
Mobile and Wireless Security
CSCE 496/896

Lecture # 4
Basics of cryptography and security

Instructor: Nirnimesh Ghose
Computer Science and Engineering

Diffie-Hellman Protocol (1976)

Tuesday, September 10, 2019 03-Introduction 2

Primitive 𝑔𝑋𝐴mod 𝑝

Primitive 𝑔𝑋𝐵mod 𝑝
Key 𝐾𝐴𝐵 = (𝑔𝑋𝐵mod 𝑝)𝑋𝐴 Key 𝐾𝐴𝐵 = (𝑔𝑋𝐴mod 𝑝)𝑋𝐵

Pick 𝑋𝐴 Pick 𝑋𝐵

Why is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:

Given → 𝑔𝑋𝐴mod 𝑝, 𝑔 and 𝑝; it is hard to extract 𝑋𝐴.

There is no efficient algorithm to perform the operation.

This is not enough for DH to be secure.

Computational Diffie-Hellman (CDH) problem:

Given → 𝑔𝑋𝐴mod 𝑝 and 𝑔𝑋𝐵mod 𝑝; it is hard to compute 𝑔𝑋𝐴𝑋𝐵mod 𝑝.

It is easy when at least 𝑋𝐴 or 𝑋𝐵 is known.

Decisional Diffie-Hellman (DDH) problem:

Given → 𝑔𝑋𝐴mod 𝑝 and 𝑔𝑋𝐵mod 𝑝;

it is hard to differentiate between

𝑔𝑋𝐴𝑋𝐵mod 𝑝 and 𝑔𝑟mod 𝑝 for any 𝑟 random number.

Tuesday, September 10, 2019 03-Introduction 3

Diffie-Hellman unsecure against MitM Attack

Tuesday, September 10, 2019 03-Introduction 4

𝑔𝑋𝐴mod 𝑝 𝑔𝑋𝑀mod 𝑝

𝑔𝑋𝐵mod 𝑝𝑔𝑋𝑀mod 𝑝
𝐾𝐴𝑀 = (𝑔𝑋𝑀mod 𝑝)𝑋𝐴 𝐾𝐴𝑀 = (𝑔𝑋𝐴mod 𝑝)𝑋𝑀

𝐾𝑀𝐵 = (𝑔𝑋𝑀mod 𝑝)𝑋𝐵𝐾𝑀𝐵 = (𝑔𝑋𝐵mod 𝑝)𝑋𝑀

Pick 𝑋𝐴 Pick 𝑋𝑀 Pick 𝑋𝐵

Lecture Set Overview

Hashes

Basic concepts for hash functions

Security uses

SHA-1

Tuesday, September 10, 2019 04-Introduction 5

Definition

A function ℎ, 𝑦 = ℎ(𝑥)which has, as a minimum, the following two properties:

Compression - ℎ maps an input 𝑥 of arbitrary finite bit length, to an output ℎ(𝑥) of

fixed bit length n.

Ease of computation - given ℎ and an input 𝑥, ℎ(𝑥) is easy to compute.

Unkeyed hash :

MDC (Manipulation Detection Code)

OWHF (One Way Hash Function)

CFHF (Collision-Free Hash Function)

Keyed hash :

MAC (Message Authentication Code)

Tuesday, September 10, 2019 04-Introduction 6

Classification of Hash Functions

MDC

Dedicated hash functions: MD class, SHS, HAVAL

Block cipher-based: MDC-2, MDC-4

Modular arithmetic: MASH-1, MASH-2

MAC

Block cipher-based: DES-CBC MAC

Hash function-based: HMAC

Tuesday, September 10, 2019 04-Introduction 7

Requirements of Hash Functions

Compression

One-way function

Preimage resistance: Given 𝑦, it is computationally infeasible to compute 𝑥 with 𝑦 =
ℎ(𝑥)

Second Preimage resistance: Given 𝑥 and ℎ(𝑥), it is computationally infeasible to

compute 𝑥’ with ℎ(𝑥) = ℎ(𝑥’)

Collision-free

It is computational infeasible to find a pair (𝑥, 𝑥’), 𝑥 ≠ 𝑥’ satisfying ℎ(𝑥) = ℎ(𝑥’).

Efficiency

Easy to compute ℎ(𝑥) for a given 𝑥 and ℎ(∙).

Tuesday, September 10, 2019 04-Introduction 8

Requirements of Hash Function

Collision resistance implies second-preimage resistance

Collision resistance does not guarantee preimage resistance

Let 𝑔(∙) be a collision resistance hash function with 𝑛-bit output, define

ℎ(𝑥) = 1 || 𝑥, if 𝑥 has bit length 𝑛

ℎ(𝑥) = 0 || 𝑔(𝑥), otherwise

ℎ(∙) is a collision resistant hash function with (𝑛 + 1)-bit output

not preimage resistant; easily to find an image

i.e., when we see 1|| 𝑥, we know 𝑥 is the input!

Tuesday, September 10, 2019 04-Introduction 9

Birthday Paradox

The Birthday Phenomenon:

How many people need to be in a room such that the possibility that there are

at least two people with the same birthday is greater than 0.5?

For simplicity, we don’t care about February 29, and assume that each birthday

is equally likely

If there are over 23 people in a room, then the probability is greater than 0.5

that two people will have the same birthday (out of 365 days in the year)

Tuesday, September 10, 2019 04-Introduction 10

Birthday Paradox

Formal description:

Assume a target space 𝑌 with 𝑁 possible outcomes; assume a function 𝐹(∙)
mapping input values from a source space 𝑋 to 𝑌 with a uniform distribution.

