable error
ϵ for location and µ for velocity. This is repeated for all k transmissions.

5.2 Robustness Analysis

Next, we will analyze the robustness of VET against the threat model we defined
in Section 3.2. First, we will analyze VET against a remote attacker who injects
messages. This is followed by the remote advanced attacker, who can modify
its physical layer envelope in an attempt to force the verifier B to accept the
messages.

Remote Attacker: The remote adversary (M) is inside the communication
range of the verifierB. Here, in the oracle model, we have an adversary oracleΠM

and the verifier oracle ΠB . The transcripts of the messages exchanged between
M and B for VET execution is:

ΠM = {AEKM
(RTA);mM (1); txM (1); . . . ;mM (k); txM (k)}, (6)

ΠB = { ̂AEKM
(RTA); m̂M (1); ̂txM (1); . . . ; m̂M (k); ̂txM (k)}, (7)

For ease of depiction, we have skipped the timestamps for the messages. For the
case of a legitimate prover (A), there can be two different scenarios: (1) A is not
present, and M initiates VET, and (2) A is present and M hijacks the execution
of VET. In the first case, the prover oracle’s transcript is:

ΠA = {∅}. (8)

In the second case, the transcript is:

ΠA = {AEK(RTA);m(1); tx(1); . . . ;m(k); tx(k)}. (9)

To prove the robustness of VET against a remote attacker. We aim to prove
that the acceptance or authentication at the verifier (B) with non-matching
conversations at prover and verifier oracles ΠA and ΠB , respectively, is negligi-
ble. Let us dive into the individual messages exchanged between the adversary
oracle ΠM and the verifier oracle ΠB , (6) and (7). The first message that is
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(a) (b)

Fig. 5. (a) A remote adversary M attempting to authenticate with a spoofed trajectory
inside the communication range of the verifier B, and (b) a remote advanced attacker
M attempting to authenticate an emulated trajectory to verifier B with other verifiers
X in the vicinity.

exchanged between them is AEKM
(RTA), this message is accepted by ΠB even

with mismatch with ΠA, (8) and (9). This is because the credential used by
ΠM is either issued by a valid Trusted Authority (TA) or compromised from the
legitimate prover A. Thus ΠM is able to initiate the session. Now, let us focus
on the k messages exchanged for the verification. There are two sets of messages
mM (i) are the messages intended for the verifier oracle ΠB and ΠB estimates
the TMVs. And the transmissions txM (i) from adversary oracle ΠM intended
for other oracles present such as ΠX . Which can be some other verifier in the
same vicinity. Such that the verifier oracle ΠB can be a roadside unit and other
oracles ΠX can be another vehicle in the vicinity.

For this type of adversary, the claimed and the estimated TMVs because
the adversary is present at a remote location, as shown in Fig. 5(a). This will
force ΠB to estimate the remote TMVs detected by Step 3 of VET. It should be
noted here this applies to both static and moving adversaries. Hence, this type of
adversary will be detected and removed from the system. As well as the verifier
will notify the presence of an adversary to other entities in the communication
range.

Remote Advanced Attacker: Similar to the analysis against a remote
attacker, to prove the robustness of VET against a remote advanced attacker.
We aim to prove that the acceptance or authentication at the verifier (B) with
non-matching conversations at prover and verifier oracles ΠA and ΠB , respec-
tively, is negligible. The individual messages exchanged between the adversary
oracle ΠM and the verifier oracle ΠB , (6) and (7). The first message that is
exchanged between them is AEKM

(RTA), this message is accepted by ΠB even
with mismatch with ΠA, (8) and (9). Here, in addition to injecting the set of
claimed TMVs M, the advanced adversary can change the envelope and FoA to
emulate a trajectory estimated from sniffed packets indented for ΠX . Hence, an
advanced adversary oracle ΠM is capable of emulating a trajectory to ΠB , as
shown in Fig. 5(b).

The emulated trajectory of ΠM is accepted at ΠB without matching conver-
sation with ΠA if the RMSE of all the TMVs in Step 6 is within the acceptable
range. This cannot happen with certainty as ΠM because even if emulating the
same trajectory to ΠB and ΠX . The estimated trajectories will be different;
this is because the estimated trajectory (V ′,L′) in Step 2 is emulated for ΠB .
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Whereas the estimated trajectory (Ṽ ′, L̃′) in Step 4 is emulated for ΠX . The
adversary does this to pass Step 3, where the claimed and estimated trajectories
must match at respective verifiers. Note here that Step 4 for ΠB captures the
messages for Step 2 of ΠX . Also, verifiers inform all other entities about the
failure of the authentication of any entity. It should be noted here this can be
utilized to launch a denial-of-service (DoS) where a legitimate entity is forcibly
disconnected. This is orthogonal to the application of VET. This can be trivially
tackled by cryptographic verification of the failure broadcast. Next, we show that
both types of adversaries have negligible success probability in defeating VET.
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Fig. 6. The plot shows the
success probability of M for
different numbers of TMVs in
the trajectory k.

