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Abstract—Radio fingerprinting identifies wireless devices by
leveraging hardware imperfections embedded in radio frequency
(RF) signals. While neural networks have been applied to radio
fingerprinting to improve accuracy, existing studies are not robust
due to two major reasons. First, there is a lack of informative
parameter selections in pre-processing over RF signals. Second,
deep-learning-based radio fingerprinting derives poor perfor-
mance against temporal variations in the cross-day scenario.

In this paper, we enhance the robustness of deep-learning-based
radio fingerprinting from three aspects, including parameter
selection in pre-processing, learning methods, and evaluation
metrics. First, we conduct extensive experiments to demonstrate
that careless selections of parameters in pre-processing can
lead to over-optimistic conclusions regarding the performance
of radio fingerprinting. Second, we leverage adversarial domain
adaptation to improve the performance of radio fingerprinting in
the cross-day scenario. Our results show that adversarial domain
adaptation can improve the performance of radio fingerprinting
in the cross-day scenario without the need of recollecting large-
scale RF signals across days. Third, we introduce device rank
as an additional metric to measure the performance of radio
fingerprinting compared to using accuracy alone. Our results
show that pursuing extremely high accuracy is not always
necessary in radio fingerprinting. An accuracy that is reasonably
greater than random guess could lead to successful authentication
within a second when we measure with device rank.

I. INTRODUCTION

Radio fingerprinting, which authenticates wireless devices
over radio frequency (RF) signals at the physical layer, is a crit-
ical component for the security and trust of wireless networks.
It can complement the authentication of wireless devices when
traditional methods, such as cryptography, are not available or
difficult to deploy. Radio fingerprinting is feasible as RF signals
carry non-linear hardware imperfections of radio frequency
circuitry due to variations in the manufacturing process [1],
[2]. These hardware imperfections carried in RF signals offer
opportunities for a receiver to distinguish transmitters. Recent
studies [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15] show that leveraging deep learning over RF signals
can significantly improve the accuracy of radio fingerprinting.

Despite enormous efforts, two major limitations remain open
for the robustness of deep-learning-based radio fingerprinting.
First, there is a lack of consistent pre-processing for preparing
the inputs of deep learning from RF signals. Specifically, given
a sequence of I/Q samples from RF signals, slicing windows
[6], [7], [8], [11] are often utilized to extract I/Q traces, which
serve as the inputs for a neural network. However, it remains
unclear what parameters should be used for extracting I/Q

traces such that a neural network primarily learns hardware
imperfections rather than other dominating factors, such as
channel conditions. Careless selections of parameters in pre-
processing could affect the performance and mislead our un-
derstanding on radio fingerprinting.

Second, deep-learning-based radio fingerprinting is not ro-
bust against temporal variations in the cross-day scenario. For
instance, a neural network trained with RF signals from Day 1
derives much lower accuracy if it is tested with RF signals from
Day 2. Several methods, such as applying multi-day training
[9], [10], performing data augmentation [8], or adding addi-
tional component on transmitters [6], [7], have been proposed
to tackle this problem. However, multi-day training requires
significant amounts of labeled training data across multiple
days, which is not always available. Data augmentation could
lead to data bias – the augmented data causes distribution shifts
compared to the original data, which could derive sub-optimal
performance. Adding additional components requires changes
to transmitters, which is difficult to apply for devices that are
already in service.

In this paper, we investigate and enhance the robustness of
radio fingerprinting from three aspects, including parameter
selection in pre-processing, learning methods, and evaluation
metrics. We conduct comprehensive experiments on one public
dataset [6] (collected from 20 USRPs) and our new dataset
(collected from 10 HackRF Ones). We examine neural net-
works over I/Q data represented in the frequency domain
and time-frequency domain, respectively. Our main research
findings are summarized below:

• We demonstrate that different values of parameters in
pre-processing over RF signals can significantly affect
the performance of radio fingerprinting. Our experiments
show that given the same dataset and same neural network
but different values of parameters in pre-processing, the
accuracy of radio fingerprinting in the same-day scenario
can vary dramatically from the level of extreme optimism
(e.g., 99.74%) to the level of hardly distinguishing 20
transmitters (e.g., 9.69%). This indicates that a neural
network may achieve a high accuracy but the accuracy
may not necessarily reflect its capability in distinguishing
hardware imperfections of transmitters. Based on our
observations, we suggest steps that can be carried out to
mitigate this issue.

• We leverage transfer learning, specifically, adversarial
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Fig. 1: The system model and threat model of radio fingerprinting. In the authentication phase, Tx3 or Tx4 is considered as an
attacker who may impersonate Tx1 or Tx2.

domain adaptation [16], [17], to promote the robust-
ness of radio fingerprinting against temporal variations in
the cross-day scenario. By leveraging adversarial domain
adaptation, our method can tune a trained neural network
from Day 1 with a small amount of labeled data from
Day 2 to automatically adapt to temporal variations and
maintain a reasonable level of accuracy in the cross-
day scenario. For instance, adversarial domain adapta-
tion can improve the cross-day accuracy from 8.41% to
43.17% over NEU dataset and 25.98% to 65.24% over
our HackRF dataset.

