
CONGESTION CONTROL AND PACKET REORDERING FOR MULTIPATH

TRANSMISSION CONTROL PROTOCOL

BY

NIRNIMESH GHOSE

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering
in the Graduate College of the
Illinois Institute of Technology

Approved
Advisor

Chicago, Illinois
May 2012

ACKNOWLEDGMENT

This dissertation would not have been possible without the ever-present guid-

ance and the constant help of some individuals who contributed in the best way

possible and extended their valuable assistance in the preparation and completion of

this research work.

First and foremost, my utmost gratitude and humble acknowledgement to

my mentor and adviser, Dr. Tricha Anjali, Associate Professor in the Electrical

and Computer Engineering Department, whose sincerity and encouragement I will

never forget. Dr. Anjali has been my inspiration as I hurdle all the obstacles in the

completion of this study.

I also thank Dr. Sanjeev Kapoor, Professor in Computer Science Department

at Illinois Institute of Technology, Chicago for his immense suggestions towards the

findings in my thesis work.

My special thanks to Dr. Kui Ren, Dr. Ken Zdunek and Dr.Jafar Saniie, for

being in the thesis committee and providing necessary guidance and insights whenever

needed.

Last but not the least, my mother Dr. Ranjana Ghose and the One above all

of us, the omnipresent GOD for answering my prayers, for giving me strength to plod

on amidst every difficulties that came in the way.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . iii

LIST OF FIGURES . vii

ABSTRACT . viii

CHAPTER

1. INTRODUCTION . 1

1.1. Overview . 1
1.2. Multipath Transmission Control Protocol 1
1.3. NS-3 . 3

2. MULTIPATH TRANSMISSION CONTROL PROTOCOL . . . 5

2.1. Main Mechanisms . 5
2.2. Connection Establishment 6
2.3. Subflow Initiation . 6
2.4. MPTCP Code Decription 6

3. MPTCP CONGESTION CONTROL 9

3.1. Uncoupled TCP . 10
3.2. Linked Increase . 10
3.3. Fully Coupled . 10
3.4. RTT Compensation . 11

4. PACKET REORDEING TECHNIQUES 12

4.1. DSACK Algorithm . 12
4.2. Eifel Algorithm . 13
4.3. F-RTO Algorithm . 13

5. RESULT . 16

5.1. Topology 1 . 16
5.2. Topology 2 . 18
5.3. Topology 3 . 20
5.4. Topology 4 . 23

6. FUTURE WORK AND CONCLUSION 26

6.1. Heuristic Packet Scheduling Algorithm 26
6.2. Conclusion . 26

iv

APPENDIX . 27

A. MPTCP CODE FOR NS-3.6 27

B. ECMP . 35

BIBLIOGRAPHY . 48

v

LIST OF FIGURES

Figure Page

1.1 Software organization of ns-3 3

2.1 Multipath TCP connection establishment 7

2.2 Multipath TCP subflow initiation 7

4.1 DSACK Algorithm . 13

4.2 Eifel Algorithm . 14

5.1 Topology 1 . 17

5.2 Throughput of (a) Uncoupled TCP with No Packet Reordering and
(b) RTT Compensator with DSACK 17

5.3 (a) Throughput and (b) RTT of RTT Compensator with FRTO . 17

5.4 Topology 2 . 19

5.5 Throughput of (a) Uncoupled TCP with No Packet Reordering and
(b) RTT Compensator with DSACK 19

5.6 (a) Throughput and (b) RTT of RTT Compensator with FRTO . 19

5.7 Topology 3 . 21

5.8 Throughput of RTT Compensator with FRTO for (a) 1st Client
Server (b) 2nd Client Server 21

5.9 Throughput of Uncoupled TCP with No Packet Reordering for (a)
1st Client Server (b) 2nd Client Server 22

5.10 Throughput of RTT Compensator with DSACK for (a) 1st Client
Server (b) 2nd Client Server 22

5.11 RTT for RTT Compensator with DSACK for (a) 1st Client Server
(b) 2nd Client Server . 22

5.12 Topology 4 . 24

5.13 Throughput of RTT Compensator with FRTO for (a) 1st Client
Server (b) 2nd Client Server 24

5.14 Throughput of Uncoupled TCP with No Packet Reordering for (a)
1st Client Server (b) 2nd Client Server 25

5.15 Throughput of RTT Compensator with DSACK for (a) 1st Client
Server (b) 2nd Client Server 25

vi

5.16 RTT for RTT Compensator with DSACK for (a) 1st Client Server
(b) 2nd Client Server . 25

vii

ABSTRACT

Increase in number of connectivity to internet lead to the development of

Multipath Transmission Control Protocol or MPTCP. MPTCP, as proposed by the

IETF working group mptcp, allows a single data stream to be split across multiple

path. This has obvious benefits for reliability, and it can also lead to more efficient

use of networked resources. But major problem in MPTCP is the congestion control

and packet reordering at the destination. Congestion control for MPTCP is given by

the Wischik et al. [9]. But the packet reordering at the destination is not considering

which can drastically affect the throughput for the protocol. Therefore, in this work

various available packet reordering techniques available for single path TCP are tested

for multipath situation. These algorithms are Duplicate Selective Acknowledgement

or DSACK, Eifel and Forward Retransmission Timeout or FRTO. A simple topology

is simulated in NS-3 and measurement is taken for various path characteristics to see

which algorithm works best for the multipath scenario.

viii

CHAPTER 1

INTRODUCTION

MPTCP, as proposed by the IETF working group mptcp, allows a single data

stream to be split across multiple path. This has obvious benefits for reliability, and

it can also lead to more efficient use of networked resources.

1.1 Overview

Earlier connections generally had only one path to transfer data from source

to destination. For the level 3 Transmission Control Protocol was developed. It helps

to form a virtual connection between source and destination on level 3 for transfer

of data in form of packets. But with advent of new mobile devices which have more

than one connections between the source and destination like Ethernet, WiFi, 3G

or 4G. Newer technology was required to use them at the same time to improve the

throughput. For instance, laptops have usually at least both a wired (Ethernet) and

a wireless (WiFi) network adapters. Similarly smartphones and tablet PCs can reach

the Internet either through WiFi or through a cellular network (UMTS or 3G+). This

lead internet task force to develop the Multipath Transmission Control Protocol or

MPTCP [9].

A lot of studies have considered the implementation of multipath capabilities

at different layers: at the application layer [2], at the transport layer [3] [8], etc. The

last two references shows that transport layer can be the best layer to implement the

multipath protocol.

1.2 Multipath Transmission Control Protocol

Multipath transport protocols have the potential to greatly improve the per-

formance and resilience of Internet traffic flows. The basic idea is that if flows are

able to simultaneously use more than one path through the network, then they will

be more resilient to problems on particular paths (e.g. transient problems on a radio

interface), and they will be able to pool capacity across multiple links. These multiple

paths might be obtained for example by sending from multiple interfaces, or sending

to different IP addresses of the same host, or by some form of explicit path control.

The design of Multipath-capable flows should be such that they shift their

traffic from congested paths to uncongested paths, hence the Internet will be better

able to accommodate localized surges in traffic and use all available capacity. Mul-

tipath congestion control is that the source and destination take on a role that is

normally associated with routing, namely moving traffic onto paths that avoid con-

gestion hotspots. When a flow shifts its traffic onto less congested paths, then the

loss rate on the less congested path will increase and that on the more congested path

will decrease; the overall outcome with many multipath flows is that the loss rates

across an interconnected network of paths will tend to equalize. This is a form of

load balancing, or more generally resource pooling [8].

