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Abstract—The use of Internet of Things (IoT) devices is
higher than ever and is growing rapidly. Many IoT devices are
manufactured by home appliance manufacturers where security
and privacy is not the foremost concern. There does not exist
a strict authentication method that verifies the identity of the
device. This allows any rogue IoT device to authenticate and
spoof various IoT device activities using compromised credentials.
This paper addresses the issue by introducing a novel method
for re- and continuous authentication utilizing a device-type
classification as a new identity paradigm. We present RADTEC:
a protocol for authenticating a device in a network by leveraging
machine learning to classify the type of an IoT device attempting
to connect to the network with an accuracy of over 95% in less
than 0.65 milliseconds. We investigate multiple machine learning
classifiers to infer the types of IoT devices and use them to
develop a stricter and more efficient method for authentication.

Index Terms—IoT security, authentication, device type classi-
fication, machine learning, cross layer analysis.

I. INTRODUCTION

The security of Internet of Things (IoTs) devices is prone
to two significant vulnerabilities; first, the insecurities and
vulnerabilities in the firmware and second, the secrets uti-
lized to bootstrap security are prone to compromise. The
Common Vulnerabilities and Exposures (CVE) database of
vulnerabilities alone consists of over 1000 records related to
the keyword “IoT” depicting the vulnerabilities of firmware
[1]. Furthermore, the compromised secrets can be utilized by
an unauthorized party to inject/modify sensitive data/actuation
[2]–[5]. Therefore, both vulnerabilities compromise the secu-
rity of the whole network. One of the available ways to address
this issue is to use a policy-based access control to prevent
insecure devices from taking control of the home network [6].
However, the state-of-the-art requires manual configuration of
the policies and is not capable of automatically distinguishing
device capabilities to enforce the policy.

Fig. 1. Re- and Continuous authentication of legitimate devices with the hub,
where an adversary is attempting to exploit a vulnerable device.

Previous work includes several attempts to improve the au-
thentication process of an IoT device with a network [7]–[11].
Approaches include authentication based on the proximity of
the IoT device [7], [10], while others provide methods of
authentication through machine learning by predicting if a
device is IoT or not IoT, or by predicting the class of an
IoT device such as cameras, hubs, electronics [8], [9], [11].
However, none of the previous state-of-the-art solutions such
as proximity-based solutions provide an extensive protocol or
methods that are completely independent of any interaction by
the user after the initial authentication or machine learning-
based solutions where the protocol is independent of vulner-
able network characteristics such as the MAC address and
a protocol that identifies the type of IoT device with high
accuracy and provides a complete and efficient solution that
can be used in the real-world. To advance on the previous
work done to improve the authentication of an IoT device in
a network, the goal of this paper is to develop a protocol that
introduces the following key-important features that have not
yet been addressed in any of the state-of-the-art solutions:

• Existing works do not address credential compromise
[7], [10]. The effect of the compromise can be re-
duced by introducing an additional hard-to-forge modal-
ity for identity verification. We achieve this by using
machine learning-based device type classification as a
novel modality of identity.

• Several existing machine learning models are only be able
to classify a device as IoT or not IoT but not classify
the kind of IoT device with high accuracy [8], [11]. We
perform device classifications by using traffic fingerprints.

• The machine learning model sometimes cannot make
classifications with high accuracy. We address this prob-
lem by iterative classification using backup machine
learning methods.

• With large amount of data, a machine learning model can
use high memory and time, limiting its application for
authentication. We increase the efficiency of classification
by selecting important quantifiable data.

We propose to tackle the problem, where an adversary can
compromise a vulnerable device to control other devices in
the network. We introduce a new paradigm of identity for
authentication as device type. Such that if an adversary is



able to compromise a weak vulnerable device with sensing
capabilities, it should not be allowed to mimic a more powerful
device such as a home assistance device. Thus, to tackle
this problem, we propose using the existing deployment of
the device type policy [6] with an ML-based device type
classification to limit network access according to device
capabilities. We propose a novel technique to perform device
type classification and re- and continuous authentication of
the devices accordingly. RADTEC - Re- and continuous
Authentication based on Device TypE Classification utilizes
cross-layer (network, data link, transport, and application) data
to perform classification into six categ ories: Home Assistant,
Smart Camera, Smart Electrical and Lighting, Smart Sensor,
and Non-IoT devices. The re- and continuous authentication
is based on the credentials presented by a device matching the
device type in the database. This prevents any adversary from
compromising the preloaded secret of a monitoring device and
being able to actuate devices in the network.