• We introduce a new metric, device rank, to complement
the evaluation of radio fingerprinting. Device rank reports
the rank of the true transmitter among all the candidates
based on aggregated scores over multiple I/Q traces.
Device rank is inspired by the use of key rank (or guess
entropy) in the evaluation of side-channel attacks on AES
encryption [18], [19]. Our experiments show that even the
accuracy is low (but still reasonably higher than random
guess), it is feasible to distinguish transmitters within a
very short time with device rank. For instance, even the
accuracy is only 14.24% over NEU dataset, a classifier can
still distinguish which transmitter it is after 35 I/Q traces
(around 37 milliseconds in practice) when we measure
with device rank.

Reproducibility. The source code and datasets of this study
are publicly available at [20].

II. BACKGROUND

System Model. The system model is described in Fig. 1.
It consists of multiple transmitters (Txs), a receiver (Rx), and
a server (optional). Upon receiving RF signals, the receiver
aims to perform radio fingerprinting – authenticating which
transmitter it is based on RF signals from each transmitter.
The process of radio fingerprinting includes (1) the training
phase and (2) the authentication phase (a.k.a test phase).

In the training phase, each transmitter sends RF signals to
the receiver. These RF signals, more concretely, I/Q (In-phase
and Quadrature) data, are leveraged as training data. These
I/Q data can be presented in the time domain, i.e., before
applying Fast Fourier Transform (FFT) [11]. In addition, I/Q
data can also be presented in the frequency domain (i.e., after
applying FFT) or the time-frequency domain (i.e., spectrogram

by applying Short-Time Fourier Transform) [13], [21], [22],
[23], [24]. Next, the receiver forwards the training data to
the server to train a classifier. In the authentication phase,
the receiver queries the trained classifier when it receives RF
signals. The classifier predicts which transmitter it is.

The server is optional, where the prediction (or even the
training) could be carried out locally on the receiver side
depending on the receiver’s computation resources. Whether
the server is included or not, it does not affect the threat model.

Threat Model. We assume that all the parties in the training
phase are trusted. However, we assume that there are attackers
in the authentication phase, where an attacker aims to imper-
sonate other transmitters by modifying RF signals. In the threat
model, an attacker could be a transmitter that participated the
training phase (e.g., Tx3 in Fig. 1 impersonates Tx1 or Tx2)
or a transmitter that did not participate the training phase (e.g.,
Tx4 in Fig. 1 impersonates Tx1, Tx2, or Tx3).

We assume that an attacker can modify I/Q data in RF sig-
nals, e.g., changing MAC addresses in packets or adding noise
to RF signals, to force the classifier to predict incorrectly. We
assume that an attacker is a black-box attacker who does not
have access to classifier information, including architectures,
hyperparameters, and weights.

Effects of Non-Linear Hardware Imperfections on RF
Signals. Non-Linear hardware imperfections exist due to man-
ufacturing variations, such as variations in digital-to-analog
converters and power amplifiers even for transmitters manu-
factured with the same process [9]. In addition, variations of
transistors, resistors, inductors, and capacitors can also con-
tribute to non-linearities. The aggregation of these variations
is believed to be unique across transmitters, and therefore, form
a transmitter’s hardware signature. Moreover, these hardware
variations lead to non-linear effects in the processing of RF
signals and offer opportunities to identify hardware signatures
over RF signals. The non-linear effects mainly include I/Q
imbalance, differential non-linearity due to digital-to-analog
converters, power amplifier non-linearity, and others.

Notations. Given RF signals received on the receiver side,
pre-processing needs to be applied to extract I/Q traces from
RF signals, where I/Q traces will be used as inputs for a
classifier. Details of pre-processing will be discussed later.

An I/Q trace is denoted as x, which contains of a sequence
of consecutive I/Q samples x = (x[1], ..., x[L]), where x[i]



is the i-th I/Q sample and L is trace length. We use x[i]R

and x[i]I to denote the real part and imaginary part of an IQ
sample x[i]. A set X consisting of n I/Q traces is denoted as
X = (x1, ..., xn). We use Y = {y∗1 , ..., y∗|Y|} to denote a set
of transmitters, where y∗i is a transmitter and |Y| is the total
number of transmitters.

Evaluation Metrics. The performance of radio fingerprint-
ing will be evaluated with two metrics, including accuracy
and device rank. Accuracy of radio fingerprinting is the same
concept as accuracy of a machine learning classifier, in which
the metric measures how many I/Q traces are predicted with
correct labels by a classifier given test I/Q traces. Device rank,
on the other hand, measures the rank of the true transmitter
among all the candidates based on aggregated scores obtained
from a classifier given test traces of a transmitter. Existing
studies mainly utilize accuracy only and we introduce device
rank as an additional metric to complement accuracy.

