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ABSTRACT
User configurable software systems allow users to customize func-
tionality at run time. In essence, each such system consists of a
family of potentially thousands or millions of program instantia-
tions. Testing methods cannot test all of these configurations, there-
fore some sampling mechanism must be applied. A common ap-
proach to providing such a mechanism has been to use combinato-
rial interaction testing. To date, however, little work has been done
to quantify the effects of different configurations on a test suites’
operation and effectiveness. In this paper we present a case study
that investigates the effects of changing configurations on two types
of test suites. Our results show that test coverage and fault detec-
tion effectiveness do not vary much across configurations for entire
test suites; however, for individual test cases and certain types of
faults, configurations matter.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.5 [Software Engi-
neering]: Testing and Debugging—testing tools

General Terms
Measurement,Verification

Keywords
Combinatorial interaction testing, Empirical study, Code coverage,
Configurable software

1. INTRODUCTION
User configurable software systems provide late binding of sys-

tem functionality, allowing combinations of program features to be
selected at run time by the user rather than at build time by the
system developer. For instance, a web browser may allow the user
to turn the Java Script feature on and off at run-time, or provide a
series of security features that can be selected based on the user’s
preferences.
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A challenge for testing user configurable systems is that a single
such system can support an enormous set (thousands, or even mil-
lions) of configurations. Each configuration may behave differently
under the same software test sequences, with different code bases
executed, and different sets of faults uncovered [17, 21].
For example, consider the Firefox browser for Mac OS X. The

browser has many possible user defined configurations. Under the
“Advanced Tab”, the user may tune five options for “Tabbed Brows-
ing”; the first option (“Open Links In”) has three possible val-
ues (“New Window”, “New Tab”, “Most Recent”), while the oth-
ers each have two (see Table 1). The user can create 48 config-
urations for just this tab, and this is only a small portion of the
full configuration space. As a second example, in a recent ver-
sion of Internet Explorer for Windows XP there are 31 config-
urable options on the security tab. Of these, 10 are binary, 19
have three settings and two have four settings. As a result there are
210 × 319 × 42 = 19, 042, 491, 875, 328 configurations. Again,
this is only a snapshot of the entire configuration space.
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Table 1: User Configurations

Assume that the Firefox browser has been tested with the “Open
Links in New Window” and “Warn When Closing Multiple Tabs”
options selected. Even if this configuration passes all tests it is
possible that, were the first option changed to “Open Links in Most
Recent”, one of these tests might fail. This failure may be caused
by initialization code, or a peculiar program state set under one
option yet not reached under the other. The type of fault causing
this failure is called an interaction fault.
Although in theory, tests could be run under all possible con-

figurations in order to detect interaction faults, in practice this is
infeasible. A test suite for each configuration of Firefox may in-
clude hundreds or thousands of test cases. If four hours are needed
to run the entire test suite, the complete set of 48 configurations
would require eight days to test. Suppose there were ten config-
urable options, each with five possible values; in this case testing
would require 510 = 9, 765, 625× 4 hours (4,459 years). Alterna-
tively, instead of testing all configurations of the Firefox browser,
sampling heuristics can be used to select subsets of the configura-
tion space. For instance, one might randomly select configurations,
or test only “supported” configurations.



Input testing (testing aimed at selecting values from a system’s
input space) suffers from a similar “combinatorial explosion” prob-
lem. One method that has been used to sample an input space is to
include all pairs or t-way combinations of inputs, where t is a de-
fined strength of testing [2, 4, 5, 6, 7, 8, 9, 16]. Empirical evidence
suggests that this combinatorial interaction testing approach can be
effective [1, 4, 7, 9].
Applying this same concept to the Firefox example, one could

test all pairs of settings using only six configurations (see Table 2).
In this set of configurations all settings of “Tab Bar” are tested with
all settings for “Select New Tabs from Links”, all settings for “Se-
lect New Tabs from History”, and all settings for “When Closing
Multiple Tabs”. In addition, all settings for “Select New Tabs from
Link” are tested with “Select New Tabs from History” and “When
Closing Multiple Tabs”.
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Table 2: Testing 2-Way Interactions

