TinyRadio: Tiny Neural Networks for Fingerprinting
Radio Frequency Signals

Mabon Ninanf, Ryan Evans', Logan Reichling!, Nirnimesh Ghose¥, Boyang Wang!
TUniversity of Cincinnati, University of Nebraska-Lincoln
{ninanmm, evans2ra, reichlln} @mail.uc.edu, nghose@unl.edu, boyang.wang@uc.edu

Abstract—Research studies have shown that deep neural net-
works can effectively classify Radio Frequency signals for multiple
applications, such as modulation classifications and radio finger-
printing, in wireless communications. However, neural networks
investigated in the majority of existing studies are complex, which
often consist of millions of parameters and consume high memory.
This makes it challenging to deploy these complex neural networks
on wireless devices. In this paper, we leverage an automatic
pruning algorithm, which can automatically decide a customized
pruning rate to remove less important filters on each layer in
a neural network. We conduct comprehensive evaluations over
multiple real-world datasets for both modulation classifications
and radio fingerprinting. Our experimental results show that:
(1) our automatic pruning can significantly reduce the number
of parameters in a neural network for RF classifications (over
98.19% parameter reduction rate); (2) our automatic pruning can
outperform pre-defined pruning algorithms in previous research
and the ones used in existing industry tools (Xilinx Vitis-AI); (3)
our pruning is compatible with other neural network compression
technique (e.g., quantization), which can be leveraged to further
reduce model size; (4) our pruned neural networks are extremely
small (e.g., 0.25 MBs) and can effectively perform RF classifica-
tions on embedded devices (Nvidia Jetson) and FGPAs (Xilinx
Z.CU104 board) with real-time inference (e.g., 0.41 milliseconds
per I/Q frame).

I. INTRODUCTION

Recent research show that deep neural networks can out-
perform traditional methods in classifying Radio Frequency
(RF) signals [1]. For instance, neural networks can perform
modulation classification, which allows a receiver to identify
the modulation used for wireless communication. In addition,
neural networks can also carry out radio fingerprinting, which
allows a receiver to authenticate a transmitter based on RF
signals alone at the physical layer. These RF classification tasks
service fundamental roles in maintaining the performance and
security of current as well as future wireless transmissions.

Despite the promising progress in recent literature, one of
the major challenges for deep learning RF classifications is
that existing neural networks are often complex. For instance,
even the lightweight ResNet used for modulation classification
carries over 717,000 parameters [2]. These neural networks lead
to high memory usage during RF classification on resource-
constrained embedded devices.

In this paper, we leverage an automatic pruning algorithm
[3], which can remove less important filters in a neural net-
work. Given this algorithm, the pruning rate at each layer is
automatically optimized based on filter scores at each layer.
The total number of parameters in a neural network can be

dramatically reduced with a minimal impact to the results
of RF classification. The pruned neural network requires less
memory usage and storage, which makes it more efficient
for operating RF classification on embedded devices in real
time. We conduct comprehensive evaluations over three existing
large-scale datasets for two RF classification tasks, including
modulation classification and radio fingerprinting. Our main
findings are summarized below

o Given a baseline ResNet with 717,250 parameters for
modulation classification, we can derive a pruned ResNet
with only 12,921 parameters (i.e., 98.19% parameter re-
duction rate) and this pruned ResNet can still achieve
84.16% accuracy over RadioML2021 dataset [4].

o Given a baseline ResNet with 695,720 parameters for radio
fingerprinting, we can obtain a pruned ResNet with only
7,710 parameters (i.e., 98.89% parameter reduction rate)
and this pruned ResNet can still authenticate transmitters
within 35 I/Q frames over NEU dataset [5].

o Our comparison demonstrates that, given a similar param-
eter reduction rate, our pruned neural networks achieve
higher accuracy than the ones derived from existing stud-
ies, including pre-defined pruning [6] and pruning from
Xilinx Vitis-Al framework [7]. For instance, given mod-
ulation classifications over RadioML2021 dataset, pre-
defined pruning obtains a pruned ResNet with 22,519
parameters with 69.71% accuracy, Xilinx Vitis-Al frame-
work derives a pruned ResNet with 9,005 parameters with
41.96%, and our algorithm generates a pruned ResNet
with 12,921 parameters with 84.16% accuracy.

o We also demonstrate the effectiveness of our pruned neural
networks on Nvidia Jetsons and Xilinx ZCU104 FPGA
broads. For instance, given modulation classification, our
pruned ResNet can process 6,205 1/Q frames per second
and achieves 84.15% accuracy with model size of 0.38
MBs only on Jetson. By further applying quantization,
our pruned-then-quantized ResNet can process 2,427 1/Q
frames per second and achieves 79.84% accuracy with
model size of 0.25 MBs on ZCU104 broad.

Reproducibility. Our source code and datasets can be found
at https://github.com/UCdasec/TinyRadio

II. BACKGROUND

System Model. The system model of an RF classification
over I/Q frames can be generally described in Fig. 1. There are

Classifier

Tx1 I

Tx2 l

Output

Tx3 I

Fig. 1: The (general) system model of RF classification.

multiple transmitters and one receiver. Each transmitter sends
RF signals, i.e., sequences of I/Q samples, to the receiver. The
receiver performs a classification task over these I/Q samples.
Two specific RF classification tasks, including modulation
classification and radio fingerprinting, are investigated in this
study. Modulation classification aims to decide the modulation
used in wireless communication for downstream decoding.
Radio fingerprinting aims to infer which transmitter it is for
physical-layer authentication.