Accuracy. Given training data Dtrain = {X,Y } =
{(x1, y1), ..., (xn, yn)}, where label yi ∈ Y for 1 ≤ i ≤ n, a
classifier F is trained in the training phase. In the authen-
tication phase, given a I/Q trace x′

i of test data Dtest =
{X ′, Y ′} = {(x′

1, y
′
1), ..., (x

′
n′ , y′n′)}, where y′i ∈ Y , classifier

F outputs a score vector (si,1, ..., si,|Y|), where si,j is the
confidence of classifier F on transmitter y∗j over I/Q trace x′

i. If
y′i == y∗j and si,j is the highest score among (si,1, ..., si,|Y|),
the prediction of classifier F over trace x′

i is correct. If there
are m′ traces are predicted correctly among all the n′ traces,
accuracy is computed as m′/n′.

Device Rank. Given a subset D
y∗
j

test =
{(x′

1, y
∗
j ), ..., (x

′
n′ , y∗j )} of test dataset Dtest, where all

the traces of this subset are from one transmitter y∗j ∈ Y , the
aggregated score vector (s1, ..., s|Y|) over these n′ traces are
computed as

sk =

n′∑
i=1

si,k, for 1 ≤ k ≤ |Y| (1)

where si,k is the score of transmitter y∗k given trace x′
i.

The aggregated scores are further sorted as (s∗1, ..., s
∗
|Y|) in

descending order, where s∗j ≥ s∗j+1 for 1 ≤ j ≤ |Y| − 1.
Device rank is assigned as r, where r ∈ [1, |Y|], if the
aggregated score of transmitter y∗j is ranked as the r-th among
all the aggregated scores (s∗1, ..., s

∗
|Y|). A device rank of 1 over

n′ traces suggests that classifier F ranks device y∗j correctly as
the top candidate after n′ traces. Otherwise, the authentication
for device y∗j is incorrect over the n′ test traces. If device rank
converges to 1 with a less number of traces, it indicates the
authentication is more effective.

Average Device Rank. Given the device ranks {r1, ..., r|Y|}
of all the Y transmitters in a dataset, where the dataset is
balanced and each device rank is computed with the same
number of I/Q traces, average device rank can be computed
as ravg =

∑|Y|
i=1 ri
|Y| . Average device rank measures the perfor-

mance of authentication across all the transmitters in a dataset.
Why Device Rank is Helpful? Hardware imperfections are

difficult to separate, where scores of candidates in a classifier
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Fig. 2: An example of slicing window method over M I/Q
samples given trace length L and stride is 1.

are often close. If a metric measures accuracy alone, it only
keeps top-1 candidates in predictions while the scores of other
candidates are ignored. Device rank aggregates the scores
across multiple traces to make a more informed decision.

Pre-Processing of I/Q Samples. Slicing [6], [7], [8], [11] is
a common pre-processing method to extract I/Q samples from
RF signals and prepare I/Q traces for a classifier. Specifically,
given a sequence of M I/Q samples and a sliding window
with length L, where L << M , slicing extracts the L I/Q
samples within the sliding window as an I/Q trace. Next, the
window slides to the right with a stride of s and extracts the
L I/Q samples from the updated window as the next I/Q trace.
The process is repeated until a certain number of I/Q traces
is reached. Trace length L and stride s are two important
parameters of this pre-processing. L is fixed within a dataset
as a classifier expects the same length of I/Q traces. Stride s
can be fixed or dynamic depending on how pre-processing is
designed. An example of slicing is described in Fig. 2. Slicing
can be applied to I/Q samples in the time domain and also in
the frequency domain. These traces can be considered as time-
series data with 2 channels, where one channel is In-phase and
the other is Quadrature.

Time-Frequency Domain. I/Q samples can also be repre-
sented in the time-frequency domain. Specifically, when we
collect RF signals at the receiver side, I/Q samples can be
collected before and after Fast Fourier Transform (FFT). I/Q
samples before FFT are represented in the time domain. To
obtain I/Q data in time-frequency domain, also referred to as
spectrogram, Short-Time Fourier Transform (STFT) is applied
to I/Q samples in the time domain. The Discrete STFT can be
described as below

S(m,w) =

∞∑
n=−∞

x[n]w[n−m]e−jωn (2)

where x[n] is the signal (i.e., I/Q samples in the time domain),
w[m] is a window function of STFT, m is the STFT window
size, and ω is the frequency. We implement STFT with package
scipy.signal in Python.

Given a number of M I/Q samples in the time domain,
we can generate a spectrogram with length ⌊ 2M

m ⌋ and width
m. After obtaining the spectrogram, slicing with trace length
L is applied to split it into smaller segments with length L
and width m, where these segments are used as inputs of
a classifier. Put differently, I/Q traces in the time-frequency



domain can be considered as time-series data with m channels,
where m is STFT window size.