The potential for using combinatorial interaction testing cost-
effectively on configurable systems has been suggested in several
studies: a retrospective examination of flaws in the Mozilla web
browser and an Apache database determined that 71% and 58%,
respectively, of the faults in these systems were caused by interac-
tions of two or more configuration settings [14, 15]; a distributed
CORBA middleware was effectively sampled using combinatorial
testing for fault characterization [22, 23].
The majority of the literature on the cost-effectiveness of com-

binatorial interaction testing, however, has focused on input testing
[2, 3, 4, 6] in which, as described above, the inputs to the system
are partitioned into equivalence classes. Pairs (or t-tuples) of com-
binations of classes define the individual test cases. In this context,
a combinatorial interaction test suite is a set of test cases that define
all the specified combinations of input parameters. In contrast, on
configurable systems, a combinatorial interaction test suite defines
the set of configurations under which each test case in a given test
suite is run.
The issues involved in combinatorial testing of configurations

have not yet been carefully studied. For instance, it is not clear
how sensitive test suites and individual test cases are to changing
configurations. In addition, the current approach of testing a bal-
anced set of interactions across the whole application may not be
the most effective approach. Finally, there may be certain types of
faults or test suites that will benefit more from these methods. In
order for combinatorial interaction testing to be used most effec-
tively for user configurable systems, it is important to understand
the implications of changing configurations on the effectiveness of
software test suites.
To provide further understanding of these issues, we have de-

signed and performed a case study aimed at quantifying the effects
of changing configurations on two types of test suites applied to
an open source web browser. The first test suite is a specification-
based GUI test suite, and the second is a set of random fuzz tests
[11]. We examine the effectiveness of each test suite across three
different configuration spaces of the browser. We utilize several
metrics to understand the changes across the configurations, focus-
ing on the effects of configurations on code and fault coverage.

Our results show that test coverage and fault detection effective-
ness do not vary much across configurations for entire test suites;
however, for individual test cases and certain types of faults the
configuration tested matters.
The rest of this paper is organized as follows. Section 2 describes

the study, Section 3 presents and analyzes the data, and Section
4 discusses the implications of the results. Section 5 summarizes
related work, and Section 6 concludes.

2. EMPIRICAL STUDY
Our study is designed to quantify the effectiveness of testing a

user configurable system, given a fixed test suite, across changing
configurations. In particular, we wish to address the following re-
search questions:

RQ1: How does changing the configuration of a software system
affect fault finding for a given test suite?

RQ2: How does changing the configuration of a software system
affect overall code coverage?

RQ3: Does the granularity of our measure (i.e test suite or test
case) affect these results?

The rest of this section describes our study object, variables and
measures, methodology, and threats to validity.

2.1 Object of Analysis
As an object of analysis for this study we used the open source

web browser, MyIE [24]. MyIE is a wrapper for the Internet Ex-
plorer engine. It offers several special features, including sup-
port for up to six IEs each in its own tab, user definable search
engines, multiple search engine support, favorites support, visual
bookmarks, grouped bookmarks, and online version check support.
The primary reason we chose this program for our study is that it is
highly configurable. Not only can one alter the configurations in-
cluded with Internet Explorer, but MyIE has an entire set of config-
urations specific to itself. In addition, we have access to a version
of MyIE that, for a previous study by other researchers [13], has
been provided with several other artifacts required for our study.
The version of MyIE we utilized was obtained originally from

sourceforge.net. It has approximately 41 KLOC, contained in 64
classes and 2793 basic blocks. The code was instrumented previ-
ously to capture basic block coverage, and seeded with 77 faults,
contained in 51 unique blocks. (The authors of this paper were not
involved in the prior fault seeding process.) As the modified MyIE
program runs, coverage packets are sent to a database. These pack-
ets contain an ordered list of the blocks traversed for each test case
under each configuration.
We used two different test suites for our study. The first test

suite, a specification based test suite, is a subset of the test suite
originally developed for MyIE by the prior researchers. The origi-
nal test suite included 243 test cases that exercise each menu option
one time; our test suite initially contained the 145 of these test cases
that execute the most common menu options. Of these test cases,
we were forced to eliminate 10 during the study because they failed
to execute to completion under certain configurations. We used a
commercial GUI playback tool, Vermont HighTest Plus1 to execute
these test cases.
The second test suite that we utilized is a random test suite used

to uncover security faults such as buffer overruns. Fuzz testing [11,
18] is a testing method used to detect security flaws in software.
In fuzz testing, random messages are sent to a program’s message
1http://www.vtsoft.com
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Table 3: Configuration variables and corresponding values

queue. We modified the Windows NT fuzz tool [11] for our study.
The tool attaches to a specified Windows process (in this case the
main MyIE window) and sends the specified number of random
Win32 messages, and for our study, we consider each run of this
tool a test case. Each fuzz test thus created consists of a number
of random “Send Messages” sent to the running program. We cre-
ated a pool of fuzz test cases, each containing between 100 and
5000 messages. The number of messages sent for each test case
was also selected randomly. Our initial fuzz test suite contained 50
test cases. We then eliminated test cases that caused MyIE to stop
responding, (e.g. by finding non-seeded faults) because these pre-
vented us from collecting the required coverage data. This left us
with 35 fuzz test cases in the fuzz test suite.