Given a sequence of I/Q samples, the receiver first pre-
processes it by dividing the sequence into multiple non-
overlapping I/Q frames, where each frame consists of a fixed
number of consecutive I/Q samples. An RF classification task
based on neural networks requires two phases, including a
training phase and a test phase. In the training phase, a neural
network is trained based on labeled I/Q frames from multiple
classes (e..g, transmitters or modulations). In the test phase,
the receiver performs the RF classification over unlabeled 1/Q
frames by leveraging the trained neural network. The neural
network can be trained in advance. The trained neural network
needs to perform RF classification in real time on the receiver.

Metrics. Accuracy is a primary metric to measure the
performance of neural network in a RF classification. Given
n 1/Q frames, if m I/Q frames are predicted correctly by a
trained classifier, the accuracy is calculated as m/n. A higher
accuracy indicates a stronger capability in RF classification.

To measure the complexity of a neural network, we adopt
two metrics, including (1) the number of parameters and (2)
the number of Floating Point Operations. A FLOP (Floating
Point Operation) is an addition, subtraction, division, multipli-
cation, or any other operation involving a floating point value.
Reduction Rate is calculated as the ratio between the number of
parameters/FLOPs removed after the pruning and the number
of parameters/FLOPs in a baseline network before pruning.

III. OUR PROPOSED DESIGN
A. Neural Network Pruning

Neural Network Pruning [8], [9], or pruning for short,
reduces the size of a neural network by pruning less significant
parameters/weights. Structured pruning removes parameters in
groups (e.g., channels or filters), which is more effective than
unstructured pruning. We focus on structure pruning over filters
in a neural network in this paper.

Typically, a score algorithm is used to measure the impor-
tance of a filter. We use ls norm [10] as the score algorithm
in this paper. Pruning rate p of a layer is defined as the ratio

between the number of filters that are pruned/removed and the
total number of filters (before pruning) at this layer.

Given a set of filters W¢ = {F; 1, ..., F; , } at the i-th layer
and an integer M;, a pruning algorithm keeps a subset W** of
M; filters from all the N; filters such that the M; filters have
the maximum sum of importance. In other words, the pruning
algorithm finds a subset W** such that

> S(Fiy))

F; jeWix

argmax =

where [W#*| = M; and S(-) is a score algorithm. Filters that
are in set W* but not in subset W* are removed. The pruning
rate of this layer is defined as 1 — %

General Pruning Process. Given a score algorithm and
a trained neural network, a pruning process in one iteration
consists of includes two steps: (1) removing less important
filters based on a score algorithm and a pruning rate, where
the pruning rate is either pre-defined or automatically decided
on-the-fly; (2) fine-tuning a pruned neural network to regain
accuracy in predictions.

B. Our Pruning for RF Classification

In this paper, we leverage a recent pruning algorithm pro-
posed in [3]. This algorithm, named MiniDrop, automatically
decides a customized pruning rate for each layer based on the
filter scores. Specifically, after assigning scores for each filter,
all these filters at every layer are sorted based on filter scores
in a descending order. After sorting, the filter index with the
minimal absolute value of the discrete derivative over all the
sorted filter scores is marked, and then all the filters after this
index is considered less important and are pruned. Each layer
ends up with a customized pruning rate based on filter scores
at the corresponding layer. A pruning parameter h (h > 1) in
MiniDrop defines the granularity of the pruning, where a lower
value of h indicates a more aggressive pruning. More details
of this pruning algorithm can be found in [3].

IV. EVALUATION

We evaluate the effectiveness of the automatic pruning algo-
rithm in the context of RF classifications, including modulation
classification and radio fingerprinting, over three existing large-
scale datasets in this section.

A. Baseline Model Architectures

We choose a lightweight ResNet model as our baseline
architecture for both radio fingerprinting and modulation clas-
sification. Specifically, this ResNet consists of 5 ResNet stacks,
where each stack includes 2 convolutional layers (using ReLU
as the activation function) followed by 1 max pooling layer.
One dense layer and a softmax layer are attached to the end
of the last ResNet stack for classification. This ResNet was
developed for modulation classification in [11] and is also
included as a tutorial for modulation classification on FPGAs in
Xlinix Vitis Al framework. The hyperparameters of the baseline
architecture are summarized in Table L.

TABLE I: Hyperparameters of the Lightweight ResNet

Conv_1 filters: 16; kernel: (5, 1); activation: None;
BatchNorm_1 Applied after Conv_1
Activation_1 Relu

ResNet_Block_1
ResNet_Block_2
ResNet_Block_3
ResNet_Block_4
ResNet_Block_5

in filters: 16; out filters: 32; kernel: (5, 1); Relu
in filters: 32; out filters: 64; kernel: (5, 1); Relu
in filters: 64; out filters: 128; kernel: (5, 1); Relu
in filters: 128; out filters: 256; kernel: (5, 1); Relu
in filters: 256; out filters: No. of classes;
kernel: (5, 1); Relu

Flatten Applied after ResNet_Block_5
Dropout rate: 0.5
Dense No. of neurons: No. of classes; Relu
Softmax Applied after Dense layer