III. RADIO FINGERPRINTING IN CROSS-DAY SCENARIO

Radio fingerprinting suffers significant performance drop
against temporal variations in the cross-day scenario, where
a classifier is trained with I/Q traces on Day 1 but is tested
with I/Q traces on Day 2. This is mainly because the changes
in wireless channel conditions lead to distribution shifts of I/Q
traces, which affect the capability of a classifier to distinguish
hardware imperfections. A straightforward solution is to rec-
ollect a large amount of I/Q traces on Day 2 and retrain a
classifier. However, recollecting a large amount of I/Q traces
could be time-consuming. To better address this problem,
we propose to leverage transfer learning, more specifically,
adversarial domain adaptation [16].

Our main idea with adversarial domain adaptation is to
train a classifier with a large amount of I/Q traces on Day 1
and a small amount of I/Q traces on Day 2. Then, this classifier
is further tuned with the small amount of I/Q traces on Day 2,
such that the tuned classifier can still achieve good performance
to authenticate transmitters on Day 2. The reason that only a
small amount of I/Q traces on Day 2 is needed is because the
knowledge (i.e., weights and feature space) about hardware
imperfections can be learned from Day 1 and transferred to
the classification task on Day 2. With our method, there is
no need to recollect a large amount of I/Q traces on Day 2,
which can significantly reduce the overhead in data collection
for cross-day radio fingerprinting.

Adversary Domain Adaptation. Transfer learning can
transfer knowledge (e.g., weights and hyperparameters) learned
from one dataset (referred to as a source dataset) to a new
dataset (referred to as a target dataset), such that a classifier
can still perform well over the new dataset. It is one of the
major approaches for machine learning classifiers to overcome
distribution shifts across datasets. Transfer learning typically
can include three steps, including training, tuning, and testing.
Target data is split into target training data and target test data,
where target training data is used in training (optional) while
tuning and target test data is used in testing.

Adversarial Domain Adaptation (ADA) [16], [17], [25]
leverages a domain adversarial network to learn a domain-
invariant feature space. Specifically, assume there is a source
dataset and a target dataset, the structure of a domain adver-
sarial network consists of a Feature Extractor F , a Domain
Discriminator D, and a Source Classifier C as shown in
Fig. 3. The Feature Extractor, Domain Discriminator, or Source
Classifier, in essence, is a neural network. The parameters
of the Feature Extractor, Domain Discriminator and Source
Classifier can be represented as θF , θD, and θC respectively.

During the training of a domain adversarial network, the
Feature Extractor takes source data and target training data
as inputs and aims to output domain-invariant features, which
are difficult for the Domain Discriminator to distinguish. The
Domain Discriminator aims to distinguish whether an output
of the Feature Extractor is produced by data from the source
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Fig. 3: The structure of a domain adversarial network [16].
GRL stands for Gradient Reversal Layer.

or the target. The Source Classifier aims to minimize its loss
on predicting the correct class label of source data with the
outputs produced by the Feature Extractor. The loss function
L can be computed as

L(θF , θD, θC) = LC(θF , θC)− λLD(θF , θD) (3)

where LC is the loss function of the Source Classifier, LD is
the loss function of the Domain Discriminator, and λ is a pre-
defined trade-off parameter shaping features during learning
[16]. The parameters of the entire network are updated through
back-propagation. After the training, the Feature Extractor F
and the Source Classifier C can be extracted out and used to
perform classifications over target data.

RadioNet: Our Proposed Method. For cross-day radio
fingerprinting, we take I/Q traces on Day 1 as source data and
I/Q traces on Day 2 as target data in the context of transfer
learning. The standard adversarial domain adaptation described
in the previous subsection works well for both the source and
target data. To further enhance the performance on Day 2, we
propose to include a tuning step built upon adversarial domain
adaptation.

Specifically, after the training step, our proposed method
extracts Feature Extractor F and attach a k-NN classifier to
the end of it instead of using Source Classifier C. Then, the
parameters of k-NN classifier are tuned with target training
data while the weights of Feature Extractor are frozen in tun-
ing. After the tuning, Feature Extractor F and k-NN classifier
are used together as a target classifier to perform authenticating
transmitters over target test data. The training and tuning steps
are highlighted in Fig. 4.

IV. DATASETS AND NEURAL NETWORKS

NEU dataset. Al-Shawabka et at. [11] collected radio
frequency datasets by leveraging a testbed with 1 USRP as a
receiver and 20 USRPs as transmitters. We select one dataset
with the setup “Setup A-In-the-Wild, Different Antennas” and
refer it as NEU dataset in this paper. RF signals of each
transmitter consist of 10 transmissions and each transmission
lasts for 30 seconds. Samples are streamed at 2.432 GHz with
a sampling rate of 20 million samples per second and BPSK
1/2 as modulation. About 8.05× 106 I/Q samples on average
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are observed in each transmission. I/Q samples are collected
after WiFi Frame Equalizer in GNU Radio.