Multipath congestion control should be designed to achieve a fair allocation

of resources. For example, if a multipath flow has four paths available and they all

happen to go through the same bottleneck link, and if we simply run TCPs congestion

avoidance independently on each path, then this flow will grab four times as much

bandwidth as it should. In fact, the very idea of shifting traffic from one path to

another in the previous paragraph presupposes that there is some fair total traffic

rate, and that extra traffic on one path should be compensated for by less traffic on the

other. The problem of fairness is made even harder by round-trip-time dependence.

In multipath context, packets may also arrive out-of-sequence as the different

paths may have different characteristics (especially the end-to-end delay), or conges-

tion state (and then different queuing delays). The out-of-sequence arrival will create

a problem for MPTCP while re-assembling packets at the connection level, and not

at the subflow level because subflows are independent.

1.3 NS-3

Network Simulator-3 [6] is a discrete-event network simulator in which the

simulation core and models are implemented in C++. NS-3 is built as a library

which may be statically or dynamically linked to a C++ main program that defines

the simulation topology and starts the simulator. NS-3 also exports nearly all of its

API to Python, allowing Python programs to import an NS3 module in much the

same way as the NS-3 library is linked by executables in C++. The NS-3 project

is committed to building a solid simulation core that is well documented, easy to

use and debug, and that caters to the needs of the entire simulation workflow, from

simulation configuration to trace collection and analysis.

Figure 1.1. Software organization of ns-3

Furthermore, the NS-3 software infrastructure encourages the development of

simulation models which are sufficiently realistic to allow NS-3 to be used as a realtime

network emulator, interconnected with the real world and which allows many existing

real-world protocol implementations to be reused within NS-3. The ns-3 simulation

core supports research on both IP and non-IP based networks. However, the large

majority of its users focuses on wireless/IP simulations which involve models for Wi-

Fi, WiMAX, or LTE for layers 1 and 2 and a variety of static or dynamic routing

protocols such as OLSR and AODV for IP-based applications.

NS-3 also supports a real-time scheduler that facilitates a number of ”simulation-

in-the-loop” use cases for interacting with real systems. For instance, users can emit

and receive NS-3-generated packets on real network devices, and NS-3 can serve as

an interconnection framework to add link effects between virtual machines. Another

emphasis of the simulator is on the reuse of real application and kernel code. Frame-

works for running unmodified applications or the entire Linux kernel networking stack

within NS-3 are presently being tested and evaluated.

CHAPTER 2

MULTIPATH TRANSMISSION CONTROL PROTOCOL

Multipath Transmission Control Protocol (MPTCP) is a future internet de-

sign which effectively make use of simultaneous multiple paths on the transport layer

to transfer data between end nodes. Although present day protocols like TCP Santa

Cruz do make use of multi homing to get data across between end nodes, they have

certain limitations like usage of single paths at any given moment of time or com-

patibility with middleboxes. In such circumstances Multipath TCP, essentially used

for rate control, promised to be a better alternative. The fact that it is not a TCP

alternative but an extension to present day TCP itself should be an added advantage.

2.1 Main Mechanisms

The transport layer in Multipath TCP is divided into two sub layers. The

upper layer collects the functionalities for connection management (establishing con-

nections, reordering packets, closing connection etc.). The lower layer controls a set

of sub-flows that can be seen each as one single TCP flow. Multipath TCP also man-

ages two spaces of sequence number, one for each sub-layer. Like standard TCP, each

subflow has its own sequence space which identifies bytes within a subflow. At the

connection level, another sequence space is used to reorder the TCP segments before

sending them to the Application layer. The Multipath TCP protocol uses new TCP

options to exchange signaling information between peers [1]:

• MPC (Multipath Capable) is used during the three-way handshake to establish

a MultipathTCP connection.

• DATA FIN is used to inform the remote peer of the end of data and to close

the multipath TCP connections.

• ADD and Remove address are used to inform the remote peer of the availability

of a new address or to ask it to ignore an existing one.

• JOIN is used to initiate a new subflow between a not already used couple of

addreses.

• DSN (Data Sequence Number) is used to map between the subflow level and

the data sequence space number.

2.2 Connection Establishment

The source application sends a Connect call, the transport layer establishes

a connection with the destination peer which was waiting for receiving connection

requests. The establishment is TCP-like (three way handshake) with the use of Mul-

tipath Capable option to inform the destination that the source is capable of ex-

changing data using Multipath TCP. To initiate a new subflow, the peers must first

exchange their additional IP addresses. The current Multipath TCP draft does not

specify how the exchange happens. Maybe additional segments are send having the

ADDR (Add address) [1] option to establishment of the Multipath TCP connection.

2.3 Subflow Initiation

Figure 3 shows the initiation of a new subflow and the presence of a JOIN in

a SYN segment. To maximize the chance that the subflow under initiation takes a

path which is disjoint with previously established path, each IP address is only used

by one subflow.

2.4 MPTCP Code Decription

The basic code used to implement using code from [5]. Then I made made

changes in the code to implement new techniques and topologies. Main Parts of the

MPTCP code are:

• MpTcpSocketImpl is a subclass of NS-3 class TcpSocketImpl. It provides to

Figure 2.1. Multipath TCP connection establishment

Figure 2.2. Multipath TCP subflow initiation

the application layer a MPTCP API (connect, bind, etc.) to manage Multipath

TCP connection. It also implements the packet reordering algorithms described

previously.

• MpTcpL4Protocol is a subclass of the NS-3 class TcpL4Protocol. It is an

interface between the multipath transport layer and network layer.

• MpTcpSubflow represent a subflow of a MPTCP connection.

• MpTcpHeader is subclass TcpHeader. An instance of this class is a TCP

Header that can handle operation like TimeStamp, MPC, etc.

CHAPTER 3

MPTCP CONGESTION CONTROL

Different congestion control algorithms are needed for Multipath TCP, as sin-

gle path algorithms have a series of issues in the multipath context. One of the

prominent problem is that running existing algorithms such as standard TCP inde-

pendently on each path would give the multipath flow more than its fair share at a

bottleneck link traversed by more than one of its subflow. Further, it is desirable

that a source with multiple paths available will transfer more traffic using the least

congested of the paths, achieving a property called resource pooling where a bundle

of links effectively behaves like one shared link with bigger-capacity.

Bottleneck fairness is just one requirement multipath congestion control should

meet. The following three goals as per IETF draft capture the desirable properties

of a practical multipath congestion control algorithm:

• Goal 1 (Improve Throughput): A multipath flow should perform at least as well

as a single path flow would on the best of the paths available to it.

• Goal 2 (Do no harm): A multipath flow should not take uo more capacity from

any of the resources shared by its different paths, than if it was a single flow

using only one of these paths. This guarantees it will not unduly harm other

flows.

• Goal 3 (Balance congestion): A multipath flow should move as much traffic as

possible off its most congested paths, subject to meeting first two goals.

Goals 1 and 2 together ensure fairness at the bottleneck. Goal 3 captures the

concept of resource pooling.

3.1 Uncoupled TCP

This is the normal TCP with additive increase and multiplicative decrease. At

the start of a connection, an exponential increase is used, as it is immediately after a

retransmission timeout.

• Increase wr by 1/wr per ack on path r.

• Decrease wr by wr/2 per loss event on path r.

3.2 Linked Increase

In this algorithm [10] the increase of the congestion window size depend on the

α which is calculated according to the formula given in above equation. The decrease

in the congestion window size is same as normal TCP.

• Increase wr by α/wr per ack on path r

• Decrease wr by wr/2 per loss event on path r

α = ŵ(
maxr

√
ŵr/RTTr

Σrŵr/RTTr

)2 (3.1)

3.3 Fully Coupled

This algorithm [10] uses the increase of congestion window size according to

normal TCP. While the decrease in the congestion window is dependent on the total

window size of all the subflows.