Formal Proof: For both the adversary models,
we can model the success of the adversary oracle
ΠM for claimed TMVs to match the estimated
TMVs. Let the probability for ΠM for −→v (i) and

ℓ(i) match with
−→̃
v′ (i) and ℓ̃′(i), respectively at ΠB

be p. This probability depends on the distance of
the adversary M from the emulated trajectory.
As the wireless channel outdoors decorrelates [56].
We evaluate this probability in the evaluation sec-
tion. Thus, for k TMVs, the probability of an ad-
versary succeeding with no matching is

Pr[B accept ∧No-matching] = pk, (10)

which is a negligible probability [35], as shown in Fig. 6. Even for a high
probability p1 = 0.9, for 50, 40, 30, 20, and 10 TMVs, the success probability is
5 × 10−3, 1.4 × 10−2, 4.2 × 10−2, 1.2 × 10−1, and 3.5 × 10−1. Please note here
for a single execution of VET, the attacker has only one chance to inject all the
TMVs online. Hence, a higher probability of success is acceptable here relative
to traditional crypto-algorithm (similar values are acceptable for other online
protocols with short authentication strings [31]).

5.3 Discussion on Shortcomings
One of the areas we need to recognize is in the absence of at least two truthful
verifiers, a remote advanced adversary can be successful. But it should be noted
here that a novice remote adversary who cannot craft the physical layer enve-
lope can be detected with only one verifier. Thus, only detecting an advanced
adversary can craft the physical layer envelope with the knowledge of all the
channels within the entities. We need more than one truthful verifier, which is
not a reasonable requirement for detecting the strongest possible adversary.

6 Experimental Evaluation

In this Section, we evaluate the correctness, robustness, and protocol parameters
utilizing a USRP platform with well-defined experiments. First, we describe the
experimental setup followed by correctness and robustness analysis.

6.1 Experimental Setup
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Fig. 7. (a) Verifying different trajectories of a legitimate prover A, (b) a remote adver-
sary injecting claimed trajectory, and (c) a remote advanced adversary manipulating
the signal’s physical properties to emulate trajectory.

Verifier (B)

Prover (A)

Verifier (X)

Fig. 8. Experimental setup
with Prover car (A) with Ver-
ifiers (B) and (X).

Our experimental setup includes a prover (A)
vehicle and stationary verifier (B), as shown in
Fig. 7(a) and Fig. 8. We have a secondary veri-
fier (X) present in the system for demonstration
purposes only; we do not use the data collected
at (X) for evaluations. The prover vehicle con-
tains the signal transmitter USRP 2922 inside a
car, which continuously broadcasts the BPSK sig-
nal at 915MHz using an omnidirectional antenna (VERT-900). The transmitter
USRP is connected to a Lenovo ThinkPad T14 running the GNU Radio trans-
mitter code. We choose 915MHz center frequency with a bandwidth, f0, instead
of 2.45GHz, which is in the Wi-Fi band because it is less congested and has
a longer range. The verifiers are two stationary USRP 2922s connected to two
individual computers placed on the opposite side of the road, which acts as re-
ceivers. The center frequency is also set to 915MHz, with a target sampling rate
of 32000Sps and an actual sample rate of 195312Sps. The receivers also run GNU
Radio code to capture the transmitted data packets from the moving prover. A
GPS-enabled phone collects the ground truth of location and velocity data as
the prover vehicle drives around the verifiers. We synchronize all three comput-
ers and the phone to use the United States Internet Time Server (ITS) of The
Network Time Protocol server [53]. The verifier collects timestamped data as
the prover drives around at a constant speed.

6.2 Correctness Analysis

First, we focus on evaluating the correct performance of VET. For this, we
evaluate the location estimation and velocity estimation individually. The per-
formance of VET is the worst of either of the estimations. We captured the
physical layer envelope and frequency of arrival of the signal received from A.
We implemented the methods mentioned in Appendix A to estimate velocity and
position. Then, we compute the key performance indicator (Receiver operating
characteristic) by comparing the estimated velocity and position to the ground
truth recorded on the phone kept inside A.