HackRF-10 Dataset. We build a testbed with 11 HackRF
Ones, where 1 HackRF One is utilized as receiver and 10
HackRF Ones are served as transmitters. This is expanded from
our previous textbed in [26]. Each HackRF One is equipped
with 1 ANT500 antenna. We use open-source GNU Radio code
[27] to establish the WiFi transmissions (IEEE 802.11 a/g) with
BPSK 1/2 modulation. We capture I/Q samples at 2.45 GHz
center frequency with 2 MHz bandwidth and 2 MHz sampling
rate. All the devices are static during the data collection. The
receiver is around 3 feet away from a transmitter. We collect
I/Q data for two days in our lab. In each day, we collect 3
transmissions and each transmission lasts for 30 seconds. There
are 15 seconds between two transmissions. Due to package
loss, about 3.26 × 106 I/Q samples are successfully collected
in each transmission. We collect the I/Q samples on the receiver
side before FFT and after WiFi Frame Equalizer respectively.

Architectures of Neural Networks. In our evaluation, we
examine two Convolutional Neural Networks, including Home-
grown [11] and Deep Fingerprinting (DF) [28]. Homegrown
is a shallow CNN, which consists of 2 convolutional layers
and 2 dense layers. It was used in [11] and obtained high
accuracy in radio fingerprinting. DF is a deeper CNN which

consists of 4 blocks, where each block includes 2 convolutional
layers, 1 pooling layer, and 1 dropout. DF was designed in
[28] and achieved high accuracy over time-series data, more
specifically, side-channel information of encrypted network
traffic in website fingerprinting.

V. EVALUATION

In this section, we investigate two research questions below
through a set of comprehensive experiments.

RQ1: Will parameters of pre-processing cause significant
impacts on the performance of radio fingerprinting?
RQ2: Can adversarial domain adaptation improve the per-
formance of radio fingerprinting in the cross-day scenario?

A. Experiments for Investigating RQ1

Changing the parameters of pre-processing, such as stride
and trace length, could affect how I/Q traces are sampled from
given RF signals, to what degree these traces are overlapped,
and to what degree temporal variations may happen. Ideally,
if a neural network indeed learns hardware imperfections
of transmitters rather than other patterns, such as package
content or/and channel conditions, the performance of radio
fingerprinting should be relatively stable when the parameters
of pre-processing change. To validate this, we perform multiple
experiments below.

Experiment A.1: Impacts of stride in the pre-processing
of I/Q data in the frequency domain. We evaluate and
compare the impact of stride on the performance of radio fin-
gerprinting over I/Q data in the frequency domain. Specifically,
given trace length L = 288 (we defer the discussion on the
impact of trace length in a later experiment), we examine the
cases with stride s = {1, 0.5L,L, 2L} over NEU dataset and
HackRF-10 dataset. We also examine the case where stride s is
randomly generated on the fly per I/Q trace, where L ≤ s ≤ W

L
and W is the number of I/Q samples in one transmission.

For NEU dataset, we extract 10,000 I/Q traces per trans-
mitter across 10 transmissions in Day 1, where 1,000 I/Q
traces per transmitter are selected from each transmission. In
other words, given stride s and trace length L, we prepare an
I/Q dataset of 200,000 I/Q traces. For HackRF-10 dataset, we
extract 5,000 I/Q traces per transmitter across 3 transmissions
in Day 1, where about 1,667 I/Q traces per transmitter are
selected from each transmission. In other words, given stride
s and trace length L, we prepare an I/Q dataset of 50,000 I/Q
traces from HackRF-10 dataset. Given an I/Q trace dataset, we
choose 64% traces for training, 16% for validation, and 20%
traces for testing. Given a stride and a trace length, we repeat
the I/Q trace extraction, its training, and testing for 5 trails.

We use Homegrown and DF and measure the accuracy and
device rank of each I/Q dataset over each CNN. We first
examine the performance of radio fingerprinting in the same-
day scenario with I/Q datasets on Day 1, where both training
and testing were performed over I/Q traces on Day 1. In
addition, we also repeat the same process to obtain I/Q datasets
on Day 2 for NEU dataset and HackRF-10 dataset respectively.



TABLE I: Impacts of stride on accuracy (%) over I/Q data in the frequency domain. Both the same-day scenario and cross-day
scenario are evaluated. The results are reported in mean ± standard deviation. The trace length is L = 288.