• Increase wr by (1/w) per ack on path r.

• Decrease wr to max(wr −w/b, 1) per loss event on path r; if there is truncation

then do a timeout but no slow-start; use b = 2 to mimic TCP.

3.4 RTT Compensation

A connection consists of set of subflows R, which may take a different route

through the Internet. Each subflow r R maintains its own congestion window. This

algorithm as proposed in [10] is used in the MPTCP congestion control as per RFC

by Internet Task Force.

• Increase wr by min(α/w, 1/wr) per ack on path r.

• Decrease wr to wr/2 per loss event on path r

α = ŵ(
maxr

√
ŵr/RTTr

Σrŵr/RTTr

)2 (3.2)

CHAPTER 4

PACKET REORDEING TECHNIQUES

Standard TCP has jitter with large packets in network. This means that when

the end to end delay vary a lot, packets may arrive out of sequence. This may be case

for example for wireless network, the mobile devices may change the used hotspot

for accessing the Internet. The reordering of a packet makes the receiver responding

with duplicated acknowledgements, and this may induce the sender to infer wrongly

a packet loss and do re-transmission. To avoid this problem and to distinguish clearly

between packet losses due to congestion in the network and reordering due to trans-

mission jitter, many mechanism are proposed in TCP. But all these mechanism are

for a single path TCP transmission. Thus it requires a testing of all these mechanism

which can be used in the multipath TCP scenario.

In multipath context, packets may also arrive out-of-sequence as the different

paths may have different characteristics such as data rate and end-to-end delay or

congestion state. The out-of-sequence arrival will create a problem for MPTCP while

re-assembling packets at the connection level, and nit at the subflow level because

subflows are independent.

4.1 DSACK Algorithm

This algorithm [11]is based on the SACK (Selective Acknowledgement) option.

At the reception of a segment that creates a hole in the sequence numbers, the

receiver sends back a duplicated acknowledgement containing a SACK option. The

first block in the SACK option refers to the segment which triggers this duplicated

acknowledgements. After three duplicated acknowledgements, the sender retransmits

the missing segments, saves the congestion window value, and then enters a congestion

avoidance phase. After that, when the sender detects that the retransmission segment

was acknowledged twice, it infers a spurious retransmission and begin a DSACK slow

start to the stored congestion windows value.

Figure 4.1. DSACK Algorithm

4.2 Eifel Algorithm Acoording to the algorithm [4] the sender inserts a TCP

timestamp option in each transmitted segment, and the receiver inserts the timestamp

value of the received segment in the corresponding acknowledgement. In case of

loss, the sender saves the values of current congestion window and the slow start

threshold. Then the sender retransmits the missing segment and stores its timestamp

value. When the sender receives as acknowledgment for a retransmitted segment, it

compares the saved timestamp value with the one inserted in the acknowledgement.

If the first one is greater then the retransmission is considered spurious and the values

of current congestion window and slow start threshold are restored.

4.3 F-RTO Algorithm

The guideline behind Forward Retransmission Timeout Recovery Algorithm

Figure 4.2. Eifel Algorithm

[7] is, that an Retransmission Timeout either indicates a loss, or it is caused by

excessive delay in packet delivery while there still are outstanding segments in flight.

If the RTO was due to delay, i.e. the RTO was spurious, acknowledgements for non-

retransmitted segments sent before the RTO should arrive at the sender after the

RTO occurred.

When the retransmission timer expires, the F-RTO algorithm takes the fol-

lowing steps at the TCP sender. In the algorithm description below:

• When the retransmission timer expires, retransmit the segment that triggered

the timeout.

• When the first acknowledgement after RTO arrives at the sender, the sender

chooses the following actions depending in whether the ACK advances the win-

dow or whether it is a duplicate ACK.

– If the acknowledgement advances SND.UNA (send unacknowledged), trans-

mit up to two new (previously unsent) segments.

– If the acknowledgment is duplicate ACK, set the congestion window to one

segment and proceed with the conventional RTO recovery.

• When the second acknowledgment after the RTO arrives, either continue trans-

mitting new data, or start retransmission with the slow start algorithm, de-

pending on whether data was acknowledged.

– If the acknowledgement advances SND.UNA, continue transmitting new

data following the congestion avoidance algorithm.

– If the acknowledgement is a duplicate ACK, set congestion window to

three segments, continue with the slow start algorithm retransmitting un-

acknowledged segments.

CHAPTER 5

RESULT

There are three main topologies on which we tested the various congestion

control and packet reordering techniques that are already present. We have used

Equal Cost MultiPath (ECMP) in the topology 2 and topology 3 to route the packets

in various subflow available. In all topologies a 10mb of data is sent with sender

buffer as 14kb and reciever buffer as 20kb. Equal Cost MultiPath is a ipv4 routing

which calculates all the path available. We have used it to recalculate the routing

table every 0.01ms.

5.1 Topology 1

In this topology there is direct connection between clent and server. There

are three subflows namely Subflow 0, Subflow 1 and Subflow 2. The links are 2mbps,

5 mbps and 7 mbps respectively with each having path delay of 100 ms.The worst

result is obtained by UncoupledTCP congestion control and no packet reordering and

best result is obtained by RTT Compensator congestion control and FRTO packet

reordering.

Figure 5.1. Topology 1

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t

Time

Uncoupled_TCP

Subflow_0
Subflow_1
Subflow_2

(a)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t

Time

RTTCompensator

Subflow0
Subflow1
Subflow2

(b)

Figure 5.2. Throughput of (a) Uncoupled TCP with No Packet Reordering and (b)
RTT Compensator with DSACK

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t

Time

RTTCompensator

Subflow0
Subflow1
Subflow2

(a)

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160

R
T

T

Time

RTTCompensator

Subflow0
Subflow1
Subflow2

(b)

Figure 5.3. (a) Throughput and (b) RTT of RTT Compensator with FRTO

5.2 Topology 2

In this topology there are two intermediate nodes between clent and server.

There are two subflows namely Subflow 0 and Subflow 1. In this all the links are

5mbps and have path delay of 100ms. All the links are in differen subnets. ECMP

is introduced in this to route packets. The worst result is obtained by Uncou-

pledTCP congestion control and no packet reordering and best result is obtained

by RTT Compensator congestion control and FRTO packet reordering.

Figure 5.4. Topology 2

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t

Time

Uncoupled_TCP

Subflow_0
Subflow_1

(a)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t

Time

RTT_Compensator

Subflow_0
Subflow_1

(b)

Figure 5.5. Throughput of (a) Uncoupled TCP with No Packet Reordering and (b)
RTT Compensator with DSACK

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t

Time

RTT_Compensator

Subflow_0
Subflow_1

(a)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 10 20 30 40 50 60 70

R
T

T

Time

RTTCompensator

Subflow0
Subflow1

(b)

Figure 5.6. (a) Throughput and (b) RTT of RTT Compensator with FRTO

5.3 Topology 3

In this topology there are a pair of client and servers which have one subflow

going with two nodes and a link in common. While the other subflow is direct. ECMP

is used in this so the total subflow delay is assumed to be same. Hence, all links have

data rate of 5 mbps with direct links having path delay of 120 ms and other links with

40 ms path delay. The best is obtained with RTT Compensator congestion control

with DSACK packet reordering. While worst is with RTT Compensator congestion

control with FRTO.

