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Abstract—Deep-learning radio fingerprinting is not robust
against spatial variations, where a neural network trained on
location A does not perform well over RF signals from location B.
We promote the robustness of deep-learning radio fingerprinting
against spatial variations by synergizing Complex-Valued Neural
Networks (CVNNs) and pseudo-labeling. Compared to existing
solutions, we leverage pseudo-labeling to fine-tune a CVNN
without needing labeled RF signals from a new location. We
collect large-scale real-world datasets across different locations.
We conduct comprehensive evaluations of these datasets with
multiple complex-valued activation functions. QOur experimental
results significantly improve the accuracy of radio fingerprinting
when training data and test data are from two different locations
(e.g., increasing accuracy from 40.0% to 62.8%).

Index Terms—Radio fingerprinting, Complex-valued neural
network, and Pseudo-labeling.

I. INTRODUCTION

Radio fingerprinting [1], [2] identifies wireless transmitters
by analyzing Radio Frequency (RF) signals on the receiver
side. As RF signals present minor but unique shifts caused
by hardware variations from manufacturing, it is feasible for
the receiver to distinguish transmitters. Radio fingerprinting
is an approach for physical-layer authentication, which is a
critical and complementary component for enhancing wireless
security, especially when traditional cryptography-based au-
thentications are difficult to apply. Research studies show that
radio fingerprinting can authenticate individual devices (such
as smartphones and Internet of Things) and mission-critical
targets (such as Unmanned Aerial Vehicles).

The majority of studies in radio fingerprinting leverage
real-valued Convolution Neural Networks (CNN), in which
complex values in RF signals are separated into two channels
(i.e., one for real components and one for imaginary com-
ponents) as inputs for a neural network. Despite promising
results, we argue that RF signals are complex values in
nature, and separating real and imaginary parts may lead
to suboptimal performance in radio fingerprinting, especially
when facing spatial variations. While there are a few studies
[3]-[6] investigating Complex-Valued Neural Networks in the
context of radio fingerprinting, the observations reported are
limited to simulated RF signals and/or RF signals without
spatial variations. In other words, how and to what degree
Complex-Valued Neural Networks can tackle spatial variations
in radio fingerprinting remains mainly unknown.

In this paper, by passing complex values directly into neural
networks, our method keeps inter-correlations between real
and imaginary components of I/Q (In-phase and Quadrature)
samples in RF signals. Our main contributions and observa-
tions are:

« We have addressed the spatial variations of wireless chan-
nels by performing fine-tuning-based device fingerprint-
ing without requiring labeled data from a new location.

o We conduct comprehensive evaluations of our datasets.
We have the following key observations. (1) First, Con-
catenated Rectified Linear Units (CReLU) offers the
best performance in radio fingerprinting compared to
two other complex-valued activation functions (Complex
Cardioid and Cart Leaky ReL.U). (2) Second, our method
can improve the accuracy of radio fingerprinting when
training RF signals and testing RF signals from different
locations. Specifically, a baseline CVNN without pseudo-
labeling can only achieve 40.0% accuracy, while our
method can derive an accuracy of 62.8% in identifying
ten transmitters from a new location.

II. SARP: SPATIAL AGNOSTIC RADIO FINGERPRINTING
WITH PSEUDO-LABELLING

Radio fingerprinting often faces substantial performance
degradation, given spatial variations. Specifically, a classifier
trained with I/Q traces from one location would have difficulty
identifying the same group of transmitters at a different
location. A straightforward approach is to retrain the classifier
with labeled I/Q traces from a new location.

A. System Model

Our implementation of spatial agnostic radio fingerprinting
utilizes a system model consisting of multiple transmitters and
one receiver, as depicted in Fig. 1. The radio fingerprinting
process encompasses two main phases: the training phase and
the authentication phase (also known as the test phase).

During the training phase, each transmitter in our system
transmits Radio Frequency (RF) signals to the receiver. After
obtaining the training data, the receiver transmits it to a
server responsible for training a classifier. The server leverages
training data to build a model to classify and distinguish RF
signals from different transmitters.