Stride s CNN
NEU dataset HackRF-10 dataset

(random guess 5%) (random guess 10%)
Same-Day Cross-Day Same-Day Cross-Day

s=1 Homegrown 99.74±0.23 6.26±1.95 99.76±0.26 20.40±5.08
DF 99.95±0.17 6.08±2.44 99.99±0.22 21.85±6.55

s=0.5L=144 Homegrown 26.47±11.21 7.59±0.54 59.31±2.68 24.75±1.94
DF 50.02±25.10 6.90±1.44 68.63±1.58 26.90±2.92

s=L=288 Homegrown 16.96±4.00 8.72±0.51 52.13±1.85 25.83±3.53
DF 14.24±6.67 7.31±2.11 60.47±1.25 27.80±1.48

s=2L=576 Homegrown 11.61±1.44 8.68±0.25 45.93±2.48 26.23±2.11
DF 5.88±1.96 5.70±1.57 47.30±1.18 26.86±1,25

s=random Homegrown 9.69±0.14 8.70±0.19 44.56±3.04 28.18±0.69
DF 5.78±1.43 5.76±1.29 39.93±16.49 24.44±8.05

We evaluate the performance of radio fingerprinting in the
cross-day scenario, where training I/Q traces are on Day 1
but testing traces are on Day 2.

Observation A.1.1. As shown in Table I, given a trace length,
the stride can cause significant impacts on the accuracy in the
same-day scenario. Specifically, given trace length is L = 288,
when stride is only 1, a classifier (either Homegrown or DF)
can achieve extremely high accuracy (>99%) on a dataset.
On the other hand, when stride increases, the accuracy drops
significantly, especially when stride is greater than or equal
to trace length (i.e. when there are no overlaps among I/Q
traces). This observation is consistent across NEU dataset and
HackRF-10 dataset. Our results suggest that when we choose
the parameter of stride, we should choose this parameter such
that there will be no or almost no overlaps among I/Q traces.
Otherwise, a neural network tends to learn the content of I/Q
traces rather than hardware imperfections.

Observation A.1.2. We observe that device rank would be
a more informative metric to understand the performance of
radio fingerprinting than accuracy. Specifically, we generate
device ranks of the same-day scenario with DF model over
I/Q datasets extracted from NEU dataset given trace length
is L = 288. As presented in Fig. 7, when stride s = 288,
although the accuracy is only 14.24%, average device rank over
20 transmitters converges to 1 after 35 traces. This suggests
that the DF model can correctly identify which transmitter it
is after 35 traces, which is about 37 milliseconds of RF signals
(i.e., 35 ∗ 288/8.05× 106 seconds).

For device ranks over HackRF-10 dataset, we also observe
that even the accuracy is low (e.g., 39.93%) given trace length
L = 288 and stride is random, average device rank over
10 transmitters converges to 1 after 10 traces. Device ranks
generated by different strides are similar in Fig. 10 as their
accuracy do not drop significantly (e.g., 68% to 39%) and
remain much higher than random guess (i.e., 10%). Our results
suggest that pursuing extremely high accuracy may not be
necessary for radio fingerprinting. Achieving an accuracy that
is reasonably higher than random guess would be sufficient
for authenticating a transmitter correctly (i.e., device rank
converges to 1) within a short time of RF signals.

Observation A.1.3. When we examine the accuracy in the
cross-day scenario, we find that no matter which stride was

used, the accuracy drops significantly to (or close to) the level
of random guess. This is consistent with findings in previous
studies [11], [9].

Different from previous studies, we further examine the
cross-day scenario with device ranks. Specifically, given stride
s = 288 and trace length L = 288 over NEU dataset, the
average device rank in the cross-day does not converge to 1 as
shown in Fig. 8. We have similar observation over HackRF-10
dataset in Fig. 11.

Experiment A.2: Impacts of trace length in the pre-
processing of I/Q data in the frequency domain. We examine
the impact of trace length L on the accuracy over I/Q data in
the frequency domain. We examine L = {144, 288, 576, 864}.
For each L, we set stride s = L to avoid overlaps across I/Q
traces. We evaluate NEU dataset and HackRF-10 dataset with
Homegrown and DF. Given stride and trace length, we repeat
the I/Q trace extraction, training, and testing for 5 trails as
in Experiment A.1. Both the same-day scenario and cross-day
scenario are examined.

Observation A.2.1. As shown in Table II, trace length L
can affect the accuracy in the same-day scenario, where a
smaller trace length derives a higher accuracy. This is expected
as a greater trace length suggests the I/Q traces carry greater
temporal variations, which lead to greater variations across I/Q
traces and therefore accuracy drops.

When we increase trace length over HackRF-10 dataset,
the two CNNs can still achieve reasonably high accuracy,
although accuracy drops are also observed. However, for NEU
dataset, the accuracy of DF drops to the level of random
guess when L ≥ 576 while Homegrown maintains a slightly
higher accuracy (12%). Our results suggest that a greater
trace length should be used whenever it is possible, otherwise
the classifier could derive over-optimistic accuracy due to the
lack of temporal variations within an I/Q dataset. On the
other hand, when the trace length is too long, a classifier
may fail to authenticate transmitters effectively. We recommend
performing experiments over multiple values of trace length
and comparing results to decide proper values of trace length
for a dataset. The cross-day scenario offers poor performance
regardless which trace length is selected.