Figure 5.7. Topology 3

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t

Time

RTT Compensator 2nd Client Server Pair

Subflow_0
Subflow_1

(a)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t

Time

RTT Compensator 2nd Client Server Pair

Subflow_0
Subflow_1

(b)

Figure 5.8. Throughput of RTT Compensator with FRTO for (a) 1st Client Server
(b) 2nd Client Server

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t

Time

Uncoupled TCP 1st Client Server Pair

Subflow_0
Subflow_1

(a)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 5 10 15 20 25

T
hr

ou
gh

pu
t

Time

Uncoupled TCP 2nd Client Server Pair

Subflow_0
Subflow_1

(b)

Figure 5.9. Throughput of Uncoupled TCP with No Packet Reordering for (a) 1st
Client Server (b) 2nd Client Server

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Time

RTT Compensator 1st Client Server Pair

Subflow_0
Subflow_1

(a)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Time

RTT Compensator 2nd Client Server Pair

Subflow_0
Subflow_1

(b)

Figure 5.10. Throughput of RTT Compensator with DSACK for (a) 1st Client Server
(b) 2nd Client Server

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 2 4 6 8 10 12 14 16 18 20

R
T

T

Time

RTT Compensator 1st Client Server Pair

Subflow0
Subflow1

(a)

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 2 4 6 8 10 12 14 16 18 20

R
T

T

Time

RTT Compensator 2nd Client Server Pair

Subflow0
Subflow1

(b)

Figure 5.11. RTT for RTT Compensator with DSACK for (a) 1st Client Server (b)
2nd Client Server

5.4 Topology 4

In this topology there are a pair of client and servers which have pair of sub-

flows going with two nodes and a link in common. While the other subflow is direct.

ECMP is used in this so the total subflow delay is assumed to be same. Hence, all

links have data rate of 5 mbps with direct links having path delay of 120 ms and other

links with 40 ms path delay. The best is obtained with RTT Compensator congestion

control with DSACK packet reordering. While worst is with RTT Compensator con-

gestion control with FRTO. This topology shows a bug with the mptcp code as we

see there are three subflows but we get results which shows it is using two subflows.

Figure 5.12. Topology 4

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t

Time

RTT Compensator 1st Client Server

Subflow0
Subflow1

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 50 100 150 200 250

T
hr

ou
gh

pu
t

Time

RTT Compensator 2nd Client Server

Subflow0
Subflow1

(b)

Figure 5.13. Throughput of RTT Compensator with FRTO for (a) 1st Client Server
(b) 2nd Client Server

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Time

Uncoupled TCP 1st Client Server

Subflow0
Subflow1

(a)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Time

Uncoupled TCP 2nd Client Server

Subflow0
Subflow1

(b)

Figure 5.14. Throughput of Uncoupled TCP with No Packet Reordering for (a) 1st
Client Server (b) 2nd Client Server

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Time

RTT Compensator 1st Client Server

Subflow0
Subflow1

(a)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Time

RTT Compensator 2nd Client Server

Subflow0
Subflow1

(b)

Figure 5.15. Throughput of RTT Compensator with DSACK for (a) 1st Client Server
(b) 2nd Client Server

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0 2 4 6 8 10 12 14 16 18 20

R
T

T

Time

RTT Compensator 1st Client Server

Subflow0
Subflow1

(a)

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0 2 4 6 8 10 12 14 16 18 20

R
T

T

Time

RTT Compensator 2nd Client Server

Subflow0
Subflow1

(b)

Figure 5.16. RTT for RTT Compensator with DSACK for (a) 1st Client Server (b)
2nd Client Server

CHAPTER 6

FUTURE WORK AND CONCLUSION

In future work I propose a heuristic packet scheduling algorithm which can be

implemented on the sender side to receive packets in order on the receiver side.

6.1 Heuristic Packet Scheduling Algorithm

• Send (Current + |delay1 − delay2| + 1) packet number with maximum trans-

mission unit (mtu) bytes on the slower link first.

• Send (|delay1−delay2|+1) number of packets each with (mtu)/(|delay1 − delay2| + 1)

bytes on the faster link.

• Send Cumulative Acknowledge on the faster link.

• Buffer on the receiver side save packets received.

• In case of loss of packet send the packet on slower or faster link as the size of

the packet and it is rearranged on the receiver side,

6.2 Conclusion

In this work, we described the architecture and implementation of the mul-

tipath transmission control protocol (MPTCP) in ns-3.6, with various congestion

control algorithms and packet reordering algorithms. We also presented the through-

put and round trip time for various topologies using different congestion control and

packet reordering algorithms. Our evaluation focused on two key performance aspects:

congestion control and packet reordering. The validation of our implementation is

supported by the results of our simulation model. We found out that congestion

control algorithm given by IETF namely, RTT Compensator and packer reordering

technique F-RTO gives good results but not the best results. Therefor, we propose

to find better algorithms for the same.

APPENDIX A

MPTCP CODE FOR NS-3.6

#include <iostream>

#include <sstream>

#include <string>

#include <vector>

#include ”ns3/core−module . h”

#include ”ns3/simulator−module . h”

#include ”ns3/node−module . h”

#include ”ns3/helper−module . h”

#include ”ns3/wifi−module . h”

#include ”ns3/mobility−module . h”

#include ”ns3/mp−internet−stack−helper . h”

#include ”ns3/mp−tcp−packet−sink . h”

#include ”ns3/mp−tcp−l4−protocol . h”

#include ”ns3/mp−tcp−socket−impl . h”

#include ”ns3/point−to−point−channel . h”

#include ”ns3/point−to−point−net−device . h”

using namespace ns3 ;

NS_LOG_COMPONENT_DEFINE (” FirstMultipathToplogy ”) ;

static const uint32_t totalTxBytes = 10000000;

static const uint32_t sendBufSize = 14000;

static const uint32_t recvBufSize = 2000;

static uint32_t currentTxBytes = 0 ;

static const double simDuration = 360000000 .0 ;

Ptr<Node> client ;

Ptr<Node> server ;

static const uint32_t writeSize = sendBufSize ;

uint8_t data [totalTxBytes] ;

Ptr<MpTcpSocketImpl> lSocket = 0 ;

void StartFlow (Ptr<MpTcpSocketImpl >, Ipv4Address , uint16_t) ;

void WriteUntilBufferFull (Ptr<Socket >, unsigned int) ;

void connectionSucceeded (Ptr<Socket >) ;

void connectionFailed (Ptr<Socket >) ;

void HandlePeerClose (Ptr<Socket >) ;

void HandlePeerError (Ptr<Socket >) ;

void CloseConnection (Ptr<Socket >) ;

int connect (Address &addr) ;

void variateDelay (PointToPointHelper P2Plink) ;

static void

CwndTracer (double oldval , double newval)

{
NS_LOG_INFO (” Moving cwnd from ” << oldval << ” to ” << newval) ;

}

int main (int argc , char �argv [])

{
bool verbose ;

CongestionCtrl_t cc = Linked_Increases ;

PacketReorder_t pr = F_RTO ;

int arg1 = −1, arg2 = −1, arg3 = −1, arg4 = −1;

int sf = 3 ; // number of subflows

CommandLine cmd ;

cmd . AddValue (” verbose ” , ”Tell application to l og i f true ” , verbose) ;

cmd . AddValue (” level ” , ”Tell application which log level to use :\ n \t − 0 = ←↩

ERROR \n \t − 1 = WARN \n \t − 2 = DEBUG \n \t − 3 = INFO \n \t − 4 = ←↩

FUNCTION \n \t − 5 = LOGIC \n \t − 6 = ALL ” , arg3) ;

cmd . AddValue (” cc ” , ”Tell application which congestion control algorithm to use←↩