II. MODELS AND PRELIMINARIES

A. System Model

The system model identified for this work is similar to a
network containing IoT devices. The main components of the
system are shown in Fig. 2, which are:

Fig. 2. System Model

Legitimate devices (D): The legitimate devices have al-
ready established trust with the network using any existing
technique [12]–[14]. There is no limitation to the security
requirement and capabilities of the devices.

Hub (A): The hub is responsible for serving legitimate
devices. The hub also performs initial trust establishment
and verification of existing credentials. The hub provides the
connection between the devices and the Internet and is able to
see the headers of various layers. The hub is assumed to be
physically and cryptographically secure.

Verification Server (V ): The verification server is respon-
sible for performing device type classifications based on the
traffic pattern. The verification server is accessed by the hub as
a cloud service. The hub collects the traffic pattern and trans-
mits it to the verification server to receive the classification. A
and V are assumed to have a trusted communication channel.

B. Adversary Model

The adversary (M) is capable of compromising any of the
legitimate devices by any method such as but not limited to
exploiting the firmware vulnerabilities, or database compro-
mise of pre-shared secrets [15], [16]. The adversary can utilize

compromised knowledge to hijack a vulnerable device in the
network as an attempt to,

• Poison the network by injecting malicious packets,
• Capture network traffic to extract sensitive data,
• Actuate a device to perform activities of some other type

of device.
We assume that the adversary has no prior knowledge of

the traffic pattern of any compromised device. This is a rea-
sonable assumption because the adversary, when learning the
compromised secrets, does not have access to the legitimate
device to capture and perform traffic pattern analysis.

C. Security Requirement

The security requirement of RADTEC is to authenticate
devices based on device type classification. The hub is re-
sponsible for the verification of the credentials and for the
comparison of claimed and observed device types based on
the traffic pattern. The hub and the verification server can
be assumed to be a single entity as a secured gateway.
The secured gateway performs 1) initial trust establishment,
2) policy-based network access, and 3) re- and continuous
authentication of devices.

III. RE-AUTHENTICATION BASED ON DEVICE TYPE
CLASSIFICATION

In this section, we present RADTEC - Re- and continuous
Authentication based on Device TypE Classification. The
main idea is to first perform device type classification based
on traffic pattern. Then utilizing the device type to perform
verification during the authentication process.

A. Device Fingerprint Generation

The traffic from the legitimate device (D) is collected by the
hub (A). The hub utilizes the quantifiable data in the headers
of different layers to collect the device fingerprint. We chose to
utilize the header as they are not encrypted because A does not
have access to the keys shared between D and cloud services.
For generating the fingerprint, we propose using the n number
of packets {pD(1), pD(2), . . . , pD(n)} for each device D. For
our work, we utilize the data collected by [17]. Initially, we
extracted 19 characteristics from each packet, which we define
as the feature f(i, j). However, we chose to consider only the
important features as removing unnecessary features would
improve efficiency in a real world scenario to reduce the time
and memory required for model training and classification.
We use a random forest search classifier to extract feature
importance scores from the 19 features shown in Fig.3. After
calculating the importance scores for the features, we set a
threshold of 0.05 and eliminated all features except seven.

Now, for a packet pD(i), we have seven features fingerprint:

FD =



fD(1, 1) fD(2, 1) . . . fD(n, 1)
fD(1, 2) fD(2, 2) . . . fD(n, 2)
fD(1, 3) fD(2, 3) . . . fD(n, 3)

...
...