2.2 Variables and Measures
The independent variables in this study are the different MyIE

configurations and are explained in Section 2.2.1. The dependent
variables in this study are a set of five metrics that analyze the ac-
quired data from different perspectives, and are described in Sec-
tion 2.2.2.

2.2.1 Independent Variables
We selected three sample configuration spaces of MyIE to ma-

nipulate. Since our goal was to manipulate all of the options se-
lected for each configuration space selected each time, it was infea-
sible to use the entire set of options for the MyIE browser. (In total,
the MyIE wrapper has 29 binary options, two ternary options, four
options with five values, one option with seven values, and 17 text
based options that must be partitioned into equivalence classes to
test all combinations. If we consider just the fixed size options there
are 229 ×32 ×54 ×7 = 21, 139, 292, 160, 000 feasible configura-
tions of this browser.) Thus, instead, we chose three sample spaces.
Table 3 shows the MyIE options that were altered in at least one of

the three configuration spaces, their values in each space, and the
default values used when an option is not being manipulated in a
configuration space.
For the first configuration space we selected five options from the

Tab panel of MyIE. For each option, we used two of the possible
values resulting in a configuration space with 32 configurations.
For the second configuration space we manipulated four options
from the Tab panel; these options had two, three, four and three
possible values, respectively. This gives us a configuration space
of size 72. Finally, in the third configuration space we chose to ma-
nipulate five options across panels. We selected one from each of
the “Tab”, “Save”, “Window”, “General” and “Download” panels.
This configuration space contains 300 options.

2.2.2 Dependent Variables
Since our goal is to investigate the changes to fault detection ef-

fectiveness and code coverage across configurations we need met-
rics that can quantify these changes. We also wish to quantify ef-
fects at different levels of granularity (e.g., test suite versus test
case). We therefore selected dependent variables based on several
defined by Elbaum et al. [10].
In [10], code coverage was quantified for components across sys-

tem releases. We modify each of the metrics used there to consider
code coverage and fault detection across configurations. Elbaum
et al. use a component matrix in which rows represent blocks and
columns represent test cases. In our work we wish to examine both
overall block coverage of the test suites as well as fault coverage.
Where fault coverage is concerned, ideally, we could hope to use
an oracle to determine whether faults are actually detected by test
cases. With the MyIE object, however, a deterministic oracle is not
available, and a non-deterministic oracle threatens the validity of
conclusions that might be drawn about fault detection across runs
on different configurations. Thus, we approximate fault detection
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Figure 1: Block and Fault Matrices

by considering fault coverage, which we obtain by examining only
the subset of blocks containing seeded faults covered during the
study.
We thus define two matrices that can be used as the basis for

all of our metrics. One contains all of the block information, the
second contains just seeded fault blocks. Let B be a b × t matrix,
where b is the number of unique blocks in the program, and t is the
number of test cases in the test suite. If cell (i, j) in B contains a
1, this means that test case j traversed block i, otherwise the cell
contains 0. We call B a block matrix. Let F be an f × t matrix,
where f is the number of unique blocks containing faults and t is
defined as as previously. If cell (i, j) in F contains a 1, this means
that test case j traversed a block containing fault i. We callF a fault
matrix. Figure 1 shows examples of a block matrix, B1, and two
fault matrices, F1 and F2. In this example, there are seeded faults
in blocks 1, 2, 6, and 7 of B1, and thus F1 is the corresponding
fault matrix.
The block matrices for the specification based test suites used

in our study contain 2793 rows and 135 columns (one for each
valid test case). The fuzz block matrices contain 2793 rows and 35
columns. The fault matrices for our specification test suites contain
51 rows and 135 columns and the fuzz fault matrices contain 51
rows and 35 columns.
We use these two types of matrices to calculate each of several

dependent variables: block coverage (BC), matrix density (MD),
fault coverage (FC), coverage across faults (CAF) and coverage
across tests (CAT), as follows.