:\ n \t − 0 = Uncoupled_TCPs \n \t − 1 = Linked_Increases \n \t − 2 = ←↩

RTT_Compensator \n \t − 3 = Fully_Coupled ” , arg1) ;

cmd . AddValue (” pr ” , ”Tell application which packet reordering algorithm to use :\←↩

n \t − 0 = NoPR_Algo \n \t − 1 = Eifel \n \t − 2 = TCP_DOOR \n \t − 3 = ←↩

D_SACK \n \t − 4 = F_RTO ” , arg2) ;

cmd . AddValue (” sf ” , ”Tell application the number of subflows to be established ←↩

between endpoints ” , arg4) ;

cmd . Parse (argc , argv) ;

cc = (arg1==−1 ? Linked_Increases : (CongestionCtrl_t) arg1) ;

pr = (arg2==−1 ? F_RTO : (PacketReorder_t) arg2) ;

sf = (arg4 = −1 ? 3 : arg4) ;

LogComponentEnable (” FirstMultipathToplogy ” , LOG_LEVEL_ALL) ;

i f (arg3 == 2)

LogComponentEnable (” MpTcpSocketImpl ” , LOG_DEBUG) ;

e l s e i f (arg3 == 6)

LogComponentEnable (” MpTcpSocketImpl ” , LOG_LEVEL_ALL) ;

e l s e

LogComponentEnable (” MpTcpSocketImpl ” , LOG_WARN) ;

LogComponentEnable (” MpTcpPacketSink ” , LOG_WARN) ;

LogComponentEnable (” MpTcpHeader ” , LOG_WARN) ;

NodeContainer nodes ;

nodes . Create (2) ;

client = nodes . Get (0) ;

server = nodes . Get (1) ;

MpInternetStackHelper stack ;

stack . Install (nodes) ;

vector<Ipv4InterfaceContainer> ipv4Ints ;

int i , j , k ;

f o r (i=0; i < sf−2; i++)

{
PointToPointHelper p2plink ;

p2plink . SetDeviceAttribute (” DataRate ” , StringValue (”2 Mbps ”)) ;

p2plink . SetChannelAttribute (” Delay ” , StringValue (”100 ms ”)) ;

NetDeviceContainer netDevices ;

netDevices = p2plink . Install (nodes) ;

s td : : stringstream netAddr ;

netAddr << ”10 . 1 . ” << (i+1) << ” . 0 ” ;

string str = netAddr . str () ;

Ipv4AddressHelper ipv4addr ;

ipv4addr . SetBase (str . c_str () , ”255 . 255 . 255 . 0”) ;

Ipv4InterfaceContainer interface = ipv4addr . Assign (netDevices) ;

ipv4Ints . insert (ipv4Ints . end () , interface) ;

}

f o r (j=i ; j < sf−1; j++)

{
PointToPointHelper p2plink ;

p2plink . SetDeviceAttribute (” DataRate ” , StringValue (”5 Mbps ”)) ;

p2plink . SetChannelAttribute (” Delay ” , StringValue (”100 ms ”)) ;

NetDeviceContainer netDevices ;

netDevices = p2plink . Install (nodes) ;

std : : stringstream netAddr ;

netAddr << ”10 . 1 . ” << (j+1) << ” . 0 ” ;

string str = netAddr . str () ;

Ipv4AddressHelper ipv4addr ;

ipv4addr . SetBase (str . c_str () , ”255 . 255 . 255 . 0”) ;

Ipv4InterfaceContainer interface = ipv4addr . Assign (netDevices) ;

ipv4Ints . insert (ipv4Ints . end () , interface) ;

}
f o r (k=j ; k < sf ; k++)

{
PointToPointHelper p2plink ;

p2plink . SetDeviceAttribute (” DataRate ” , StringValue (”7 Mbps ”)) ;

p2plink . SetChannelAttribute (” Delay ” , StringValue (”100 ms ”)) ;

NetDeviceContainer netDevices ;

netDevices = p2plink . Install (nodes) ;

s td : : stringstream netAddr ;

netAddr << ”10 . 1 . ” << (k+1) << ” . 0 ” ;

string str = netAddr . str () ;

Ipv4AddressHelper ipv4addr ;

ipv4addr . SetBase (str . c_str () , ”255 . 255 . 255 . 0”) ;

Ipv4InterfaceContainer interface = ipv4addr . Assign (netDevices) ;

ipv4Ints . insert (ipv4Ints . end () , interface) ;

}
PointToPointHelper : : EnablePcapAll (” mptcp ”) ;

uint32_t servPort = 5000;

NS_LOG_INFO (” address ” << ipv4Ints [0] . GetAddress (1)) ;

ObjectFactory m_sf ;

m_sf . SetTypeId (” ns3 : : MpTcpPacketSink ”) ;

m_sf . Set (” Protocol ” , StringValue (” ns3 : : TcpSocketFactory ”)) ;

m_sf . Set (” Local ” , AddressValue (InetSocketAddress (ipv4Ints [0] . GetAddress (1) , ←↩

servPort))) ;

m_sf . Set (” algopr ” , UintegerValue ((uint32_t) pr)) ;

Ptr<Application> sapp = m_sf . Create<Application> () ;

server−>AddApplication (sapp) ;

ApplicationContainer Apps ;

Apps . Add (sapp) ;

Apps . Start (Seconds (0 . 0)) ;

Apps . Stop (Seconds (simDuration)) ;

lSocket = new MpTcpSocketImpl (client) ;

lSocket−>SetCongestionCtrlAlgo (cc) ;

lSocket−>SetDataDistribAlgo (Round_Robin) ;

lSocket−>SetPacketReorderAlgo (pr) ;

lSocket−>Bind () ;

Config : : ConnectWithoutContext (”/ NodeList /0/ �ns3 : : MpTcpSocketImpl/subflows /0/←↩

CongestionWindow ” , MakeCallback (&CwndTracer)) ;

Simulator : : ScheduleNow (&StartFlow , lSocket , ipv4Ints [0] . GetAddress (1) , ←↩

servPort) ;

Simulator : : Stop (Seconds (simDuration + 1000 .0)) ;

Simulator : : Run () ;

Simulator : : Destroy () ;

NS_LOG_LOGIC (” mpTopology : : simulation ended ”) ;

r e turn 0 ;

}

void StartFlow (Ptr<MpTcpSocketImpl> localSocket , Ipv4Address servAddress , uint16_t ←↩

servPort)

{
NS_LOG_LOGIC (” Starting flow at time ” << Simulator : : Now () . GetSeconds ()) ;

lSocket−>SetMaxSubFlowNumber (5) ;

lSocket−>SetMinSubFlowNumber (3) ;

lSocket−>SetSourceAddress (Ipv4Address (” 1 0 . 1 . 1 . 1 ”)) ;

lSocket−>allocateSendingBuffer (sendBufSize) ;

lSocket−>allocateRecvingBuffer (recvBufSize) ;

lSocket−>SetunOrdBufMaxSize (50) ;

int connectionState = lSocket−>Connect (servAddress , servPort) ;

i f (connectionState == 0)

{
lSocket−>SetConnectCallback (MakeCallback (&connectionSucceeded) , ←↩

MakeCallback (&connectionFailed)) ;

lSocket−>SetDataSentCallback (MakeCallback (&WriteUntilBufferFull)) ;

lSocket−>SetCloseCallbacks (MakeCallback (&HandlePeerClose) , MakeCallback(&←↩

HandlePeerError)) ;

lSocket−>GetSubflow (0)−>StartTracing (” CongestionWindow ”) ;

} e l s e

{
NS_LOG_LOGIC (” mpTopology : : connection failed ”) ;

}
}

void connectionSucceeded (Ptr<Socket> localSocket)

{
NS_LOG_INFO (” mpTopology : Connection requeste succeed ”) ;

Simulator : : Schedule (Seconds (1 . 0) , &WriteUntilBufferFull , lSocket , 0) ;

Simulator : : Schedule (Seconds (simDuration) , &CloseConnection , lSocket) ;

}

void connectionFailed (Ptr<Socket> localSocket)

{
NS_LOG_INFO (” mpTopology : Connection requeste failure ”) ;

lSocket−>Close () ;