. . .
...

fD(1, 7) fD(2, 7) . . . fD(n, 7)


. (1)



Fig. 3. Feature Importance Scores

B. Device Type Classification

We perform classification of devices into seven different
types: smart camera, smart sensor, smart home assistant,
smart electrical, smart speaker, and non-IoT, as shown in
Fig 4. The intuition behind is to classify devices as information
gathering and actuating devices. This allows for efficient pol-
icy implementation, preventing weaker information gathering
devices from actuating. We diversify information gathering
devices into cameras and sensors as they have different levels
of privacy invasion. The camera gives more information about
user privacy as compared to the sensors.

We improve the efficiency and accuracy of the classification
process by implementing a threshold-based iterative classifi-
cation technique. (1) V selects the initial classifier Cx corre-
sponding to the hub A. (2) V computes the type TD(i, x) and
accuracy a(i, x). (3) If the accuracy a(i, x) ≥ τ, V securely
transmits TD(i, x) to A. Otherwise, V sorts TD(i, x) according
to accuracy a(i, x). (4) V selects three types with the highest
accuracy TD(i, x), TD(j, x), and TD(k, x). (5) V evaluates
the fingerprint FD using the three classifiers Ci, Cj , and Ck

corresponding to the types with the highest accuracy. If any
of the accuracy of the classifiers a(y, y) ≥ τ ∀ y = {i, j, k},
V securely transmits the corresponding type TD(y, y) to A.
Otherwise, repeat the steps (4) and (5).

Fig. 4. Verifier
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Fig. 5. Device Authentication using RADTEC protocol.

C. RADTEC: The Protocol

RADTEC utilizes the cryptographic credentials and ob-
served device type for authentication of the device, as shown
in Fig. 5. First, the hub verifies the validity of the credentials
and places the device in a limited network access. During the
limited network access period, D is allowed to communicate
to the Internet but not to any other entities on the network [18].
This lets the IoT device communicate with the online service.
During this communication, A captures the traffic transmitted
and received by D. Then A transmits FD generated from
the captured traffic to the verification server. V computes the
device type TD(i, x) and returns to A. The hub compares the
observed device type with the type saved in the database. If
verification is successful, D is given full access to the network
according to the deployed policy; otherwise, the device is
disconnected and the credentials are marked as compromised.

D. Security Analysis

Now, we analyze RADTEC against the security require-
ments defined in Section II-C. The adversary (M) can compro-
mise a device and obtain the credential and attempt to connect
to A. However, if the adversary is unaware of the device type
corresponding to compromised credentials, the adversary will
be unable to mimic the traffic pattern and fail the device
type verification process. The user will be notified of the
compromise and the legitimate device will have to complete
the manual initial trust establishment.

RADTEC is capable of identifying whether a device is
known or unknown through the use of above mentioned classi-
fication techniques. The protocol addresses scenarios in which
an adversary can either: 1) exploit a vulnerable device to inject
malicious packets and therefore, poison the network [19], 2)
use a vulnerable IoT device to extract sensitive data even if
the network packets are encrypted [20], or 3) compromise a
vulnerable IoT device and actuate the activities that would
typically be performed by a different type of device [21].

We detect such attacks by using the classifiers stored in
the database as they are trained using the fingerprints of
previously authenticated devices. When a machine learning
model is asked to make a prediction of a dataset that is
similar to the dataset on which it was trained, it gives a highly



accurate classification. So, the idea here is that if a device is
compromised, the content of the data packets will change,
and we can detect those changes by using the classifiers in
the database, since the fingerprint will now not be similar to
the one used to train the model initially.

This is based on the idea that when a machine learning
model is trained and tested on the same or at least similar
dataset, it should provide predictions with the highest accuracy.
That is also the reason why we capture the traffic of a new
device, and once it is authenticated, we train a model solely on
the fingerprint of the authenticated device and store that model
in the database. Finally, once the verifier sends these results
back to the hub, the hub will revoke the full network access
and only grant the device limited access to the network. It
will further remove the credentials of the compromised device
from the list of authenticated and the device will need to be
reintroduced into the network.

IV. IMPLEMENTATION

In this section, we discuss the selection of the data set and
the process for device identification. We also present the im-
plementation techniques used to classify IoT devices.Finally,
we discuss the training of the classifiers used to classify the
type of IoT devices and the results.