Block Coverage
BCmeasures the percentage of blocks covered by a given test suite.
For each row, i, of block matrix B, block counti = 1 if at least
one column contains a 1 (i.e. any test covers this block) and 0
otherwise. Then:

BC =
Pb

i=1
(block counti)

b
× 100

In Figure 1, the BC for matrix B1=57.14%.

Fault Coverage
FC measures the percentage of faults covered by a given test suite.
For each row, i, of fault matrix F , fault counti = 1 if at least
one column contains a 1, (i.e. any test covers this fault block) and
0 otherwise. Then:

FC =
Pf

i=1
fault counti

f
× 100

Matrices F1 and F2 of Figure 1 have FC values of 50% and 25%,
respectively.

Matrix Density
MD measures the percentage of the fault blocks covered by a given
test suite. This metric sums all of the 1’s in a fault matrix F , and
divides by the total number of cells:

MD =
Pf

i=1

Pt
j=1

F [i][j]

f×t
× 100

Matrices F1 and F2 of Figure 1 have MD values of 15% and 10%,
respectively.

Coverage Across Faults
CAF compares a pair of fault matrices, F1 and F2, and determines
the number of rows that differ between them. If rows F1i and F2i
have at least one location (i, j) that differs, diff Fcounti = 1.
Then:

CAF =
Pf

i=1
diff F counti

f
× 100

The CAF value for matrices F1 and F2 in Figure 1 is 50%. In our
study, CAF is calculated for all

`

n
2

´

pairs of configurations where
n is the number of configurations in a configuration space.

Coverage Across Tests
CAT also compares two fault matrices, F1 and F2, and measures
the percentage of columns that differ between them. Let
diff T count=1 if any row i for column j in matrix F2 differs
from F1. Then:

CAT =
Pt

i=1
diff Tcounti

t
× 100.

The CAT value for matrices F1 and F2 in Figure 1 is 40%. In our
study we examined all

`

n
2

´

pairs of configurations.
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Figure 2: Study Framework

2.3 Study Methodology
All of our data was collected on a 1.6 GHz laptop running Win-

dows XP professional, a MySQL server, and a local Apache Web
server. We used an overall control program to modify the MyIE
configurations, run the testing tools and collect fault coverage data.
For each test suite and configuration space, we iterated through all
of the configurations and ran all of the test cases. The MyIE con-
figurations are defined by a text file that we regenerated for each
configuration at the start of the run. Cleaning tasks were performed
after each test case completed. The framework for our study is
shown in Figure 2. In this figure, the control program consists of a
script that modifies the MyIE configuration, performs pre and post
testing clean up tasks, and starts the testing tool. The test tool used



Min Max Mean SDev
Sp1 31.37 33.33 32.35 1.00
Sp2 29.41 33.33 31.54 1.26
Sp3 33.33 33.33 33.33 NA
Fz1 19.61 19.61 19.61 NA
Fz2 19.61 19.61 19.61 NA
Fz3 19.61 19.61 19.61 NA

Table 4: FC Value Statistics

is either Vermont HighTest or the fuzz tool. As the test suite ran,
packages containing the block coverage were sent to a server where
they were processed to create the block and fault matrices.

2.4 Threats to Validity
Where external validity is concerned, our study involves only

a single software system with three configuration spaces and two
specific test suites, and with seeded faults; studies on additional
artifacts will be needed to determine the degree to which results
may generalize. However, our object of study is representative of
an important class of user-configurable systems, and its associated
artifacts (tests, faults) were not created by us, eliminating one po-
tential source of bias.
With respect to internal validity, we required several analysis

tools for this study, and errors in such tools might bias our results.
To reduce this possibility we validated our tools on subsets of our
data. Also, we were forced to remove test cases that were not able
to execute under all configurations, and fuzz test cases on which
the system did not respond. Had these test cases been executable
they might have exhibited different results.
Where construct validity is concerned, code coverage and fault

detection are just two measures of test suite value; other measures
such as the cost of testing and the robustness of tests across config-
urations as systems evolve may also matter. Also, our measure of
fault detection effectiveness relies on fault coverage data, and thus
may overstate fault detection capabilities, since in practice some
faults might be covered but not propagate their effects to output.

3. DATA AND ANALYSIS
We now present and analyze the data gathered in our study. We

organize the discussion in terms of our three research questions.