In the authentication phase, when the receiver receives RF
signals, it queries the trained classifier to predict the identity of
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Fig. 1: (a) System model of radio fingerprinting. (b) During
the authentication phase, Al or A2 are regarded as potential
attackers who could impersonate Tx1, Tx2, Tx3, or Tx4.

the transmitter agnostic to the training location. The classifier
determines which transmitter is transmitting at a given time by
comparing the received RF signals with the learned patterns
from the training phase.

B. Threat Model

We posit trust among all participants during the training
phase but consider potential attackers in the authentication
phase. In our threat model, attackers could be transmitters in-
volved in the training phase (e.g., Tx3 in Fig. 1 impersonating
Tx1 or Tx2) or transmitters absent during training (e.g., Al
or A2 in Fig. 1 impersonating Tx1, Tx2, or Tx3).

C. Our Main Idea

We address the problem by integrating Complex-Valued
Neural Networks (CVNNs) and pseudo-labeling. Specifically,
we first enhance the performance of radio fingerprinting by
utilizing CVNNs. Second, we leverage pseudo-labeling to
generate pseudo-labels for unlabeled RF signals from a new
location and then utilize these pseudo-labeled RF signals to
fine-tune the CVNN.

However, using these pseudo-labeled RF signals alone in the
fine-tuning process would not help improve the performance of
the CVNN over RF signals from a new location as the trained
CVNN does not derive high accuracy over RF signals from a
new location (i.e., these pseudo labels are less accurate) in the
first place. To mitigate this issue, we adopt two improvements,
including (1) applying a threshold to select pseudo-labeled RF
signals with scores higher than the threshold only and (2) using
a combination of labeled RF signals from the training data and
the selected pseudo-labeled RF signals from a new location,
in the fine-tuning process.

D. Fine-Tuning

Transfer learning with fine-tuning consists of three steps,
including training, fine-tuning, and testing.

Training: The first step involves training a classifier with
extensive source data to learn feature representations. This
training phase lets the classifier obtain fundamental knowledge
from the source domain.

Fine-Tuning: In this step, the knowledge acquired during
training is transferred to the classification task in the target
domain. Specifically, the last few layers (e.g., 1 or 2 layers) of
a classifier are fine-tuned (i.e., updated) using a small amount
of data from the target domain, referred to as rarget training
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Fig. 2: Detailed steps of our fine-tuning with pseudo-labeling
over unlabeled target I/Q traces in one iteration.

data. The remaining layers of this classifier remain the same
(i.e., frozen) during this process.

Testing (Authentication): The fine-tuned classifier is evalu-
ated on target test data from the target domain using metrics
such as accuracy. In spatial agnostic radio fingerprinting, we
consider 1/Q traces acquired from one location as data of the
source domain and 1/Q traces captured from another location
as data of the target domain.

E. SARP: Our Proposed Methods

We designed our method to mitigate spatial variations by
fine-tuning a classifier using pseudo-labeling on unlabeled
target data from a new location. A CVNN is first trained
using labeled source data. For fine-tuning, we leverage semi-
supervised pseudo-labeling as presented in Fig. 2.

More specifically, during the fine-tuning step, @ A set of
unlabeled I/Q traces from the target dataset is first passed
to the trained CVNN to assign confidence scores and labels,
which are referred to as pseudo-labels; @ Next, given a pre-
defined threshold 6, where 6 € (0,1), pseudo-labeled 1/Q
traces with confidence scores higher than pre-defined threshold
are identified; (3) These identified pseudo-labeled 1/Q traces
are mixed with labeled source data to form fine-tuning traces;
@ The fine-tuning traces are passed to fine-tune the last
few layers of the trained CVNN; @ A fined-tuned CVNN
is derived. The above five steps are repeated for multiple
iterations with the same set of unlabeled I/Q traces from the
target dataset and labeled source data until the confidence
scores over these unlabeled I/Q traces from the target dataset
do not further improve (i.e. no unlabeled I/Q traces can be
further included in the fine-tuning traces).

