Improving Service Performance through Multilayer Routing and Service Intelligence in a Network Service Mesh

Abstract

Network service mesh architectures, by interconnecting cloud clusters, provide access to services across distributed infrastructures. Typically, services are replicated across clusters to ensure resilience. However, end-to-end service performance varies mainly depending on the service loads experienced by individual clusters. Therefore, a key challenge is to optimize end-to-end service performance by routing service requests to clusters with the least service processing/response times. We present a two-phase approach that combines an optimized multi-layer optical routing system with service mesh performance costs to improve end-to-end service performance. Our experimental strategy shows that leveraging a multi-layer architecture in combination with service performance information improves end-to-end performance. We evaluate our approach by testing our strategy on a service mesh layer overlay on a modified continental united states (CONUS) network topology.

Publication
2021 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)
Boyang Hu
Boyang Hu
PhD Candidate

My research areas include optical networks, network security, telecommunications, machine learning in optical networks, and software-defined networking. My research work is supported by the U.S. National Science Foundation and the U.S. Department of Energy.

Byrav Ramamurthy
Byrav Ramamurthy
Professor & PI

My research areas include optical and wireless networks, peer-to-peer networks for multimedia streaming, network security and telecommunications. My research work is supported by the U.S. National Science Foundation, U.S. Department of Energy, U.S. Department of Agriculture, NASA, AT&T Corporation, Agilent Tech., Ciena, HP and OPNET Inc.