3.1 Fault Finding Across Configurations
To address RQ1 we focus on the overall fault finding capabilities

of our test suites across configurations, using the fault coverage
(FC) and matrix density (MD) metrics. We present results for both
of the test suites. In our discussion, we denote specification based
test suites by labels Sp1, Sp2 and Sp3, and fuzz test suites by labels
Fz1, Fz2 and Fz3; here, the subscripts indicate configuration spaces.
The fault coverage metric results are depicted in Figure 3 and

Table 4. For the specification based test suites, FC values ranged
from 29.41% to 33.33% across all configuration spaces and config-
urations. The third configuration space yielded the best fault find-
ing ability across configurations, while the second configuration
space was the most configuration dependent. The maximum FC
for the second configuration space matched that of the other two
configuration spaces, but the median and mean FC values for this
configuration space were lowest. In contrast, the fuzz test suite was
insensitive, in terms of FC values, to differences in configuration
spaces; these values remained fixed at 19.61%.
The matrix density (MD) metric provides a second view of the

fault finding results across configurations (Figure 4 and Table 5). A
denser fault coverage matrix (higher MD) indicates that more indi-
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Figure 3: Fault coverage (FC) values per test suite and config-
uration space.

vidual test cases covered a particular fault. MD appears relatively
stable across configurations, for all configuration spaces and both
types of test suites. For the specification based test suite, there was
a less than one percent range in MD values across configurations
(15.89 % - 16.78% ). For the fuzz test suite, the first and third
configuration spaces yielded no variance in MD values, while the
second configuration yielded less than a two percent range (11.88%
- 13.33%).
Since our data did reveal some differences in FC and MD across

configurations, we analyzed the differences further by consider-
ing specific faults and the configuration settings that found and/or
missed them. For the specification based test suite, between 16 and
17 of the 51 faults were found across configurations in configura-
tion space 1, between 15 and 17 faults were found across configu-
rations in configuration space 2, and the same 17 faults were found
in each configuration in configuration space 3. Detection of two
specific faults, faults 2 and 23, accounted for all of the variation
seen in the first two configuration spaces. In Sp1 fault 2 was found
in one half of the configurations, but it was missed in the others. In
Sp2 this fault was found in only 24 of the 72 configurations, and
fault 23 was found 54 times and missed 18 times.
We examined the configurations in which fault 2 was revealed in

each of the three configuration spaces and compared the underlying
configuration settings. In configuration space 1, finding fault 2 is
associated with a single option, “Tab Position”. When this option
is set to its default setting, “set to top,” the fault is found. When the
option is set to “set to bottom”, the fault is missed. In configuration
space 2, finding fault 2 is associated with a different option, “Max-
imum Tab Width”. When this option is set to 72 the fault is found.
What is interesting to note is that a value of 72 for this option is used
as the default option and not manipulated in configuration spaces 1
or 3. Because fault 2 is sometimes missed in configuration 1, the
“Maximum Tab Width” option alone can’t explain these findings.
It appears, instead, that all configurations with the combination of
Tab Position “set to top” and Maximum Tab Width = 72 find this
fault, while all others miss it.
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Figure 4: Matrix density (MD) values per test suite and config-
uration space.

Min Max Mean SDev
Sp1 16.02 16.59 16.12 0.12
Sp2 15.99 16.78 16.34 0.27
Sp3 15.89 16.05 15.98 0.5
Fz1 12.66 12.66 12.66 NA
Fz2 11.88 13.33 12.63 0.52
Fz3 12.66 12.66 12.66 NA

Table 5: MD Value Statistics

The fuzz test suites found exactly ten faults in each configura-
tion, for each configuration space. Of these, nine faults match those
found by the specification based test suites, while one new fault was
found. The two “configuration dependent faults,” numbers 2 and
23, were never traversed by the fuzz test suite in any configuration.

3.2 Code Coverage Across Configurations
To address RQ2 we use the block coverage metric (BC). Figure

5 and Table 6 show the BC values for each test suite and configu-
ration space. In total, 2793 blocks were instrumented in MyIE. Of
these blocks, the specification based tests covered between 39.6 %
and 42.6% across all configuration spaces and configurations – just
a 3% difference. Configuration space 3 exhibited slightly higher
overall block coverage than the other configuration spaces, while
configuration space 2 exhibited the lowest.
The fuzz test suite covered approximately half as many blocks as

the specification based test suite. The range across configurations
for this test suite was less than one percent (18.55% - 19.41%).