III. DATASET AND EVALUATION

We assess the performance of SARP in scenarios where
source and target data are from different locations.

A. Our Testbed and Dataset

Our experimental setup, depicted in Fig. 3(a), comprises
ten transmitters (three USRP 2922 devices and seven USRP
B200-mini-i devices) as transmitters and one receiver (USRP
B205-mini-i). To facilitate WiFi transmissions using BPSK
1/2 modulation, we utilized the open-source GNU Radio code
from [7]. A center frequency of 2.45 GHz, a bandwidth of 2.5
MHz, and a sampling rate of 5 MHz were employed, resulting
in the recording of I/Q samples.

We collect I/Q data at four locations: I/Q_Loc1 (Location 1),
I/Q_Loc2 (Location 2), I/Q_Loc3 (Location 3), and I/Q_Loc4
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Fig. 3: (a) Testbed: One receiver and ten transmitters, (b) four
locations for data collection: one outdoor (Location 2) and
three indoors (Location 1, 3, and 4).

(Location 4), as shown in Fig. 3(b). All the devices were
stationary during the data collection, with the transmitter and
receiver positioned around 3 feet apart. Each area underwent
three transmission sessions, each lasting 30 seconds, with
a 30-second gap between two transmissions. Despite packet
loss, approximately 4.50 x 108 I/Q samples were successfully
collected in each transmission from the frequency domain.

B. Architectures of Complex-Valued Neural Network

We construct our neural network using the CVNN frame-
work, illustrated in Fig. 4. In particular, we make use of the
cvnn.layers module instead of tf.keras.layers in
TensorFlow [8].

C. Experimental Settings

We run our experiments on a server equipped with a Tesla
V100-PCIE-32GB GPU, supporting cuDNN version 8.6.0. We
train a CVNN model for 100 epochs with a learning rate 0.1.
We implement early stopping with a patience setting of 10
epochs. Given a dataset with raw I/Q samples, sliding windows
are applied to extract I/Q traces as inputs for a neural network.
From the raw 1/Q samples of a dataset, we randomly selected
1,000 I/Q traces from each transmitter, resulting in a total
of 10,000 I/Q traces given 10 transmitters. We use 72% for
training, 8% for validation, and 20% for testing when we
evaluate a CVNN.

D. Experiments

Experiment A: Baseline Performance of CVNN. We first
examine the baseline performance of CVNN in radio finger-
printing without applying pseudo-labeling. A same-location
scenario indicates that the training and test I/Q traces are
from the same location (e.g., I/Q_Locl). A cross-location
scenario suggests that the training and test I/Q traces are from
two locations (e.g., I/Q_Locl and I/Q_Loc2). In addition, we
compare the performance of three complex-valued activation
functions: Complex Cardioid, CReLU and Cart Leaky ReL.U.
We kept the trace length at L = 288 and the stride of sliding
window as s = {288,576}

Finding A.1: As shown in Table I, we find that CReLU
outperforms the other two activation functions in both same-
location scenarios and cross-location scenarios. As a result,
we will focus on CReLU in the remaining experiments.

Finding A.2: CVNN can achieve higher accuracy in the
same-location scenarios but lower accuracy in the cross-
location scenarios (as shown in Table I). When we measure

the performance with device rank in Fig. 5 (a) and (b), our
observation shows that (1) the higher accuracy from the same-
location scenario can distinguish the transmitters correctly; (2)
the lower accuracy from the cross-location scenario fails to
distinguish the transmitters correctly.

Experiment B: Performance of CVNN with Pseudo-
Labeling (cross-location). In this experiment, we evaluate the
performance of our design with I/Q_Loc1 as the source dataset
and I/Q_Loc?2 as the target dataset. We explore multiple values
during fine-tuning of N = {100, 200, 400, 800} for unlabeled
traces per transmitter in the target data. For fine-tuning, once
we obtain the pseudo-labels of unlabeled target data, we mix
those with 20% of the source data i.e. (the test source data)
to fine-tune the last three layers of a CVNN.