}

void HandlePeerClose (Ptr<Socket> localSocket)

{
NS_LOG_INFO (” mpTopology : Connection closed by peer ”) ;

lSocket−>Close () ;

}

void HandlePeerError (Ptr<Socket> localSocket)

{
NS_LOG_INFO (” mpTopology : Connection closed by peer e r r o r ”) ;

lSocket−>Close () ;

}

void CloseConnection (Ptr<Socket> localSocket)

{
lSocket−>Close () ;

NS_LOG_LOGIC (” mpTopology : : currentTxBytes = ” << currentTxBytes) ;

NS_LOG_LOGIC (” mpTopology : : totalTxBytes = ” << totalTxBytes) ;

NS_LOG_LOGIC (” mpTopology : : connection to remote host has been closed ”) ;

}

void variateDelay (Ptr<Node> node)

{

Ptr<Ipv4L3Protocol> ipv4 = node−>GetObject<Ipv4L3Protocol> () ;

TimeValue delay ;

f o r (uint32_t i = 0 ; i < ipv4−>GetNInterfaces () ; i++)

{
Ptr<Ipv4Interface> interface = ipv4−>GetInterface (i) ;

Ipv4InterfaceAddress interfaceAddr = interface−>GetAddress (0) ;

i f (interfaceAddr . GetLocal () == Ipv4Address : : GetLoopback ())

{
continue ;

}

Ptr<NetDevice> netDev = interface−>GetDevice () ;

Ptr<Channel> P2Plink = netDev−>GetChannel () ;

P2Plink−>GetAttribute (string (” Delay ”) , delay) ;

double oldDelay = delay . Get () . GetSeconds () ;

s td : : stringstream strDelay ;

double newDelay = (rand () \% 100) � 0 . 0 0 1 ;

double err = newDelay − oldDelay ;

strDelay << (0 . 95 � oldDelay + 0.05 � err) << ”s ” ;

P2Plink−>SetAttribute (string (” Delay ”) , StringValue (strDelay . str ())) ;

P2Plink−>GetAttribute (string (” Delay ”) , delay) ;

}
}

void WriteUntilBufferFull (Ptr<Socket> localSocket , unsigned int txSpace)

{
whi le (currentTxBytes < totalTxBytes && lSocket−>GetTxAvailable () > 0)

{
uint32_t left = totalTxBytes − currentTxBytes ;

uint32_t toWrite = std : : min (writeSize , lSocket−>GetTxAvailable ()) ;

toWrite = std : : min (toWrite , left) ;

int amountBuffered = lSocket−>FillBuffer (&data [currentTxBytes] , toWrite) ;

currentTxBytes += amountBuffered ;

// variateDelay (client) ;

lSocket−>SendBufferedData () ;

}

}

APPENDIX B

ECMP

Equal-cost multi-path routing(ECMP) is ato a single destination can occur

over multiple best paths which tie for top place in routing metric calculations. Mul-

tipath routing can be used in conjunction with most routing protocols, since it is a

per-hop decision that is limited to a single router. It potentially offers substantial

increases in bandwidth by load-balancing traffic over multiple paths. Change in file

ipv4-global-routing.cc:

// −�− Mode : C++; c−file−style : ”gnu ” ; indent−tabs−mode : nil ; −�−
//

// Copyright (c) 2008 University of Washington

//

// This program is free software ; you can redistribute it and/or modify

// it under the terms of the GNU General Public License ve r s i on 2 as

// published by the Free Software Foundation ;

//

// This program is distributed in the hope that it will be useful ,

// but WITHOUT ANY WARRANTY ; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the

// GNU General Public License f o r more details .

//

// You should have received a copy of the GNU General Public License

// along with this program ; i f not , write to the Free Software

// Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111−1307 USA

//

#include ”ns3/ log . h”

#include ”ns3/object . h”

#include ”ns3/packet . h”

#include ”ns3/net−device . h”

#include ”ns3/ipv4−route . h”

#include ”ns3/ipv4−routing−table−entry . h”

#include ”ns3/boolean . h”

#include ”ipv4−g loba l−routing . h”

#include <vector>

NS_LOG_COMPONENT_DEFINE (” Ipv4GlobalRouting ”) ;

namespace ns3 {

NS_OBJECT_ENSURE_REGISTERED (Ipv4GlobalRouting) ;

TypeId

Ipv4GlobalRouting : : GetTypeId (void)

{
static TypeId tid = TypeId (” ns3 : : Ipv4GlobalRouting ”)

. SetParent<Object> ()

. AddAttribute (” RandomEcmpRouting ” ,

”Set to true i f packets are randomly routed among ECMP ; s e t to ←↩

false f o r using only one route consistently ” ,

BooleanValue (true) ,

MakeBooleanAccessor (&Ipv4GlobalRouting : : m_randomEcmpRouting) ,

MakeBooleanChecker ()) ;

r e turn tid ;

}

Ipv4GlobalRouting : : Ipv4GlobalRouting ()

: m_randomEcmpRouting (true)

{
NS_LOG_FUNCTION_NOARGS () ;

}

Ipv4GlobalRouting : : ˜ Ipv4GlobalRouting ()

{
NS_LOG_FUNCTION_NOARGS () ;

}

void

Ipv4GlobalRouting : : AddHostRouteTo (Ipv4Address dest ,

Ipv4Address nextHop ,

uint32_t interface)

{
NS_LOG_FUNCTION (dest << nextHop << interface) ;

Ipv4RoutingTableEntry �route = new Ipv4RoutingTableEntry () ;

�route = Ipv4RoutingTableEntry : : CreateHostRouteTo (dest , nextHop , interface) ;

m_hostRoutes . push_back (route) ;

}

void

Ipv4GlobalRouting : : AddHostRouteTo (Ipv4Address dest ,

uint32_t interface)

{
NS_LOG_FUNCTION (dest << interface) ;

Ipv4RoutingTableEntry �route = new Ipv4RoutingTableEntry () ;

�route = Ipv4RoutingTableEntry : : CreateHostRouteTo (dest , interface) ;

m_hostRoutes . push_back (route) ;

}

void

Ipv4GlobalRouting : : AddNetworkRouteTo (Ipv4Address network ,

Ipv4Mask networkMask ,

Ipv4Address nextHop ,

uint32_t interface)

{
NS_LOG_FUNCTION (network << networkMask << nextHop << interface) ;

Ipv4RoutingTableEntry �route = new Ipv4RoutingTableEntry () ;

�route = Ipv4RoutingTableEntry : : CreateNetworkRouteTo (network ,

networkMask ,

nextHop ,

interface) ;

m_networkRoutes . push_back (route) ;

}

void

Ipv4GlobalRouting : : AddNetworkRouteTo (Ipv4Address network ,

Ipv4Mask networkMask ,

uint32_t interface)

{
NS_LOG_FUNCTION (network << networkMask << interface) ;

Ipv4RoutingTableEntry �route = new Ipv4RoutingTableEntry () ;

�route = Ipv4RoutingTableEntry : : CreateNetworkRouteTo (network ,

networkMask ,

interface) ;

m_networkRoutes . push_back (route) ;

}

void

Ipv4GlobalRouting : : AddASExternalRouteTo (Ipv4Address network ,

Ipv4Mask networkMask ,

Ipv4Address nextHop ,

uint32_t interface)

{
NS_LOG_FUNCTION (network << networkMask << nextHop) ;

Ipv4RoutingTableEntry �route = new Ipv4RoutingTableEntry () ;

�route = Ipv4RoutingTableEntry : : CreateNetworkRouteTo (network ,

networkMask ,

nextHop ,

interface) ;

m_ASexternalRoutes . push_back (route) ;