3.3 Granularity of Measures
Our third research question focuses on the granularity of our

measures. To address this question we use the two metrics, change
across faults (CAF), and change across tests (CAT), that distinguish
behaviors relative to individual faults and tests.
Figure 6 and Table 7 present CAF metric results. Recall that

CAF tracks changes across configurations at the fault level. The
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Figure 5: Block coverage (BC) values per test suite and config-
uration space.

Min Max Mean SDev
Sp1 40.49 42.07 41.24 0.69
Sp2 39.60 41.96 41.16 0.71
Sp3 41.50 42.46 41.85 0.23
Fz1 18.76 19.01 18.87 0.09
Fz2 18.55 19.41 19.21 0.22
Fz3 18.76 18.90 18.82 0.07

Table 6: BC Value Statistics

data shows that there are many configurations that matched others
exactly (e.g. have a CAF of 0.0) in terms of patterns of fault find-
ing, while on average, between 4% and 8% of the configurations
differed from other configurations. For the specification based test
suite, configuration spaces 1 and 2 exhibited the same minimum
and maximum CAF values, although a larger number of configu-
rations differed in configuration space 2. The median CAF values
for configuration spaces 2 and 3 were equal, and slightly higher
than that for configuration space 1. The fuzz test suite behaved dif-
ferently. For this suite, configuration spaces 1 and 3 exhibited no
differences at all, whereas configuration space 2 exhibited a range
of 13.73% and had the highest median and average CAF values.
The final metric, change across tests or CAT, detects changes

across configurations at the test level. Figure 7 and Table 8 present
the CAT data. The CAT metric exhibited large differences in this
study, ranging from 4% to 20%. For the specification based tests,
the second configuration space appears to exhibit the greatest range
in CAT, and the highest mean and median, while the third configu-
ration space exhibits the lowest. In the first and third configuration
spaces for the fuzz test suite, the metric is 0.0, i.e., all configura-
tions match exactly. In the second configuration space, however,
the range in CAT is 11.43. The mean CAT for this configuration
space is 4.35%.
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Figure 6: Change across faults (CAF) values per test suite and
configuration space.

Min Max Mean SDev
Sp1 0.00 13.73 4.66 2.86
Sp2 0.00 13.73 6.48 2.90
Sp3 0.00 9.81 5.41 2.31
Fz1 0.00 0.00 0.00 NA
Fz2 0.00 13.73 8.20 6.28
Fz3 0.00 0.00 0.00 NA

Table 7: CAF Value Statistics

4. DISCUSSION
The results of this study show that although there are some dif-

ferences in fault detection effectiveness and overall code coverage
across configurations, they are relatively small. The granularity of
our measure does matter, however, when considering results. At the
test suite level there is less variation than at the test case level. We
also observed that each of the configuration spaces utilized yielded
slightly different results, suggesting that the specific combinations
of options selected when manipulating a configuration space may
be important. We now discuss each research question, and the im-
plications for combinatorial interaction testing, in more detail.

4.1 RQ1: Test Suite Effectiveness
The FC and MD metrics reveal only very small differences be-

tween configurations, where fault detection is concerned. For the
specification based test suite, the difference was the greatest, but
still small. The fact that we saw slightly different results between
different configurations suggests that the model and configuration
space selected matters. For the fuzz test suite, there were no differ-
ences at all for two of the three configuration spaces. This may be
explained by the fact that the fuzz based test suites are not designed
for functional or code coverage but rather aim to find faults caused
by exceptional conditions.
Furthermore, we saw that although some faults are configuration

dependent, the majority are not, and are not impacted by the choice
of configurations at the test suite level. In the specification based
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Figure 7: Change across tests (CAT) values per test suite and
configuration space.

Min Max Mean SDev
Sp1 0.00 38.52 9.80 11.57
Sp2 0.00 40.74 20.67 12.50
Sp3 0.00 6.67 2.38 1.25
Fz1 0.00 0.00 0.00 NA
Fz2 0.00 11.43 4.35 3.78
Fz3 0.00 0.00 0.00 NA

Table 8: CAT Value Statistics

test suite only two of the 17 faults detected had a clear dependency
on configuration.