B. Datasets

Dataset for Modulation Classification. We leverage one
existing large-scale dataset, named RadioML 2021 [4], in
the evaluation associated with modulation classification. This
dataset consists of synthetic simulated channel effects from
27 different types of digital and analog modulations. Specif-
ically, it includes RF signals from OOK, 4ASK, 8ASK,
BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK,
64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM,
256QAM, AM-SSB-WC, AM-SSB-SC, AM-DSB-WC, AM-
DSB-SC, FM, GMSK, OQPSK, BFSK, 4FSK, 8FSK. RF
signals of each modulation are meticulously crafted to reflect
realistic RF signal conditions, including various levels of noise,
fading, and interference. This dataset and its previous versions
(including RadioML 2018 and 2016) have been widely utilized
by studies in deep learning modulation classification [11], [12].
The details and description of the dataset can be found in
[11]. The I/Q frames in this dataset are pre-processed already
and each frame consists of 1,024 1/Q samples. How the pre-
processing was extracted is not explicitly mentioned in the
dataset. The entire dataset consists of 2,875,392 I/Q frames
and is balanced across all the modulation classes. The dataset
consists of I/Q frames at 26 SNR (Signal-to-Noise Ratio) levels,
ranging from -20 dB to 30 dB with increments of 2 dB. Similar
to previous studies [12], [2], we only leverage I/Q frames with
SNRs that are higher than or equal to 6 dB. This results in
a dataset of 1,437,696 1/Q frames (i.e., 27 modulations and
53,248 frames per modulation). All the samples in frames are
stored in int8 format. We use 80% of frames for training,
10% of frames for validation, and 10% for testing in our
experiments.

Datasets for Radio Fingerprinting. We leverage two
datasets, referred to as NEU dataset and HackRF-10 dataset,
collected respectively from two previous studies [13], [14].
NEU dataset consists of RF transmissions acquired from a
lab testbed established by Al-Shawabka in [13]. The testbed
consists of 21 USRPs, where 20 USRPs (12 NI N210 and 8 NI
X310) serve as transmitters and 1 USRP serves as a receiver.
We specifically utilize a subset of this dataset with the setup
“Setup A-In-the-Wild, Different Antennas” described in their
dataset document [5]. Samples are streamed at 2.432 GHz with
a sampling rate of 20 million samples per second and BPSK 1/2
was used as modulation. I/Q samples were collected after WiFi

Frame Equalizer in GNU Radio. RF signals of each transmitter
consist of 10 transmissions and each transmission lasts for 30
seconds each day. The data collection lasted over 10 days. We
only leverage RF signals from one day in our experiment. All
the samples are stored in floating-point format.

HackRF-10 dataset compromises RF signals collected from
a lab testbed with 10 HackRF Ones serving as transmitters and
1 HackRF One serving as a receiver [14]. Each HackRF One is
equipped with 1 ANT500 antenna. I/Q samples were collected
at 2.45 GHz center frequency with 2 MHz bandwidth and 2
MHz sampling rate running BPSK 1/2 modulation. The data
collection run for two days with 3 transmissions (30 seconds
per transmission) from every transmitter on each day. Samples
were recorded before FFT, after FFT, and after WiFi Frame
Equalizer on the receiver side. We only utilize samples after
WiFi Frame Equalizer from Day 1 in our experiments. All the
samples are stored in floating-point format.

Pre-processing for 1/Q frames in Radio Fingerprinting.
Studies [13], [14] addressing radio fingerprinting often apply
sliding windows as a way of pre-processing raw I/Q samples
and preparing inputs (i.e., I/Q frames) for neural networks.
Given the entire sequence of I/Q samples from a transmission,
which consists of thousands (or millions) of I/Q samples, a
sliding window with a length L starts from the beginning of
the entire sequence and extracts the L I/Q samples within
the window to form one I/Q frame. Next, the window slides
towards the end of the sequence with a stride s and extracts
the next I/Q frame with L I/Q samples. The process repeats
until a certain number of I/Q frames has been prepared or
the window reaches the end of the entire sequence. Typically,
window stride s should be greater than window size L to avoid
overlaps across I/Q frames per previous studies [14]. Otherwise,
a neural network tends to learn/remember the content of 1I/Q
samples rather than RF shifts caused by transmitter fingerprints.

We choose stride s = 864 and window length L = 864 in the
pre-processing for both NEU dataset and HackRF-10 dataset.
From each dataset, we randomly select and form a set of 40,000
I/Q frames per device, i.e., 800,000 I/Q frames for NEU dataset
and 400,000 I/Q frames for HackRF-10 dataset. We use 80%
for training, 10% for validation, and 10% for testing.

C. Experiment Setting: Software and Hardware

For all the experiments requiring GPUs, we run them on a
server with Ubuntu 22.04, Intel 19 CPU, 128 GB memory, and
a NVIDIA GeForce RTX Titan GPU. For each neural network,
we train it for 150 epochs and apply an early stop with 10
epochs (i.e., the training stops before it reaches 150 epochs if
the validation loss has not been changed for the last 10 epochs).
We use a learning rate of 0.001 with RMSprop as the optimizer.
We use TensorFlow (version 2.4.1) and Python (version 3.9.19)
to implement neural networks and associated functions. For the
fine-tuning phase involved in pruning, we use the same set of
training traces and fine-tune each neural network for 150 epochs
with an early stop of 10 epochs.