}

Ptr<Ipv4Route>

Ipv4GlobalRouting : : LookupGlobal (Ipv4Address dest)

{
NS_LOG_FUNCTION_NOARGS () ;

NS_LOG_LOGIC (” Looking f o r route f o r destination ” << dest) ;

Ptr<Ipv4Route> rtentry = 0 ;

Ipv4RoutingTableEntry � route = 0 ;

// store a l l available routes that bring packets to their destination

typedef std : : vector<Ipv4RoutingTableEntry�> RouteVec_t ;

RouteVec_t allRoutes ;

NS_LOG_LOGIC (” Number of m_hostRoutes = ” << m_hostRoutes . s i z e ()) ;

f o r (HostRoutesCI i = m_hostRoutes . begin () ;

i != m_hostRoutes . end () ;

i++)

{
NS_ASSERT ((� i)−>IsHost ()) ;

i f ((� i)−>GetDest () . IsEqual (dest))

{
allRoutes . push_back (� i) ;

NS_LOG_LOGIC (allRoutes . s i z e () << ”Found g l oba l host route” << �i) ;

}
}

i f (allRoutes . s i z e () == 0) // i f no host route is found

{
NS_LOG_LOGIC (” Number of m_networkRoutes” << m_networkRoutes . s i z e ()) ;

f o r (NetworkRoutesI j = m_networkRoutes . begin () ;

j != m_networkRoutes . end () ;

j++)

{
NS_ASSERT ((� j)−>IsNetwork () | | (� j)−>IsDefault ()) ;

Ipv4Mask mask = (� j)−>GetDestNetworkMask () ;

Ipv4Address entry = (� j)−>GetDestNetwork () ;

i f (mask . IsMatch (dest , entry))

{
allRoutes . push_back (� j) ;

NS_LOG_LOGIC (allRoutes . s i z e () << ”Found g l oba l network route ” << �j←↩

) ;

}
}

}
i f (allRoutes . s i z e () == 0) // consider external i f no host/network found

{
f o r (ASExternalRoutesI k = m_ASexternalRoutes . begin () ;

k != m_ASexternalRoutes . end () ;

k++)

{
Ipv4Mask mask = (� k)−>GetDestNetworkMask () ;

Ipv4Address entry = (� k)−>GetDestNetwork () ;

i f (mask . IsMatch (dest , entry))

{
NS_LOG_LOGIC (” Found external route” << �k) ;

route = (� k) ;

allRoutes . push_back (� k) ;

break ;

}
}

}
i f (allRoutes . s i z e () > 0) // i f route (s) is found

{
// pick up one of the routes uniformly at random i f random

// ECMP routing is enabled , or always select the first route

// consistently i f random ECMP routing is disabled

uint32_t selectIndex ;

i f (m_randomEcmpRouting)

{
selectIndex = m_rand . GetInteger (0 , allRoutes . s i z e ()−1) ;

}
e l s e

{
selectIndex = 0 ;

}
route = allRoutes . at (selectIndex) ;

// create a Ipv4Route object from the selected routing table entry

rtentry = Create<Ipv4Route> () ;

rtentry−>SetDestination (route−>GetDest ()) ;

// XXX handle multi−address case

rtentry−>SetSource (m_ipv4−>GetAddress (route−>GetInterface () , 0) . GetLocal ()←↩

) ;

rtentry−>SetGateway (route−>GetGateway ()) ;

uint32_t interfaceIdx = route−>GetInterface () ;

rtentry−>SetOutputDevice (m_ipv4−>GetNetDevice (interfaceIdx)) ;

r e turn rtentry ;

}
e l s e

{
r e turn 0 ;

}
}

uint32_t

Ipv4GlobalRouting : : GetNRoutes (void)

{
NS_LOG_FUNCTION_NOARGS () ;

uint32_t n = 0 ;

n += m_hostRoutes . s i z e () ;

n += m_networkRoutes . s i z e () ;

n += m_ASexternalRoutes . s i z e () ;

r e turn n ;

}

Ipv4RoutingTableEntry �

Ipv4GlobalRouting : : GetRoute (uint32_t index)

{
NS_LOG_FUNCTION (index) ;

i f (index < m_hostRoutes . s i z e ())

{
uint32_t tmp = 0 ;

f o r (HostRoutesCI i = m_hostRoutes . begin () ;

i != m_hostRoutes . end () ;

i++)

{
i f (tmp == index)

{
r e turn �i ;

}
tmp++;

}
}

index −= m_hostRoutes . s i z e () ;

uint32_t tmp = 0 ;

i f (index < m_networkRoutes . s i z e ())

{
f o r (NetworkRoutesI j = m_networkRoutes . begin () ;

j != m_networkRoutes . end () ;

j++)

{
i f (tmp == index)

{
r e turn �j ;

}
tmp++;

}
}

index −= m_networkRoutes . s i z e () ;

tmp = 0 ;

f o r (ASExternalRoutesI k = m_ASexternalRoutes . begin () ;

k != m_ASexternalRoutes . end () ;

k++)

{
i f (tmp == index)

{
r e turn �k ;

}
tmp++;

}
NS_ASSERT (false) ;

// quiet compiler .

r e turn 0 ;

}
void

Ipv4GlobalRouting : : RemoveRoute (uint32_t index)

{
NS_LOG_FUNCTION (index) ;

i f (index < m_hostRoutes . s i z e ())

{
uint32_t tmp = 0 ;

f o r (HostRoutesI i = m_hostRoutes . begin () ;

i != m_hostRoutes . end () ;

i++)

{
i f (tmp == index)

{
NS_LOG_LOGIC (” Removing route ” << index << ” ; s i z e = ” << ←↩

m_hostRoutes . s i z e ()) ;

d e l e t e �i ;

m_hostRoutes . erase (i) ;

NS_LOG_LOGIC (” Done removing host route ” << index << ” ; host route ←↩

remaining s i z e = ” << m_hostRoutes . s i z e ()) ;

r e turn ;

}
tmp++;

}
}

index −= m_hostRoutes . s i z e () ;

uint32_t tmp = 0 ;

f o r (NetworkRoutesI j = m_networkRoutes . begin () ;

j != m_networkRoutes . end () ;

j++)

{
i f (tmp == index)

{
NS_LOG_LOGIC (” Removing route ” << index << ” ; s i z e = ” << ←↩

m_networkRoutes . s i z e ()) ;

d e l e t e �j ;

m_networkRoutes . erase (j) ;

NS_LOG_LOGIC (” Done removing network route ” << index << ” ; network route←↩

remaining s i z e = ” << m_networkRoutes . s i z e ()) ;

r e turn ;

}
tmp++;

}
index −= m_networkRoutes . s i z e () ;

tmp = 0 ;

f o r (ASExternalRoutesI k = m_ASexternalRoutes . begin () ;

k != m_ASexternalRoutes . end () ;

k++)

{
i f (tmp == index)

{
NS_LOG_LOGIC (” Removing route ” << index << ” ; s i z e = ” << ←↩

m_ASexternalRoutes . s i z e ()) ;

d e l e t e �k ;

m_ASexternalRoutes . erase (k) ;

NS_LOG_LOGIC (” Done removing network route ” << index << ” ; network route ←↩

remaining s i z e = ” << m_networkRoutes . s i z e ()) ;

r e turn ;

}
tmp++;

}
NS_ASSERT (false) ;

}

void

Ipv4GlobalRouting : : DoDispose (void)

{
NS_LOG_FUNCTION_NOARGS () ;

f o r (HostRoutesI i = m_hostRoutes . begin () ;

i != m_hostRoutes . end () ;

i = m_hostRoutes . erase (i))

{
d e l e t e (� i) ;

}
f o r (NetworkRoutesI j = m_networkRoutes . begin () ;

j != m_networkRoutes . end () ;

j = m_networkRoutes . erase (j))

{
d e l e t e (� j) ;

}
f o r (ASExternalRoutesI l = m_ASexternalRoutes . begin () ;

l != m_ASexternalRoutes . end () ;

l = m_ASexternalRoutes . erase (l))

{
d e l e t e (� l) ;

}

Ipv4RoutingProtocol : : DoDispose () ;

}

Ptr<Ipv4Route>

Ipv4GlobalRouting : : RouteOutput (Ptr<Packet> p , const Ipv4Header &header , uint32_t ←↩

oif , Socket : : SocketErrno &sockerr)

{

//

// First , see i f this is a multicast packet we have a route f o r . If we

// have a route , then send the packet down each of the specified interfaces .