4.2 RQ2: Code Coverage
The difference in code coverage across configurations was slightly

higher for the specification based test suite than for the fuzz test
suite. This may be due to the fact that the overall code coverage
was twice as high for the specification based test suite. In general it
does not appear that at the test suite level there are large differences
in code coverage; however, even for the fuzz test suite, on which
no differences were seen in the fault matrices for two configura-
tion spaces, there were some slight differences in code coverage.
Additional study will be needed to determine whether these results
generalize to more coverage-complete test suites.

4.3 RQ3: Granularity of Measure
The choice of analysis at the test suite or test case level appears

to have the greatest impact on our results. Both the CAF and CAT
metrics showed the largest range of values. This was as high as
41% for CAT on the specification based test suite in configuration
space 2, and 14% for CAF in configuration space 1 and 2. Even the
fuzz test suite, which appears to be insensitive to configurations,
displayed some differences in configuration space 2 (14% for CAF
and 11% for CAT).



4.4 Combinatorial Testing: Implications
Only a small subset of the faults our study considered are con-

figuration dependent; however, for these faults, the exact configu-
ration used during testing did matter, and combinatorial interaction
testing techniques such as pairwise testing may prove useful. We
saw this phenomenon in fault number 2, where we were able to
trace the success of its detection to a pair of option settings.
In general it does not seem that using combinatorial interaction

techniques will greatly improve code coverage at the block level;
still, if increased coverage is crucial, testing multiple configurations
might offer a slight benefit.
The testing scenario that may benefit the most from testing across

configurations is one in which only a small set of test cases are used.
In particular, this may occur in regression testing situations where
test suite subsets are utilized, e.g. through regression test selection
[20]. In these situations, the impact of changing configurations may
have a larger effect.

5. RELATED WORK
There has been a large body of work on methods for reducing the

combinatorial interaction space of programs [1, 4, 12, 16, 19]. We
do not summarize all of this work here, but we discuss some work
in this area that uses Design of Experiments to select a subset of
inputs or configurations. We focus on two closely related studies.
In [4] D. Cohen et al. describe the automatic efficient test gener-
ator, AETG [4], that provides t-way interaction coverage between
program inputs. They describe a study in which they capture code
coverage for the Unix utility program sort. Code coverage metrics
are presented for several models of the configuration space, but the
authors do not examine all possible configurations, rather they fo-
cus only on the sample selected. In addition, they are not concerned
with the entire configuration definition, but rather, use the sample
selected to define the actual test cases.
In further work, Dunietz et al. examine code coverage for various

strengths of interaction testing, i.e. 2-way, 3-way, etc. Again the
focus is on the sample of the configuration test suite, rather than on
using the entire set of configurations. In [23], Yilmaz et al. manipu-
late and test a configuration space with over 18,000 configurations
for a distributed middleware system. They compare their results
with samples based on the AETG methodology. Like us, they con-
cern themselves with the entire configuration definition, however,
their focus is on fault localization. They do not relate their find-
ings to code coverage, nor do they compare results across multiple
configuration models.
Our work differs from these prior studies in that we have consid-

ered several configuration spaces within a single software system,
and for each, we have examined the entire set of configurations un-
der two different test suites, and then related this to the code and
fault coverage of each.

6. CONCLUSIONS AND FUTUREWORK
In this paper we have presented the results of a case study to ex-

amine the effects of changing configurations on a user configurable
application, MyIE. We defined a set of metrics to determine the ef-
fectiveness of tests suites and test cases across configurations and
manipulated three different configuration spaces for two different
test suites. Our results suggest that there are only small differences,
at the test suite level, in fault finding effectiveness across configu-
rations. In addition, differences in block level code coverage are
also small. Specification-based test suites had higher overall code
coverage and showed greater variance in the metrics. At the test
case level, however, these differences were magnified, suggesting

that an entire test suite is more robust to changing configurations.
A small number of the faults detected in this study were config-

uration dependent. The implications for combinatorial interaction
testing are that for a small subset of faults this type of testing may
increase overall fault detection. In addition, for testing techniques
such as regression testing in which only subsets of test suites may
be used, the impact of changing configurations are greater, and in-
teraction testing methods may improve overall fault detection ef-
fectiveness.
In future work we intend to extend the test suites utilized in this

study to improve overall code coverage, and examine additional
configuration spaces. We plan to compare metrics obtained from
each of the configuration spaces with minimal subsets of config-
urations defined by combinatorial interaction testing. Finally, we
plan to conduct additional studies on other user configurable sys-
tems.
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