TABLE II: Performance of Baseline Neural Networks for RF Classifications

Dataset Training Time Training Time No. of FLOPs Model Accuracy | Random
(sec) in Total (sec) per Epoch | Parameters | (million) | Size (MBs) Guess
Modulation RadioML 3,591 104.41 717,250 241.75 5.95 97.76% 3.7%
Radio NEU 2,065 51.04 695,720 203.78 5.78 64.74% 5%
HackRF-10 1,830 26.09 674,760 203.60 5.61 64.28% 10%

TABLE III: Performance of Pruned Neural Networks for Modulation Classification (RadioML 2021, Random Guess: 3.7%, RR:
Reduction Rate, | indicates failing to obtain a pruned neural network)

Pruning No. of Parameters FLOPS FLOP Accuracy | Pruning Time | Fine-Tuning Time
Param. h | Parameter RR (million) RR (sec) (sec) per Epoch
Baseline 717,250 0% 241.75 0% 97.76 % NA NA

64 712,685 0.63% 233.24 3.52% 94.20% 0.157 98.95

32 681,405 4.99% 211.40 12.55% 97.69% 0.156 88.01

16 461,565 35.64% 147.33 39.05% 93.92% 0.159 71.76

8 120,180 83.24% 58.98 75.60% 93.90% 0.158 51.40

4 30,009 95.81% 22.40 90.73% 87.46% 0.157 29.45

2 12,921 98.19% 11.43 95.27% 84.16% 0.159 24.69

1 1 1 1 L 1 1 €

TABLE IV: Performance of Pruned Neural Networks for Radio
Rate, L indicates failing to obtain a pruned neural network)

Fingerprinting (NEU dataset, Random Guess: 5%, RR: Reduction

Pruning Number of | Parameters FLOPS FLOP Accuracy | Pruning Time | Fine-Tuning Time
Param. h Parameter RR (million) RR (sec) (sec) per Epoch
Baseline 695,720 0% 203.78 0% 64.28% NA NA

64 685,825 1.42% 192.75 5.41% 64.43% 0.242 45.95

32 489,405 29.65% 147.49 27.62% 55.89% 0.230 41.88

16 266,360 61.71% 100.32 50.76 % 46.30% 0.229 36.08

8 58,735 91.55% 25.52 87.47% 31.55% 0.228 24.22

4 26,440 96.19% 11.25 94.48% 25.23% 0.223 15.49

2 7,710 98.89% 2.37 98.83% 17.04% 0.224 10.53

1 1 L 1 1 1 1 1

TABLE V: Performance of Pruned Neural Networks for Radio Fingerprinting (HackRF-10 dataset, Random Guess: 10%, RR:
Reduction Rate, | indicates failing to obtain a pruned neural network)

Pruning Number of | Parameters FLOPS FLOP Accuracy | Pruning Time | Fine-Tuning Time
Param. h Parameter RR (million) RR (sec) (sec) per Epoch
Baseline 674,760 0% 203.60 0% 64.74 % NA NA

64 670,095 0.69% 203.57 0.014% 61.95% 0.218 2481

32 610,730 9.49% 193.48 4.97% 63.00% 0.215 22.67

16 382,740 43.28% 123.75 39.22 % 56.30% 0.217 19.12

8 102,225 84.85% 48.81 76.03% 65.27% 0.219 14.12

4 13,760 97.96% 10.36 94.91% 62.14% 0.225 7.76

2 5,305 99.21% 2.19 98.92% 54.83% 0.219 7.06

1 1L €L L L L L 1L

D. Experiments

Experiment 1: Performance of Baseline Neural Networks.
We first report the performance of the baseline neural network
in both modulation classification and radio fingerprinting. As
presented in Table. II, the baseline neural network, i.e., the
lightweight ResNet, derives high accuracy but requires a large
number of parameters for each RF classification. Specifically,
the baseline neural network achieves 97.76% accuracy across
27 classes in modulation classification over the RadioML 2021
dataset (> 6 dB only), which is consistent with the accuracy re-
ported in previous studies using the same or similar architecture
[12]. Similarly, the accuracy obtained in radio fingerprinting
over the two datasets is over 64%, which is much higher
than random guess and is also consistent with results listed
in recent studies [13], [14]. On the other hand, the baseline
neural network requires around 700,000 parameters across the

three datasets and two RF classifications we examine.

Experiment 2: Performance of Pruned Neural Net-
works. We evaluate the performance of pruned neural networks
obtained by the pruning algorithm (MiniDrop). Specifically,
we show the trade-off between accuracy and the number of
parameters for both RF classifications when we adjust the
pruning parameter % in the pruning algorithm. Given a baseline
neural network, we apply MiniDrop by selecting the pruning
parameter h as a value from the set {64, 32,16,8,4,2,1} each
time, where a smaller value generally indicates the pruning is
more aggressive and a greater number of parameters in a neural
network will be removed.

As illustrated in Table III, we have two major observations.
First, the pruning can effectively reduce the number of param-
eters in a neural network while still maintaining a relatively
high accuracy. Second, when we reduce the pruning parameter
h, both the number of parameters and accuracy decrease. For

instance, given h = 2, we can obtain a pruned neural network
with only 12,921 parameters (i.e., 98.19% reduction) but can
still achieve 84.16% accuracy (only 13.6% accuracy drop)
compared to the baseline network. We also observe that the
fine-tuning time decreases significantly given a smaller pruning
parameter h as a smaller neural network is used in fine-tuning.
On the other hand, the pruning time (the time that is needed
to obtain filter scores and prune less important filters) remains
the same regardless of the selection of the pruning parameter. It
is worth mentioning that when we reduce h to 1, some layers
no longer contain the minimal number of filters (i.e., 1) and
we fail to derive a pruned network. In other words, the pruned
network we obtained from h = 2 is the smallest neural network
we can derive from the baseline over RadioML 2021 dataset.

In Table IV and V, we obtain similar observations from
radio fingerprinting over NEU dataset and HackRF-10 dataset.
For instance, when h = 2, we can derive the smallest pruned
neural network with only 5,305 parameters (99.21% parameter
reduction rate) over HackRF-10 dataset while still achieving
55.83% accuracy (only 9.91% accuracy drop) given our pruning
algorithm. For NEU dataset, we can also achieve a 98.89%
parameter reduction rate, which reduces the total number of
parameters to only 7,710. As a tradeoff, the accuracy drops
to 17.04% (over 46% accuracy drop). While the accuracy
drop seems to be significant, we would like to emphasize that
the pruned neural network can still authenticate transmitters
correctly and efficiently.