A. Dataset

Traffic between all devices and the access point was ac-
quired from the University of New South Wales [17]. The
data collected include more than 28 IoT devices. We chose 15
devices as shown in Table I and obtained relevant information
from packet capture files by extracting important features using
.tshark into comma separated value files (.csv). After capturing
the “n” packets from the .pcap file and the “f” features using
.tshark, we built the fingerprint matrix FD.

TABLE I
LIST OF IOT DEVICES AND THEIR CLASSES

Device Name Category Class
Amazon Echo Smart Home Assistant 1

Netatmo Welcome Smart Camera 2
Samsung SmartCam Smart Camera 2

Dropcam Smart Camera 2
Insteon Camera Smart Camera 2

Belkin Wemo switch Smart Electrical 3
Light Bulbs LiFX Smart Bulb Smart Electrical 3
Belkin wemo motion sensor Smart Sensor 4

Netatmo weather station Smart Sensor 4
Withings Smart scale Smart Sensor 4

Withings Aura smart sleep sensor Smart Sensor 4
Triby Speaker Smart Speaker 5

Samsung Galaxy Tab Non-Iot 0
Laptop Non-Iot 0
iPhone Non-Iot 0

B. Setup

Algorithm selection: Based on previous work and ap-
proaches [7], [8], [22], [23], we decided to use the following
five classifiers: Random Forest Classifier (RFC) [24], K-
Nearest Neighbors Classifier (KNN) [25], Support Vector
Machine Classifier (SVM) [26], Gradient Boosting Classifier
(GBC) [27], and Gaussian Naive Bayes Classifier (NAB) [28].

Data Pre-processing: For better classification results the
data was preprocessed by using following techniques:

Data Cleaning and Splitting: The .pcap files had sev-
eral data points and characteristics that were not relevant.
Therefore, once the .pcap files were converted to .csv files,
we removed all non-quantifiable data from the packets. This
included all outgoing traffic from the access point since it does
not require classification and would only bias the predictions
made by the classifier due to the large amounts of non-
quantifiable data present in the packets. The empty columns
representing empty values for features were also removed.
Finally, the entire dataset was labeled in different classes for
training, as shown in Table I. The data in the .csv was loaded
into a data frame and the labels were separated out of the
data frame splitting the data into features and labels. Then
both features and labels were randomly split into train and
test data sets in a ratio of 80% and 20%, respectively.

Standardizing Features: Standardizing features is a require-
ment for many classifiers to achieve high accuracy. We used
the standard sklearn scale method to standardize the features
in our dataset, which subtracts the mean from the values and
then scales it to unit variance,

z =
v −m

s
(2)

where, v is the value of the dataset, m is the mean of training
samples and s is the standard deviation of the training samples.

Numerical Imputation: We use numerical imputation to
assign a value to missing values in any feature. It is better than
removing the entire packet since that would effect the amount
of data needed to make accurate classifications. Missing values
are imputed to the median values of each individual feature.
This process is done by utilizing the fill na method provided
by the pandas data analysis tool [29].

C. Training and Testing

Training: After collecting and pre-processing the dataset,
80% of it was used to train each of these five classifiers.The
training process was performed using the fit method provided
by sklearn, which fits the model onto the data to later provide
predictions [30]. The time taken for training was recorded and
is shown in Table II.

Testing: The labels for the test data were predicted by the
previously trained models, and the predicted labels were com-
pared to the actual labels to calculate the accuracy of the clas-
sifications provided by each model. This was done by the use
of accuracy score function provided by the sklearn.metrics
library [31]. Finally, the time required to train each model
was calculated and the average time is shown in Table II.

TABLE II
TIME REQUIRED FOR TRAINING AND TEST EACH MODEL.

Model Train Time Test Time
Gaussian Naive Bayes Classifier 50 ms 0.23 ms

Random Forest Classifier 18.17 sec 0.63 ms
N-Nearest Neighbors Classifier 0.34 sec 0.92 ms

Support Vector Machine Classifier 110 min 3.67 ms
Gradient Boosting Classifier 2.9 min 6.89 ms



D. Results

The metrics used to analyze each model performance were
the F1 score, the Receiver Operator Characteristic - Area
Under the Curve (ROC-AUC) Score, and the accuracy score.