//

i f (header . GetDestination () . IsMulticast ())

{
NS_LOG_LOGIC (” Multicast destination−− returning false ”) ;

r e turn 0 ; // Let other routing protocols try to handle this

}
//

// See i f this is a unicast packet we have a route f o r .

//

NS_LOG_LOGIC (” Unicast destination− looking up ”) ;

Ptr<Ipv4Route> rtentry = LookupGlobal (header . GetDestination ()) ;

i f (rtentry)

{
sockerr = Socket : : ERROR_NOTERROR ;

}
e l s e

{
sockerr = Socket : : ERROR_NOROUTETOHOST ;

}
r e turn rtentry ;

}

bool

Ipv4GlobalRouting : : RouteInput (Ptr<const Packet> p , const Ipv4Header &header , Ptr<←↩

const NetDevice> idev , UnicastForwardCallback ucb , ←↩

MulticastForwardCallback mcb ,

LocalDeliverCallback lcb , ErrorCallback ecb)

{

NS_LOG_FUNCTION (this << p << header << header . GetSource () << header .←↩

GetDestination () << idev) ;

// Check i f input device supports IP

NS_ASSERT (m_ipv4−>GetInterfaceForDevice (idev) >= 0) ;

uint32_t iif = m_ipv4−>GetInterfaceForDevice (idev) ;

i f (header . GetDestination () . IsMulticast ())

{
NS_LOG_LOGIC (” Multicast destination−− returning false ”) ;

r e turn false ; // Let other routing protocols try to handle this

}

i f (header . GetDestination () . IsBroadcast ())

{
NS_LOG_LOGIC (” For me (Ipv4Addr broadcast address) ”) ;

// TODO : Local Deliver f o r broadcast

// TODO : Forward broadcast

}

// TODO : Configurable option to enable RFC 1222 Strong End System Model

// Right now , we will be permissive and allow a source to send us

// a packet to one of our other interface addresses ; that is , the

// destination unicast address does not match one of the iif addresses ,

// but we check our other interfaces . This could be an option

// (to remove the outer loop immediately below and just check iif) .

f o r (uint32_t j = 0 ; j < m_ipv4−>GetNInterfaces () ; j++)

{
f o r (uint32_t i = 0 ; i < m_ipv4−>GetNAddresses (j) ; i++)

{
Ipv4InterfaceAddress iaddr = m_ipv4−>GetAddress (j , i) ;

Ipv4Address addr = iaddr . GetLocal () ;

i f (addr . IsEqual (header . GetDestination ()))

{
i f (j == iif)

{
NS_LOG_LOGIC (” For me (destination ” << addr << ” match) ”) ;

}
e l s e

{
NS_LOG_LOGIC (” For me (destination ” << addr << ” match) on ←↩

another interface ” << header . GetDestination ()) ;

}
lcb (p , header , iif) ;

r e turn true ;

}
i f (header . GetDestination () . IsEqual (iaddr . GetBroadcast ()))

{
NS_LOG_LOGIC (” For me (interface broadcast address) ”) ;

lcb (p , header , iif) ;

r e turn true ;

}

NS_LOG_LOGIC (” Address ”<< addr << ” not a match ”) ;

}
}

// Check i f input device supports IP forwarding

i f (m_ipv4−>IsForwarding (iif) == false)

{
NS_LOG_LOGIC (” Forwarding disabled f o r this interface ”) ;

ecb (p , header , Socket : : ERROR_NOROUTETOHOST) ;

r e turn false ;

}
// Next , try to f i nd a route

NS_LOG_LOGIC (” Unicast destination− looking up g l oba l route ”) ;

Ptr<Ipv4Route> rtentry = LookupGlobal (header . GetDestination ()) ;

i f (rtentry != 0)

{
NS_LOG_LOGIC (” Found unicast destination− calling unicast callback ”) ;

ucb (rtentry , p , header) ;

r e turn true ;

}
e l s e

{
NS_LOG_LOGIC (” Did not f i nd unicast destination− returning false ”) ;

r e turn false ; // Let other routing protocols try to handle this

// route request .

}
}
void

Ipv4GlobalRouting : : NotifyInterfaceUp (uint32_t i)

{}
void

Ipv4GlobalRouting : : NotifyInterfaceDown (uint32_t i)

{}
void

Ipv4GlobalRouting : : NotifyAddAddress (uint32_t interface , Ipv4InterfaceAddress ←↩

address)

{}
void

Ipv4GlobalRouting : : NotifyRemoveAddress (uint32_t interface , Ipv4InterfaceAddress ←↩

address)

{}
void

Ipv4GlobalRouting : : SetIpv4 (Ptr<Ipv4> ipv4)

{
NS_LOG_FUNCTION (this << ipv4) ;

NS_ASSERT (m_ipv4 == 0 && ipv4 != 0) ;

m_ipv4 = ipv4 ;

}

}

BIBLIOGRAPHY

[1] B. Chihani and D. Collange “A Multipath TCP model for ns-3 simulator”, ,
SIMUTools, 2011

[2] T. Hacker and B. Athey In “The End-to-End Performance Effects of Parallel
TCP Sockets on a Lossy Wide-Area Network,” in IEEE Parallel and Distributed
Processing Symposium., Proceedings International (IPDPS), April 2002.

[3] Y. Hasegawa, I. Yamaguchi, T. Hama, H. Shimonishi and T. Murase “Improved
Data Distribution for Multipath TCP communication,” in IEEE Global Telecom-
munications Conference (Globecom), December 2005.

[4] R. Ludwig and R. H. Katz “The Eifel algorithm: making TCP robust against
spurious retransmissions,” ACM SIGCOMM Computer Communication Review,
Volume 30 Issue 1, pages 30-36, January 2000.

[5] “MPTCP code,” http://code.google.com/p/mptcp-ns3. May 2011.

[6] “The ns-3 network simulator,” http://www.nsnam.org. November 2010.

[7] P. Sarolathi, M. Kojjo and K. Raatikainen “F-RTO: An Enhanced Recovery Al-
gorithm for TCP Retransmission Timeouts,” Computer Communication Review,
Volume 33 Part 2, pages 51-64, 2003.

[8] D. Wischik, M. Handley and M. Bagnulo Braun “The Resource Pooling Princi-
ple,” ACM SIGCOMM Computer Communication Review, Volume 38.5, pages
47-52, October 2008.

[9] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley “Design, implementation
and evaluation of congestion control for multipath TCP,” in Proceedings USENIX
NSDI, 2011.

[10] D. Wischik, C. Raiciu and M. Handley “Practical Congestion Control for Mul-
tipath Transport Protocols,” University College London, London/United King-
dom, Tech. Rep., 2009.

[11] M. Zhang, B. Karp, S. Floyd and L. Peterson “RR-TCP: A Reordering-Robust
TCP with DSACK,” in Proceedings of the Eleventh IEEE International Confer-
ence on Networking Protocols (ICNP 2003), Atlanta, GA, November, 2003.