More specifically, we report the device rank of pruned neural
networks over NEU dataset, where the confidence scores of all
the transmitters over multiple test I/Q frames are aggregated
and ranked. A device rank of 1 given N I/Q frames indicates a
classifier can rank the correct transmitter as the top candidate
within N I/Q frames. A recent work suggests that device rank
is a more reliable metric compared to accuracy in the context
of radio fingerprinting [14]. We can observe in Fig. 2 that,
even though the accuracy is only 17.04%, our pruned neural
network can achieve device rank of 1 given 35 I/Q frames
(i.e., the device rank converges to 1 within 35 I/Q frames).
Given a sampling rate of 20 million samples per second and
864 samples per trace in NEU dataset, it suggests that our
pruned neural network can authenticate a transmitter correctly

with only 1.51 milliseconds (i.e., ggﬁgg‘ seconds).

Experiment 3: Comparison between Single-Iteration
Pruning and Multi-Iteration Pruning. In this experiment, we
compare the performance of pruned neural networks derived
from single-iteration pruning and multi-iteration pruning in RF
classifications. Specifically, in addition to running the pruning
with a single iteration, we also run the pruning for 2, 3, or 4
iterations, where the input neural network for one iteration is
the output of the previous iteration. We highlight the results of
modulation classification over the RadioML dataset in Table VI.

We have two main findings. First, given the same pruning
parameter h, if we apply a greater number of pruning iterations,
it is feasible to further reduce the number of parameters in a
neural network. However, the accuracy will drop significantly

18
16 —— Baseline
o 141 —&— Pruned (h=4)
S 127 —a— Pruned (h=2)
o 101
S 8
41
21
01 Zs

0 10 20 30 40 50
No. of Test Traces

Fig. 2: Device rank over NEU dataset given our pruned neural
networks (h = 2, No. of parameters, 7,710; accuracy 17.04%;
h = 4, No. of parameters, 26,440, accuracy: 25.23%)

TABLE VI: Comparison between Single-Iteration Pruning and
Multi-Iteration Pruning for Modulation Classification (Ra-
dioML 2021).

No. of Pruning No. of Pruning & Fine- Accuracy
Iterations | Param. h | Parameter | Tuning Time (sec)

1 2 12,921 650 84.16%
2 2 1 L 1
1 4 30,009 980 87.46%
2 4 16,242 1,350 65.86%
3 4 1 1 1
3 8 29,073 2,150 82.83%
4 8 18,126 2,750 55.27%

and the overall pruning time will increase. At some point,
the pruning cannot be applied further and no pruned neural
networks will be obtained. Second, we find that applying
pruning gradually through multiple iterations with a less ag-
gressive pruning parameter (i.e., a greater value of h) derives
a greater pruned neural network with lower accuracy than the
one obtained from pruning with a single iteration with a more
aggressive pruning parameter. For instance, given a pruning
parameter h = 2 with a single iteration, we can obtain a neural
network with only 12,921 parameters and 84.16% accuracy for
modulation classification. On the other hand, if we prune with
4 iterations but using pruning parameter h = 8, we generate
a neural network that still has 18,126 parameters but with an
accuracy of 55.27%. In other words, given MiniDrop as the
pruning algorithm, one should apply single-iteration pruning
with an aggressive pruning parameter rather than running
multi-iteration pruning with a conservative pruning parameter
in the context of RF classification.

Experiment 4: Performance of Pruned Neural Networks
on Embedded Devices. We demonstrate that our pruned neural
networks can still run efficiently and effectively on embedded
devices, including Nvidia Jetson and FPGAs (as shown in
Fig. 3). In addition, our evaluations on FPGAs also show that
our pruning is compatible with other neural network compres-
sion techniques, such as quantization, and can be integrated
into existing industry Al development frameworks (e.g., Xilinx
Vitis Al).

For the evaluations associated with Nvidia Jetson, we train

b | Xilinx ZCU 104\

Fig. 3: Embedded Systems Used in Our Evaluation.

and prune a neural network in advance on our server with GPU.
Next, we run testing on a NVIDIA Jetson Orin Nano. Jetson
Orin Nano consists of a NVIDIA Ampere GPU, a 6-core ARM
CPU, and 8GB memory. We still use the same number of 1/Q
frames for testing on Jetson.

For the evaluations associated with FPGAs, we perform
training and pruning of a neural network on our server with
GPU. Next, we run quantization and testing of a neural net-
work on an AMD/Xilinx Zynq UltraScale+ MPSoC ZCU104
Evaluation Board. It is equipped with a quad-core ARM
Cortex-AS53 applications processor, dual-core Cortex-RS real-
time processor, Mali-400 MP2 graphics processing unit, and
16nm FinFET+ programmable logic.

Given a pruned neural network, we leverage Xlinix Vitis-Al
framework (version 3.5) to further quantize a neural network.
Specifically, we use power of 2 scale quantization (pos?2),
which is a post-training quantization. This quantization trans-
forms weights in a neural network from floating points (FP32)
to integers (int8) except the ones on the last softmax layer.
Once completing quantization, we use Xlinix Vitis-Al frame-
work to compile the compressed neural network and deploy
it to the ZCU104 board. During the compilation, the Vitis-Al
framework automatically splits the operations of a compressed
model into two components, where the majority of layers are
implemented through DPUs (Deep-Learning Processing Units)
on the FPGA, and the last softmax layer is run on CPU. A DPU
is a programmable engine optimized for neural networks and
consists of a set of parameterizable IP cores pre-implemented
on the hardware without the need for place and route. To
perform RF classification with a compressed neural network
from Vitis-Al, the I/Q samples are also transformed to int8
format if the original format is FP32.