F1 Score: The F1 score is an evaluation metric used to
determine the performance of a machine learning classifier
and is defined as the harmonic mean of recall and precision.
It gives a better insight about the classification made by each
device type classifier as it not only calculates the number
of misclassifications made by the different models but helps
identify the types of mislassifications made.

Precision, also known as the positive predicted value, is the
ratio between the number of correct true positives and the total
number of instances predicted to be positive and given by:

Precision =
TP

Tp + Fp
, (3)

where Tp is number of true positives, and Fp is the number
of false positives.

Recall, also known as sensitivity, is the ratio between the
correct true positives and the total sum of the number of false
negatives and true positives, and is given by:

Recall =
Tp

Tp + Fn
(4)

where Tp is number of true positives, and Fn is the number
of false negatives.

The value of the F1 score can be in the range of 0 and 1,
where 1 is the highest score a model can achieve. The formula
for the F1 score is given by [32]:

F1 Score = 2× Precision×Recall

Precision+Recall
(5)

The F1 score for each class within each model is plotted
in the Fig. 6.The highest average F1 score for all classes was
provided by the RFC. Further, the model can also perfectly
differentiate between an IoT and a non-IoT device.

ROC-AUC Score: The ROC AUC score is the area under
the receiver operating characteristics (ROC) curve that is used
to evaluate the performance of a machine learning model. For
our study, we show the ROC AUC scores in Table III. The
results attests our findings that RFC has the best performance.

TABLE III
ROC-AUC SCORE.

Model ROC AUC Score
Random Forest Classifier 0.9954

K-Nearest Neighbors 0.9313
Support Vector Machine Classifier 0.9642

Gradient Boost Classifier 0.9861
Gaussian Naive Bayes 0.9187

Accuracy Score: The accuracy score is an evaluation
metric used for machine learning models to measure their
performance by determining the ratio between the number of
correct predictions made by the classifier and the total number
of predictions to be made (6).

Accuracy Score =
Nc

Nt
(6)
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Fig. 6. F1 scores for (a) RFC, (b) GBC, (c) KNN, (d) GNB, and (e) SVM.

where Nc is the number of correct predictions, and Nt is the
number of total predictions.

The function to calculate the accuracy of our machine
learning models used to perform multi-class classification was
provided by the sklearn.metrics library [31]. After making the
predictions, we established that the Random Forest Classifier
(RFC) was the most accurate model to make the predictions
with an accuracy of 95.2%. The second most accurate classifier
was GBC with an accuracy of 94.8%, then the KNN with
accuracy 93.3%, SVM with accuracy of 88.3%, and finally
NAB with accuracy of 76.8%, shown in Fig. 7.

Fig. 7. Accuracy with confidence intervals for different algorithms.

Finally, for our work, we utilized the data collected by
[17]. The authors of the data present an IoT device type
classification method that uses multiple classifiers trained on
different types of quantifiable and textual data. They present a
combined classifier with an accuracy over 99%. However, even
though they provide a highly accurate model for classifying
the different types of IoT devices, they do not provide a
formal authentication protocol that can utilize the proposed



classification techniques. Furthermore, we believe that our
approach is more efficient, as it relies only on quantifiable
data to provide a classification.

V. CONCLUSION

We addressed the problem where a rogue IoT device can
spoof activities including sensing, actuation, controlling, etc.
using compromised credentials. We presented a novel method
for continuous and re-authentication utilizing a device type
classification as a new identity paradigm. We presented an au-
thentication protocol: RADTEC leveraging Machine Learning
(ML) to classify the type of IoT device attempting to connect
to the network with an accuracy of over 95% within 0.65 ms.
We compared different types of machine learning classifiers
to best estimate the types of IoT devices and used them to
develop a stricter and efficient method for authentication.

In our future work, we would train classification models for
several more types of IoT devices. We would also collect more
data for each type of device to eliminate bias in our model,
providing more accurate classifications for all the devices
considered. In addition to the machine learning models used in
this thesis, we would perform device type level classification
using several other types of classifiers and apply model fine-
tuning techniques to improve their performance.
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