Receiver operating characteristic (ROC) curve: We compute two sep-
arate Receiver operating characteristic (ROC) curves for velocity and location
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data. We use the ROC curves to evaluate three parameters. First, the acceptable
errors to set the thresholds (ϵ, µ) for RMSE of location and velocity, respectively,
in Steps 3 and 6. Second, k is the number of trajectory points required to com-
plete the verification with an acceptable true positive rate. Finally, we evaluate
the acceptable errors for the straight or turning trajectory of the vehicle.

Figure 9(a) shows the plot between true positive rate (TPR) and false positive
rate (FPR) for various ϵ RMSE errors and k = 3 for the location data. From
the figure, we observe that for ϵ = 0.2, we observe a 0.92 true positive rate for
0.03 false positive rate. In Fig. 9(c), we show the location data ROC curve for
various k number of trajectory points for ϵ = 0.2. We observe that for k = 3
VET can achieve TPR = 0.96 for FPR or 0.03. Further, in Fig. 9(b) and (d), we
plot the velocity ROC curve for various RMSE threshold (µ) and k, respectively.
We observe that for velocity, VET achieves a TPR of 0.9 for µ = 0.2 and a TPR
of 0.94 for k = 3. We also observe that each of the curves are acceptable ROC
curve as the TPR goes close to 1 before the FPR reaches 0.05. For the rest of the
experimental analysis, we set the values of the thresholds from the ROC curves.
Specifically, we fix the ϵ = 0.2 and µ = 0.2 for location RMSE and velocity
RMSE, respectively. We selected these values as they achieve optimum TPR for
acceptable FPR. Finally, we compute the ROC curves for various trajectories,
as shown in Fig. 7(a). The trajectory “A” and “C” are straight line while “B”
and “D” involves turns. From the curves in Fig. 9(e) and (f), we observe better
performance for straight-line trajectories as compared to ones involving turns.
However, all of the TPR and FPR values are acceptable, with TPR reaching 1
for the trajectories involving turns before FPR reaches 0.08.
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Fig. 9. (a) ROC curve for location data for various RMSE threshold ϵ, (b) ROC curve
for velocity data for various RMSE threshold µ, (c) ROC curve for location data for
various k the number of trajectory points, (d) ROC curve for velocity data for various
k, (e) ROC curve for location data for various trajectories as shown in Fig. 7(a), (f)
ROC curve for velocity data for various trajectories as shown in Fig. 7(a).
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Fig. 10. (a) Probability of success for remote M in defeating velocity verification, (b)
probability of success for remote M in defeating location verification, and (c) proba-
bility of success for remote advanced M in defeating velocity verification.

6.3 Robustness Analysis

Next, we evaluate the robustness of VET against both adversaries defined in
Section 3.2. First, we evaluate the remote attacker who injects a spoofed trajec-
tory as a message. Next, we evaluate the performance of an advanced remote
attacker M who can change the physical parameters of the signal to emulate
a target trajectory. We compute the success probability using the RMSE(·)
function.

Remote Attacker: We utilized the data collected to emulate the remote at-
tacker. Here, the attacker’s actual trajectory differed from the claimed trajectory,
as shown in Fig. 7(b). Using the data, we plot two graphs for location and veloc-
ity. In Fig. 10(a) and Fig. 10(b), we plot the probability of success (pk) from (10)
for the adversary for B to accept velocity and location, respectively against k the
number of messages for dMB distances between B and M, varied between 100m
and 150m. From the plot, we observe that for k = 3 data points of the trajectory,
the probability of success for the adversary goes down to the level of 10−5 for both
the velocity and location. Further, we observe that an adversary farther than
120m from the verifier B has a significantly low success probability in defeating
VET. Thus, VET can detect an adversary who might be using compromised
infrastructure to inject data. Moreover, VET can detect a remote-moving adver-
sary attempting to inject rogue messages. This attests to our theoretical finding
that the probability of success for the remote adversary is a negligible probability.
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Fig. 11. Probability of success
for remote advanced M in de-
feating location verification.

Remote Advanced Attacker: Finally, we per-
formed emulation to evaluate the remote advanced
attacker using Matlab. We first computed the
wireless channels hMB and hMX between the ve-
hicle and the verifier B, and the vehicle and the
second verifier X, respectively. The adversary uti-
lized the knowledge of the channel hMX to em-
ulate the trajectory at X, as shown in Fig. 7(c).
This signal is received by B on the hMB emulated
by a ray tracing model. B computed the estimated
trajectory using the emulated trajectory to com-
pute the probability of success for the adversary.
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Figure 10(c) and Fig 11 show the plot between the probability of success (pk)
from (10) for the adversary against k, for the velocity and location, respec-
tively. We observed that an advanced adversary M could defeat VET with a
success probability of 10−6 for k = 5 trajectory data points. Also, here an adver-
sary further than the distance than dMB ≥ 120m is detected with probability
(1− 10−6), for both velocity and location. This attests to our theoretical finding
that the probability of success for the remote advanced adversary is a negligible
probability. Hence, the advanced adversary M has to be close to B for defeating
VET. Even when M is close to B, the adversary can be detected with certainty
when more number k of trajectory points are collected for authentication.