As shown in Table VII, we can observe that the pruned
neural network can still run effectively on embedded systems
with similar accuracy as on GPUs. Specifically, for modulation
classification, the pruned neural network on Jetson carries the
same number of parameters and almost the same accuracy
(84.15%) as the pruned one on GPU. Compared to processing
over 125 thousand frames per second on a NVIDIA Titan,
Jetson can process 6,205 frames per second, which is still
highly efficient. The testing performance decrease is expected
for embedded systems. We have similar observations about
radio fingerprinting on Jetson as presented in Table VIIIL.

On the FPGA, there is a slight accuracy drop (4.29%) for

TABLE VII: Performance of Pruned Neural Networks on
Embedded Systems for Modulation Classification (RadioML,
h = 2, Single-Iteration Pruning).

No. of Testing (No. of Model Accuracy

Parameters | frames per sec) | Size (MBs)
Titan 12,921 169,067 0.377 84.13%
Jetson 12,921 6,205 0.377 84.15%
ZCU104 12,505 2,427 0.246 79.84%

TABLE VIII: Performance of Pruned Neural Networks on
Embedded Systems for Radio Fingerprinting (NEU Dataset,
h = 2, Single-Iteration Pruning).

No. of Testing (No. of Model Accuracy
Parameters | frames per sec) | Size (MBs)
Titan 7,710 4,837 0.317 17.29%
Jetson 7,710 607 0.317 16.68%
ZCU104 7,481 2,584 0.230 5%

modulation classification due to the additional quantization
step applied after pruning. On the other hand, the size of the
pruned neural network on the FPGA is further reduced due
to quantization (from 0.377 MBs to 0.246 MBs). For radio
fingerprinting, unfortunately, the accuracy drops to random
guess (5%) after further applying quantization with Vitis-Al
on our pruned neural network, which makes it unable to
authenticate transmitters correctly. This is likely because the
samples of NEU dataset are in FP32 format and transforming
samples from FP32 to int8 dramatically affects accuracy in
addition to the accuracy drop due to quantization.

Experiment 5: Comparison between Our Work and
Previous Studies on Pruning. We compare the performance
of our pruned neural networks with two methods, including
pre-defined pruning and the pruning offered by current industry
tools (e.g., Vitis-Al). Pre-defined pruning is a common pruning
method that removes a certain percentage of less important
filters on every layer in a neural network given a pre-defined
pruning rate. For instance, given a pruning rate of 0.6, pre-
defined pruning will rank the filters at each layer based on
scores (e.g. lo norm) and remove 60% of filters that are less
important (i.e., with lower scores) on each layer.

A recent paper [6] first investigated pre-defined pruning in
the context of radio fingerprinting. Specifically, the authors
apply the pruning through multiple rounds, where Alternating
Direction Method of Multipliers is used to identify the more
important filters given a pre-defined pruning ratio at each layer
and masked retraining is utilized to regain accuracy in each
round. Although the source code and pruning parameters of this
previous study are publicly available, they are highly integrated
with their own neural network architecture and private datasets,
which prevents us from reproducing results or extending it
to other neural networks and datasets (including ours). To
still perform comparisons (at least to some fair degree), we
implement the pre-defined pruning method by ourselves using
I norm as the scoring algorithm and apply the same pruning
rate to each layer.

For Vitis Al, we leverage coarse-grained pruning (also
referred to as channel pruning) to prune a baseline neural

100
90
80
70

60/ @ Ours
50 —- Pre-Defined
—A— Vitis-Al

4%0 85 90 95
Parameter Reduction Rate (%)

Accuracy (%)

100

Fig. 4: Comparison among ours, pre-defined pruning, and
Vitis-AI’s pruning on modulation classification over RadioML
dataset (frames with SNR > 6dB).

79 ..E.T.\
| —@— Ours

—- Pre-Defined
| —&— Vitis-Al

N W (S 0e)]
o O o O

Accuracy (%)
IS
o

=
o

—

o

85 90 95
Parameter Reduction Rate (%)

100

Fig. 5: Comparison among ours, pre-defined pruning, and Vitis-
Al’s pruning on radio fingerprinting over HackRF dataset

network. In essence, it is a pre-defined pruning in which the
pruning process prunes a baseline neural network given a global
pruning rate «. To perform the pruning with Vitis Al, we
choose the global pruning rate «, set the number of pruning
iterations as 1, pass a baseline neural network, and provide a
subset of training data to the Vitis Analyzer. The Vitis Analyzer
leverages the subset of training data to automatically generate a
pruning strategy for the baseline neural network. In the case of
modulation classification, we provide 500,000 training frames
to the Vitis Analyzer. In the case of Radio Fingerprinting,
we provide 500,000 training frames for the NEU dataset and
320,000 training frames for HackerRF dataset.

Given the baseline neural network from modulation classifi-
cation, we compare the accuracy and parameter reduction rate
of pruned neural networks obtained from the three methods,
including ours, pre-defined pruning, and Vitis Al’s pruning, in
Fig. 4. For our method, we report the results from = {8,4, 2},
where h = 2 is the most aggressive pruning parameter
we can apply over this dataset. For pre-defined pruning, we
report results from p = {0.5,0.6,0.7}, where p = 0.7 is
the most aggressive pruning parameter we can apply over
this dataset. For Vitis AI’s pruning, we present results from
a ={0.79,0.89,0.99}, where o = 0.99 is the most aggressive
pruning parameter we can apply over this dataset.