Finding B.1: From Table II, we observe that the fine-tuning
with pseudo-labeling improve the accuracy of cross-location
scenarios significantly compared to baseline. For instance,
the target data can achieve 62.8% accuracy. Due to these
substantial increases on accuracy, fine-tuning with pseudo-
labeling is able to distinguish transmitters correctly as we
measure device rank as shown in Fig. 6.

Finding B.2: When we increase N, the number of I/Q traces
per transmitter during fine-tuning, the accuracy increases. This
is expected as a greater number of unlabeled 1/Q traces from
the target dataset can improve the effectiveness of fine-tuning.

Finding B.3: We run fine-tuning with unlabeled target data
and testing with target data multiple times by choosing a
different but fixed threshold value each time. We record the
accuracy and training time, and fix N = 800 each time. As
shown in Fig. 7, we observe choosing # = 0.7 derives a
higher accuracy than the ones from other threshold values we
examined.

Experiment C: Timing information. In this experiment,
we report the time of our designs in training and fine-tuning.
Finding C.1: Training Time: We initially trained the networks
using 7,200 I/Q traces with 288 samples/trace (which is
equivalent to I/Q samples collected over 1.4 milliseconds.).
During the fine-tuning phase, we utilized I/Q data collected
between 20us (200 I/Q traces with 288 samples/trace) and
160us (800 I/Q traces with 288 samples/trace). In Table III,
we show that fine-tuning with pseudo-labeling improves the
cross-location performance.

I'V. CONCLUSION

We propose several enhancements to the state-of-the-art
radio fingerprinting. Firstly, we improve the model’s accuracy
by treating the entire complex structure of the I/Q data as a
single input to a CVNN. Secondly, we leverage and utilize
pseudo-labeling to tackle the domain shifts between training
and test data due to the variations introduced by the wireless
environment involving different locations. Our work provided
concrete evidence that CVNN can outperform CNN in radio
fingerprinting.
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Fig. 4: Architecture of CVNN.
TABLE I: Accuracy of Baseline CVNN (trace length L = 288)
Stride s Train: I/Q_Locl; Test: I/Q_Locl Train: 1/Q_Locl, Test: I/Q_Loc2
Complex Cardioid CReLU Cart Leaky ReLU | Complex Cardioid CReLU Cart Leaky ReLU

288 68.28 + 0.13 78.45 + 0.36 72.30 £ 3.01 30.56 + 2.33 40.01 + 1.25 31.23 £2.70
576 65.33 £ 2.11 71.23 + 0.55 68.55 £ 0.12 37.97 £ 1.90 42.55 + 6.37 38.31 +2.08

TABLE II: Accuracy of Our Method (trace length L = 288, stride s = 288, train with 7,200 I/Q traces, fine-tune with 10 x NV
pseudo-labeled traces, test with 2,000 traces)

Baseline
Source Target (No pseudo-labeling) N=100 N=200 N=400 N=800
1/Q_Locl | I/Q_Loc2 40.01 5120 £ 1.18 | 55.15+0.56 5823 £223 62.81 +0.20
1/Q_Loc3 | 1/Q_Loc4 38.35 5144 £ 0.12 | 5251 £7.54 5631 +2.14  59.10 + 3.48

TABLE III: Performance Comparison: without and with Pseudo-Labeling (trace length L = 288, stride s = 288, train:
1/Q_Locl, test: I/Q_Loc2.)

Traces Per Device | CVNN Without Pseudo-Labeling (CReLU) CVNN with Pseudo-labeling (6=0.7)
Accuracy Training Time (sec) Accuracy Fine-Tuning Time (sec)
1000 40.01 £ 1.25 120 62.81 + 0.20 187
2000 48.05 £ 3.01 248 62.25 + 0.39 295
4000 51.74 £ 2.12 457 61.21 £ 0.81 346
8000 51.52 + 0.01 893 61.84 + 0.30 535
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