7 Conclusion

We proposed VET: a framework that verifies the veracity of the crypto-credentials
by authenticating them against physical trajectory and motion vectors (TMVs).
The verifier implements a location and motion-based authentication strategy
and verifies the crypto-credentials based on the acceptability of claimed TMVs
against randomly estimated TMVs. This detects any adversary from remotely
injecting spoofed messages when it is not physically present where it claims to
be. We formally analyzed the correctness and robustness of VET using match-
ing conversations. Finally, we attested to the findings of theoretical analysis with
experimental analysis of VET on the USRP platform. Our experiments showed
that VET has 97% true positives when operating without an adversary. We
fixed the threshold values for evaluation based on the ROC curve plotted for the
location and velocity data. We evaluated both novice and advanced adversarial
behaviors. In the experiments, we showed that VET can detect advanced remote
adversary with 99.9% who is capable of manipulating signals with absolute chan-
nel knowledge. In the future, we plan to expand the experimental evaluations on
a UAV platform with both moving provers and verifiers.
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Appendix A: Primitives used in VET

Before diving into the details of VET, we present its building blocks. First, we
present the method utilized to estimate the velocity. Followed by the method to
compute the position and combine both to compute the trajectory and motion
vectors (TMVs).

Frequency of Arrival (FoA) for Velocity Estimation: The FoA cap-
tures the effect of the velocity on the center frequency. In other words, it is the
Doppler effect experienced by the moving verifier B with respect to the moving
prover A at speed v. From Fig. 2, the prover vehicle A is within the communi-
cation range of the verifier B. The frequency of arrival when the verifier and the
prover are moving towards each other, so the Doppler effect experienced by the
verifier increases, is given by

F = f0 ×
c+−→v B cos α

c−−→v A sin α
, (11)

where F is the Doppler shift on verifier B, c is the propagation speed, f0 is the
prover’s center frequency.

From (11), the velocity of the prover at the ith sample is given by

−→v B(i) =

[
c− F(i)(−→v A(i) sin α)

f0

]
cos−1 α. (12)

The Doppler effect of the signal measured by B is dependent on the radial veloc-
ity and the center frequency. The relative velocity observed−→v (i) = −→v B(i) cos α−−→v A(i) sin α.

Direct Location Estimation For estimation of the location, it is important
to note that the verifier B has more than one antenna. This assumption is valid
for vehicular networks as the roadside units are MIMO enabled, and in the
case of UAV swarms, multiple single antenna UAVs can collude as the verifier.
We used maximum likelihood estimation to directly estimate the position, which
maximizes the likelihood for the prover [3] when the prover is broadcasting within
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the expected verification range. This is a one-step process that does a 2-D or
3-D grid search of the prover’s position.

The location ℓ(i) of the prover B is the position that maximizes the log-
likelihood function. This position is expressed as

ℓ(i) = argmax
ℓ

{Li}. (13)

Here, the log-likelihood function is written as

Li =

J∑
j=1

λmax(Qj). (14)

The log-likelihood function is the summation of all the maximum eigenvalues
of the Hermitian matrix Qj . The matrix contains received signals multiplied by
the frequency difference of arrival (FDoA) at the different antennas.

Effect of NLoS on the FoA: Typically, when vehicular wireless signals
propagate in the real world, it does that in multipath [43]. The motion claim
of the prover reaches the verifier in two or more paths. For simplicity, in our
research, we use two path components. The NLoS path exists due to signal
reflection before getting to the verifiers. This means there exists a reflection
point that is always changing due to the dynamicity of the environment and this
change affects the position by some factor δ. Therefore, the prover’s position for
verifiers is c−−→vBcos α+ δ. This means that for a moving verifier and a moving
prover due to NLoS, the Doppler effect will be given by

F = f0 ×
c+−→v B cos α+ δ

c−−→v A sin α
+ ϵ, (15)

This NLoS component is embedded in the signal path attenuation which
maximizes the likelihood [3], at each verifier and the function that contains the
unknown provers position and velocity.