Experiment A.3: Impacts of STFT window size in the
pre-processing of I/Q data in the time-frequency domain.
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TABLE II: Impacts of trace length on accuracy (%) over I/Q data in the frequency domain. Both the same-day scenario and
cross-day scenario are evaluated. The results are reported in mean ± standard deviation. Stride is s = L.

Trace length L CNN
NEU dataset HackRF-10 dataset

(random guess 5%) (random guess 10%)
Same-Day Cross-Day Same-Day Cross-Day

L = 144
Homegrown 22.94±8.09 7.13±0.35 52.59±1.46 25.15±3.20

DF 55.16±9.16 7.33±1.58 64.43±0.70 27.57±2.82

L = 288
Homegrown 16.96±4.00 8.72±0.51 52.13±1.85 25.83±3.53

DF 14.24±6.67 7.31±2.11 60.47±1.25 27.80±1.48

L = 576
Homegrown 13.29±1.78 9.26±0.72 46.27±4.03 26.49±2.30

DF 6.56±2.84 5.82±2.15 57.78±0.92 27.90±0.53

L = 864
Homegrown 12.08±2.63 9.67±1.61 44.66±1.11 28.32±2.85

DF 7.99±4.09 7.32±3.18 57.50±1.92 29.51±0.76

We examine the impact of STFT window size on the accuracy
of radio fingerprinting over I/Q data in the time-frequency
domain. STFT Window size m decides the size of the STFT
window function when transforming I/Q data of the time
domain to I/Q data of the time-frequency domain. Performing
STFT with a given window size is one additional step in the
pre-processing for I/Q data in the time-frequency domain.

We examine HackRF-10 dataset only. We could not generate
I/Q data in the time-freqnecy domain of NEU dataset as I/Q
data of the time domain are not released. With HackRF-10
dataset, we examine STFT window size m = {64, 128, 256}.
We set stride as s = 288 and trace length as L = 288 to obtain
traces (i.e., segments of spectrogram) after applying STFT.

We select 1,000 traces per transmitter across all the three

transmission. Overall, 10,000 traces from 10 transmitters are
extracted and used for the evaluation of a classifier. We use
64% for training, 16% for validation, and 16% for testing. We
repeat the training and testing for 5 trails.

Observation A.3.1. We observe that increasing STFT win-
dow size does not have a critical impact as shown in Table III.

B. Experiments for Investigating RQ2

We leverage adversarial domain adaptation to improve the
performance of radio fingerprinting in the cross-day scenario.
We also compare it with fine-tuning, which was utilized for
radio fingerprinting in [26]. We investigate I/Q data in the
frequency domain over NEU dataset and HackRF-10 dataset
and I/Q data in the time-frequency domain over HackRF-10
dataset.



TABLE III: Impacts of STFT window size on accuracy (%)
over I/Q data in the time-frequency domain. The results are
reported in mean ± standard deviation. Stride s = 288 and
trace length L = 288.

STFT window size CNN
HackRF-10 dataset

(random guess 10%)
Same-Day Cross-Day

m = 64
Homegrown 30.95±1.65 13.25±3.45

DF 47.48±0.67 16.10±0.88

m = 128
Homegrown 33.62±1.91 11.61±1.31

DF 49.00±2.01 13.03±0.66

m = 256
Homegrown 36.63±1.15 11.49±0.05

DF 51.85±3.89 15.69±2.53

Implementation of Adversarial Domain Adaptation. We
use DF as Feature Extractor. The Source Classifier consists of 1
convolutional layer, 1 pooling layer, and 1 fully connected layer
with softmax as the activation function. The Domain Discrim-
inator contains 2 convolutional layers, 2 pooling layers, and 1
fully connected layer with softmax as the activation function.
For the training phase of adversarial domain adaptation, we
leverage source data and target training data, and train for 50
epochs. For fine-tuning, we train DF with source data and tune
the last layer of DF using target training data.

Experiment B.1: Cross-day radio fingerprinting with
adversarial domain adaptation (frequency domain). We
examine cross-day performance with adversarial domain adap-
tation over I/Q data in the frequency domain. We select trace
length L = 288 and stride s = 288. Given NEU dataset, we
extract 200,000 I/Q traces on Day 1 and 200,000 I/Q traces on
Day 2. The I/Q traces from Day 1 serve as source data and
I/Q traces from Day 2 serve as target data.

We utilize 64% of source data in the training phase of
adversarial domain adaptation, and only a small number of N
traces per transmitter in target data are utilized as target training
data, where we examine N = {100, 200, 400, 800}. The target
training data is also used in the tuning phase. 20% of target
data (40,000 traces from Day 2) are used in testing. For the
k-NN classifier in the tuning phase, we choose k = |Y| − 1,
where |Y| is the number of transmitters.