We find that pre-defined pruning can achieve a higher accu-
racy with a lower parameter reduction rate initially than ours,
but is eventually outperformed by our automatic pruning. While
Vitis AI’s pruning algorithm can obtain an even smaller neural
network with only 9,005 parameters (v.s., 12,921 parameters
from the smallest by ours), it takes a significant tradeoff in
accuracy (i.e., 41.96% accuracy), which is much lower than

84.16% accuracy from the smallest pruned neural network
obtained by our automatic pruning.

For radio fingerprinting over the HackRF dataset, we have
similar observations regarding the comparison between our
pruning and pre-defined pruning as shown in Fig 5. On the
other hand, Vitis-Al pruning results in a pruned neural network
with only random guess.

V. RELATED WORK

Modulation Classification. Several recent studies [12], [15],
[2], [16], [17] in modulation classification focus on optimize
the size and performance of neural networks by applying
quantization and deploying compressed neural networks on
FPGAs. Specifically, Tridgell et al. [12] utilize ternary-weight
neural networks for modulation classification, where weights
are {1, 0, -1} only (i.e., each weight has only 4 bits). They show
that a compressed VGG10 with ternary weights can achieve up
to 82% accuracy given traces of 30 dB over RadioML 2018
dataset and demonstrate the performance of the compressed
neural network on Xilinx ZCU111. The quantized VGGI10
consists of 490,000 parameters and is about 123 Kbs. Woo et al.
[17] also quantize weights to ternary weights in a lightweight
neural network (MobileNetV3) and implement compressed
neural networks on Xilinx ZCU102 evaluation board. Their
quantized MobileNetV3 includes 0.4 million parameters with
a size of 0.8 million bits in total. Both studies also leverage
Common Subexpression Elimination to improve the efficiency
of hardware designs. Jentzsch et al. [2] leverage FINN, Xilinx’s
open-source compiler framework, to quantize a neural network
for modulation classification. The authors show that they are
able to quantize the weights and activations of a VGGI10
to the ones with 4 bits using FINN and still achieve 94%
accuracy given traces of 30 dB in RadioML 2018 dataset.
The quantized VGG10 consists of 72,000 parameters. Den
Boer et al. [15] leverage High-Level Synthesis to optimize the
implementation of neural networks on FPGAs for modulation
classification. Their model carries 13,840 parameters and can
achieve 71.49% accuracy at 30dB SNR. These studies mainly
focus on quantization. On the other hand, our method can
significantly reduce the number of parameters in a neural
network, which can complement these quantization techniques
and further optimize the size of neural networks.

Several recent work [18], [19], [20] also investigate neural
network pruning in the context of modulation classification.
For instance, Chen et al. [20] applies single-short pre-defined
structured pruning, which measures the score of channels based
on the cosine similarity of weights on convolutional layers and
batch normalization layers. However, these work are all based
on pre-defined pruning, which applies the same pruning rate
to each layer and is less effective than our automatic pruning.
Besides, none of them has shown that the pruning is compatible
with quantization as ours

Besides reducing the size of neural networks, improving ro-
bustness of modulation classification, especially against unseen
data with domain shifts is critical. For instance, Jung et al. [21]
leverage Short-Time Fourier Transform to transform data from

the time domain to frequency-time domain to improve the accu-
racy of a neural network for modulation classification. Liu et al.
[22] transform IQ samples into three representations, including
phase, angular, and frequency, and pass data in representations
to a single lightweight neural network to enhance the robustness
of modulation classification against unseen data. Nasr et al.
[23] examine domain shifts caused by adversarial examples.
More comprehensive surveys on modulation classification can
be found in [24].

Radio Fingerprinting. Chen et al. [6] first investigate pre-
defined pruning in the context of radio fingerprinting. Specif-
ically, the authors apply the pruning through multiple rounds,
where Alternating Direction Method of Multipliers is used to
identify the more important filters given a pre-defined pruning
ratio at each layer and masked retraining is utilized to regain ac-
curacy in each round. The authors demonstrate the effectiveness
of their pruning over multiple edge devices, including smart
phones, Nvidia Jetsons, and Xilinx ZCU104 FPGA boards,
over two private datasets. The pruning ratio of each layer is
defined manually in their evaluation. Their results indicate that
the proposed pruning can achieve a pruning rate of 27.2 over
ResNet50-1D (equivalent to 96.32% parameter reduction rate
in our study), where the total number of parameters in the
neural network is reduced from 16.06 million to 0.74 million.
Additional hardware optimizations on FPGAs (e.g., parallel
processing elements) are also explored to further improve the
performance.

The majority of existing studies [13], [14], [25], [26], [27],
[28] in radio fingerprinting investigates domain shifts caused
by different days, locations, receivers, and adversarial attacks
as well as methods that can overcome these domain shifts.

VI. CONCLUSION

We apply automatic pruning to optimize the size of neural
networks with a minimal impact to the results of RF classifi-
cation tasks. We also demonstrate that it is feasible to run our
pruned neural networks on embedded devices with extremely
small storage and real-time inference time.

REFERENCES
[1] T. Erpek, T. J. O’Shea, Y. E. Sagduyu, Y. Shi, and T. C.
Clancy, “Deep Learning for Wireless = Communications,”

https://arxiv.org/pdf/2005.06068.

[2] F. Jentzsch, Y. Unuroglu, A. Pappalardo, M. Blott, and M. Platzner,
“RadioML Meets FINN: Enabling Future RF Applications with FPGA
Streaming Architectures,” IEEE Micro, vol. 42, no. 6, 2022.