Then, if 𝑅 input values from 𝑋 are picked at random, such that 𝑅 ≥ 1.18 √𝑁, then

the probability that there are two inputs (out of R) mapping to the same output value

will be > 0.5

Reduce the attack complexity from 𝑂(2𝑁−1) to 𝑂(2𝑁/2)

Instead of exhaustive search, the attacker could find the same hash value for two

different messages with bit length 𝑁.

Tuesday, September 10, 2019 04-Introduction 11

Applications: Object Identifier

Computing hash of files / documents / emails

Keeping the hash values in a secure place, while Files / documents / emails

may reside in non-secure places

Before using an object, the system computes a hash of the object and

compares it with the stored hash

If the hash values do not match – the object was probably changed in an

unauthorized manner

Tuesday, September 10, 2019 04-Introduction 12

Secure

Storage

𝑎: ℎ 𝑎
𝑏: ℎ 𝑏
𝑐: ℎ(𝑐)

Object:

𝑎
Compute

ℎ(𝑎)
Compare

T/F

Applications: Entity Authentication

Goal: A wishes to identify & authenticate himself to B

Infrastructure: A and B share a long-lived secret key 𝐾

Naive Authentication Protocol

Problem: Above protocol is subject to a “replay attack”

Tuesday, September 10, 2019 04-Introduction 13

A B

Secret 𝐾 Secret 𝐾
A

Computes

𝑌 = ℎ(𝐾)

Checks

෠𝑌 =
?
ℎ(𝐾)

𝑌

Authentication with Hash

B verifies hash of random number 𝑅 and secret key 𝐾

This protocol is sound against sniffing and replay

Tuesday, September 10, 2019 04-Introduction 14

A B

Secret 𝐾 Secret 𝐾
A

Computes

𝑌 = ℎ(𝑅||𝐾)

Checks

෠𝑌 =
?
ℎ(𝑅||𝐾)

𝑌

𝑅

Applications: Commitment Protocol

Goal: A and B wish to play “odd or even” over the network

Naive Commitment Protocol

Problem: How can we guarantee that B doesn’t cheat?

Tuesday, September 10, 2019 04-Introduction 15

A B

Pick number 𝑋

Pick number 𝑌

𝑋

Win if 𝑋 + 𝑌
is odd

Win if 𝑋 + 𝑌
is odd

𝑌

Commitment Protocol with Hash

In this protocol B cannot cheat because B cannot know 𝑋 before sending 𝑌; on

the other hand, A also cannot cheat on the value of 𝑋 after receiving 𝑌.

Question: What if A always picks small numbers so that B can make a list of all

the hash values?

Tuesday, September 10, 2019 04-Introduction 16

A B

Pick number 𝑋
and computes

𝑍 = ℎ(𝑋) Pick number 𝑌

𝑍

Win if 𝑋 + 𝑌
is odd

Win if 𝑋 +
𝑌 is odd

𝑌

𝑋
Checks: 𝑍 =

?
ℎ(𝑋)

Commitment Protocol with Hash

Tuesday, September 10, 2019 04-Introduction 17

A B

Pick number 𝑋 from a

very large space

and computes 𝑍 = ℎ(𝑋) Pick number 𝑌

𝑍

Win if 𝑋 + 𝑌
is odd

Win if 𝑋 + 𝑌
is odd

𝑌

𝑋
Checks: 𝑍 =

?
ℎ(𝑋)

Dedicated Hash Algorithms

MD2, MD4, MD5

Message Digest, designed by Ron Rivest

MD2: 1989, operates on 8-bit octets

MD4: 1990, operates on 32-bit words

MD5: 1991, operates on 32-bit words

Secure Hash Algorithm, proposed by NIST

SHA: 1993

SHA-1: 1995

SHA-256, SHA-512

Tuesday, September 10, 2019 04-Introduction 18

SHA-1

Input: arbitrary number of bits (≤ 264)

Output: 160 bits

Step 1: Pad the message to be a multiple of 512 bits (16 words, 64 octets)

Step 2: Process the message, 512 bits at a time, to produce the message

digest

Tuesday, September 10, 2019 04-Introduction 19

Message padding

Message Padding

Multiple of block (512 bits)

Blocks of length 512 bits

…

Tuesday, September 10, 2019 04-Introduction 20

Comparison of MD5 and SHA-1

SHA-1 160-bit, MD5 128-bit; SHA-1 is more secure against brute-force attacks

MD5 is considered broken in year 2004

SHA-1 involves more stages and bigger buffer;

SHA-1 executes much slower than MD5

SHA-1 is considered “broken” in year 2005

Tuesday, September 10, 2019 04-Introduction 21

Keyed Hash

ℎ(𝑚|𝐾𝑒𝑦) or ℎ(𝐾𝑒𝑦|𝑚)?

Tuesday, September 10, 2019 04-Introduction 22

Keyed hash h(Key|m)?

A feature of message digest algorithms

In order to computer the message digest through chuck 𝑛, all that you need

to know is the message digest through chunk 𝑛 − 1, plus the chuck 𝑛 of the

padded message.

An Attack

Someone gets 𝑚, and ℎ(𝐾𝑒𝑦|𝑚)

He first pads m according the used hash function, and then adds another

message 𝑚′ at the end. The result is 𝑚|𝑝𝑎𝑑|𝑚′.

ℎ(𝐾𝑒𝑦|𝑚|𝑝𝑎𝑑 |𝑚′) can be calculated from ℎ(𝐾𝑒𝑦|𝑚), which is the intermediate

digest.

Soln: Use ℎ(𝑚|𝐾𝑒𝑦)

Tuesday, September 10, 2019 04-Introduction 23