As presented in Table IV, our method based on adversarial
domain adaptation can effectively improve cross-day accuracy.
When we increase N , the number of traces per transmitter in
target training data, cross-day accuracy increases. For instance,
given N = 800, the accuracy can increase to 43.17% compared
to 8.41% of the baseline. Baseline accuracy is the accuracy
obtained from training DF with Day 1 and testing with Day
2 directly. As shown in Fig. 9, we observe that device rank
can converge to 1 within 20 traces when we use ADA in
the cross day scenario while the device rank of baseline does
not converge to 1. We also observe that fine-tuning can also
improve the accuracy but not significantly over NEU dataset.

We also examine the performance of adversarial domain
adaptation over HackRF-10 dataset in the frequency domain.
Given trace length L = 288 and stride s = 288, we extract
50,000 I/Q traces on Day 1 and 50,000 I/Q traces on Day 2. We
set k = 9 for the k-NN classifier. We have similar observations

that adversarial domain adaptation can significantly improve
cross-day accuracy and outperform fine-tuning.

Experiment B.2. Cross-day radio fingerprinting with
adversarial domain adaptation (time-frequency domain).
We examine cross-day radio fingerprinting with adversarial
domain adaptation over I/Q data in the time-frequency domain.
We choose trace length L = 288, stride s = 288, and STFT
window size m = 64. Only HackRF-10 dataset is evaluated.
We extract 10,000 I/Q traces in Day 1 and 10,000 I/Q traces in
Day 2. Other details are the same as in the previous experiment.
As shown in Table V, adversarial domain adaptation can also
improve cross-day accuracy when I/Q data are represented in
the time-frequency domain. In addition, it can outperform fine-
tuning when N ≥ 200.

VI. RELATED WORK

Due to space limitation, we only discuss deep-learning-based
radio fingerprinting. More comprehensive surveys on radio
fingerprinting can be found in [29].

To simplify pre-processing steps on RF signals and distin-
guish transmitters of the same type, recent studies [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15] perform
deep learning directly on I/Q samples to fingerprint hardware
imperfections of transmitters. Different architectures of neural
networks, such as CNNs, LSTM (Long-Short Term Memory),
and MLPs (Multi-Layer Perceptrons), have been examined
[3], where CNN often outperforms other networks. Complex-
valued neural networks [9], [10] can achieve higher accuracy
than real-valued neural networks. Existing studies [13], [14]
also shown that I/Q data represented in the frequency domain
and time-frequency domain can achieve better performance
than I/Q data in the time domain. Al-Shawabka et al. [11] es-
tablished, at the time of writing, the largest public dataset (NEU
dataset) that can be utilized to analyze radio fingerprinting.
Several studies [3], [14], [13] examined deep-learning-based
radio fingerprinting over I/Q data, particularly for Long Range
(LoRa) protocols. Identifying Unmanned Aerial Vehicles with
radio fingerprinting was studied in [12].

Existing Studies in the Cross-Day Scenario. Cekic et
al. [9] utilized CFO (Carrier Frequency Offset) compensation
and model-driven augmentation – adding noise to received RF
signals – to mitigate the impacts of CFO and multipath before
passing RF signals to a complex-valued neural network. The
authors also show that multi-day training – training models
with RF signals from multiple days – can improve the robust-
ness of radio fingerprinting. Agadakos et al. [10] investigated
protocol-agnostic radio fingerprinting with complex-valued
neural networks. Pre-processing with decimation and random-
ized cropping. They demonstrated that multi-day training can
increase the robustness of radio fingerprinting. Restuccia et
al. [6] proposed to add Finite Input Response Filters on the
transmitter side to mitigate the impact of temporal variations
across different days. The extensions of their study utilized
model-driven data augmentation [8] or channel estimation on
the receiver side [7] to mitigate the impact of distribution shifts
of RF signals across different days.



TABLE IV: Accuracy (%) in the cross-day scenario (frequency domain).

N : No. of traces per transmitter in target training data
Baseline 100 200 400 800

NEU Fine-tuning 8.41 9.72±0.98 11.05±0.31 12.35±0.29 13.99±0.08
ADA 7.50±0.13 10.13±0.80 23.33±0.92 43.17±0.90

HackRF-10 Fine-tuning 25.98 46.45±0.71 49.98±0.53 52.56±1.12 55.17±0.11
ADA 47.82±0.37 53.95±0.75 59.94±1.02 65.24±1.42

TABLE V: Accuracy (%) in the cross-day scenario (time-frequency domain).

N : No. of traces per transmitter in target training data
Baseline 100 200 400 800

HackRF-10 Fine-tuning 17.19 45.60±3.76 50.85±0.21 53.62±1.29 56.04±0.67
ADA 42.42±0.89 54.41±0.93 58.30±0.10 64.22±0.93

VII. CONCLUSION

We enhance the robustness of radio fingerprinting in this
study. Our experimental results over real-world datasets suggest
that adversarial domain adaptation is a promising way to im-
prove the performance of fingerprinting in cross-day scenario.
Also, device rank can be used as an important metric in the
evaluation of radio fingerprinting.
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