[3] H. Li, M. Ninan, B. Wang, and J. M. Emmert, “Tinypower: Side-
channel attacks with tiny neural networks,” in 2024 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2024.

[4] [Online]. Available: https://opendata.deepsig.io/datasets/2021.07/RADIO
ML_2021_07_INT8.tar.gz

[5] [Online]. Available: https://wiot.northeastern.edu/wp-content/uploads/
2020/07/dataset_release.pdf

[6] T.Jian, Y. Gong, Z. Zhan, R. Shi, N. Soltani, Z. Wang, J. Dy, K. Chowd-
hury, Y. Wang, and S. Ioannidis, “Radio frequency fingerprinting on the
edge,” IEEE Transactions on Mobile Computing, 2022.

[71 [Online]. Available: https://github.com/Xilinx/Vitis-Al

[8] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the State of
Neural Network Pruning?” in Proc. of the 3rd MLSys Conference, 2020.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and
Quantization for Deep Neural Network Acceleration: A Survey,” in
Neurocomputing, vol. 461. Elsevier, 2021.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information
Processing Systems, vol. 29. Curran Associates, Inc., 2016.

T. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based
radio signal classification,” IEEE JOURNAL OF SELECTED TOPICS IN
SIGNAL PROCESSING, vol. 12, no. 1, 2018.

S. Tridgell, D. Boland, P. H. Leong, R. Kastner, A. Khodamoradi, and
Siddhartha, “Real-Time Automatic Modulation Classification using RF-
SoC,” in Proc. of IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW 2020), 2020.

A. Al-Shawabka, F. Restuccia, S. D’Oro, T. Jian, B. C. Rendon,
N. Soltani, J. Dy, S. Ioannidis, K. Chowdhury, and T. Melodia, “Exposing
the Fingerprint: Dissecting the Impact of the Wireless Channel on Radio
Fingerprinting,” in Proc. of IEEE INFOCOM’20, 2020.

H. Li, K. Gupta, C. Wang, N. Ghose, and B. Wang, “RadioNet: Robust
Deep-Learning Based Radio Fingerprinting,” in Proc. of IEEE Conference
on Communication and Network Security (CNS 2022), 2022.

H. den Boer, R. W. D. Muller, S. Wong, and V. Voogt, “FPGA-based
Deep Learning Accelerator for RF Applications,” in Proc. of Milcom’21,
2021.

J. Rosa, D. Granhao, G. Carvalho, T. Goncalves, M. Figueiredo, L. C.
Bento, N. Paulino, and L. M. Pessoa, “BACALHAUNET: A Tiny CNN
for Lightning-Fast Modulation Classification,” ITU Journal on Future and
Evoling Technologies, vol. 3, no. 2, 2022.

J. Woo, K. Jung, and S. Mukhopadhyay, “Efficient Hardware Design
of DNN for RF Signal Modulation Recognition Employing Ternary
Weights,” IEEE Access, vol. 12, 2024.

Y. Lin, Y. Tu, and Z. Dou, “An Improved Neural Network Pruning
Technology for Automatic Modulation Classification in Edge Devices,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 5, 2020.

Y. Wang, J. Yang, M. Liu, and G. Gui, “LightAMC: Lightweight
Automatic Modulation Classification via Deep Learning and Compressive
Sensing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 3,
2020.

Z. Chen, Z. Wang, X. Gao, J. Zhou, D. Xu, S. Zheng, Q. Xuan, and
X. Yang, “Channel Pruning MEthod for Signal Modulation Recognition
Deep Learning Models,” IEEE Transactions on Cognitive Communica-
tions and Networking, vol. 10, no. 2, 2024.

K. Jung, J. Woo, and S. Mukhopadhyay, “On-Chip Acceleration of RF
Signal Modulation Classification with Short-Time Fourier Transform and
Convolutional Neural Network,” IEEE Access, vol. 11, 2023.

D. Liu, K. Ergun, and T. S. Rosing, “Torwards A Robust and Efficient
Classifier for Real World Radio Signal Modulation Classification,” in
Proc. of 2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP’23), 2023.

M. Nasr, P. Araujo-Filho, G. Kaddoum, and A. Mourad, “Projected Nat-
ural Gradient Method: Unveiling Low-Power Perturbation Vulnerabilities
in Deep Learning-Based Automatic Modulation Classification,” IEEE
Internet of Things Journal, 2024.

B. Jdid, K. Hassan, I. Dayoub, W. H. Lim, and M. Mokayef, “Machine
Learning Based Automatic Modulation Recognition for Wireless Com-
munications: A Comprehensive Survey,” IEEE Access, 2021.

S. AlHazbi, S. Sciancalepore, and G. Oligeri, “The Day-After-Tomorrow:
On the Performance of Radio Fingerprinting over Time,” in Annual
Computer Security Applications Conference (ACSAC’23), 2023.

G. Shen, J. Zhang, A. Marshall, R. Woods, J. Cavallaro, and L. Chen,
“Towards Receiver-Agnostic and Collaborative Radio Frengeucy Finger-
print Identification,” IEEE Transactions on Mobile Computing, 2024.

T. Zhao, X. Wang, J. Zhang, and S. Mao, “Explanation-Guided Back-
door Attacks on Model-Agnostic RF Fingerprinting,” in Proc. of IEEE
INFOCOM 24, 2024.

F. Afrin, H. Li, B. Wang, and N. Ghose, “Sarp: Spatial agnostic
radio fingerprinting with pseudo-labeling,” in Proc. of 2025 IEEE 22nd
Consumer Communications Networking Conference (CCNC), 2025.

