Towards Measuring Quality of Service in Untrusted Multi-Vendor Service Function Chains: Balancing Security and Resource Consumption

Abstract

The IT infrastructure of large organizations consists of devices and software services purchased from multiple vendors. The problem of measuring the quality of service (QoS) of each of these vendor devices (and services) is challenging since the vendors may tamper with the measurements for monetary benefits or saving debugging efforts. Existing solutions for QoS measurement in trusted environments cannot be extended for this problem since the vendors can easily circumvent them. Solutions borrowed from other areas such as client-server QoS measurement do not help either since they incur unreasonable storage and network overheads, or require extensive modifications to the packet headers. In this paper, we propose the Measuring Tape scheme, comprised of (1) a novel data structure called evidence Bloom filter (e-BF) that can be deployed at the vendor devices (and services), and (2) unique querying techniques, which can be used by the administrator to query the e-BF to measure QoS. While e-BF uses storage and computational resources judiciously, the querying techniques ensure resilience to adversarial behavior. We evaluate our solution based on a few real-world and synthetic traces and with different adversaries. Our results highlight the trade-off between resources (i.e., storage and computation) and the accuracy of QoS predictions, as well as its implications on security. We also present an analytical model of e-BF that establishes the relationship between storage, prediction accuracy, and security. Further, we present security arguments to illustrate how our solution thwarts adversarial attempts to tamper QoS.

Publication
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications
Byrav Ramamurthy
Byrav Ramamurthy
Professor & PI

My research areas include optical and wireless networks, peer-to-peer networks for multimedia streaming, network security and telecommunications. My research work is supported by the U.S. National Science Foundation, U.S. Department of Energy, U.S. Department of Agriculture, NASA, AT&T Corporation, Agilent Tech., Ciena, HP and OPNET Inc.