
Clustering the Heap in Multi-Threaded Applications for
Improved Garbage Collection

Myra Cohen
Department of Computer
Science & Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588-0115

myra@cse.unl.edu

Shiu Beng Kooi
Department of Computer
Science & Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588-0115

skooi@cse.unl.edu

Witawas Srisa-an
Department of Computer
Science & Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588-0115

witty@cse.unl.edu

ABSTRACT
Garbage collection can be a performance bottleneck in large
distributed, multi-threaded applications. Applications may
produce millions of objects during their lifetimes and may
invoke hundreds or thousands of threads. When using a sin-
gle shared heap, each time a garbage collection phase occurs
all threads must be stopped, essentially halting all other pro-
cessing. Attempts to fix this bottleneck include creating a
single heap per thread, however this may not scale to large
thread intensive applications. In this paper we explore the
potential of clustering threads into related sub-heaps. We
hypothesize that this will lead to a smaller shared heap,
while maintaining good garbage collection parallelism. We
leverage results from software module clustering to achieve
this goal. Our results show that we can significantly reduce
the number of sub-heaps created and reduce the number of
objects in the shared heap in a representative application.
This suggests that clustering may be a promising optimiza-
tion technique for garbage collection in large multi-threaded
systems with many shared objects.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures; D.3.4 [Programming Languages]: Processors—
memory management (garbage collection)

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Garbage collection, heap clustering, search based software
engineering, hill climbing, virtual machines

1. INTRODUCTION
Garbage Collection (GC) is the process by which dynam-

ically allocated memory is reclaimed as a program is execut-
ing. It reduces the likelihood of memory leaks (i.e. making

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8-12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

programs more robust) and frees software engineers from
the tedious task of explicit memory management. However,
garbage collection can be very performance intensive, con-
suming as much as 38% of execution time [8]. To increase
the efficiency of garbage collection various solutions have
been employed. These include (i) allocating objects accord-
ing to their maturity (program lifespan) so that short lived
objects are frequently liberated [12, 26], (ii) estimating the
allocated object life expectancy to avoid copying [3], (iii)
utilizing multiple threads to determine the objects that can
be deallocated [14] and (iv) providing hardware support [20,
21, 22].

Although these approaches have reduced the garbage col-
lection overhead in a single user desktop environment, they
do not necessarily scale to large distributed and server sys-
tems. First of all memory management on a server normally
occurs across several threads and processors. Second the
applications running on a server often offer services to thou-
sands of users, require high levels of availability, and need
longer execution cycles that cannot be stopped.

Our focus is on the first problem, that of handling garbage
collection efficiently across multiple program threads. Fig-
ure 1 is a simple example of a program that has a single
object which is shared among two threads. In this example
an instance of “SharedObject” is created in thread one by
the object c1. When c2 is created it contains a reference
pointer to the “SharedObject”. However, c2, runs in thread
two. Therefore a reference now exists to this object in both
threads.

In a conventional garbage collection implementation, ob-
jects from all of the running threads are created in one
large shared heap. As the garbage collector starts, all of
the threads of the program are stopped except the one in
which the garbage collector runs. Such synchronization pre-
vents object inconsistency and invalid references that may
occur during the collection process.

In the example both threads must be stopped to perform
garbage collection on c1 or c2. This makes sense since the
threads containing these objects interact. However, all of
the other threads that are active in this program must also
be stopped, even if they are not currently involved with c1
or c2. There may several hundred threads running in a dis-
tributed or server system at any one time, many of them
with no relation to c1 or c2. In addition, the popular adop-
tion of the singleton pattern [9] to build server applications
[5] results in an increase in the number of objects referenced

class SharedObject{

// . . .

}

class ClientOne implements Runnable{

SharedObject shared;

public ClientOne(){

shared=new SharedObject();

}

// . . .

}

class ClientTwo implements Runnable{

SharedObject shared;

public ClientTwo(SharedObject s){

shared=s;

 }

// . . .

}

class SharedThreads{

public static void main(String [] args){

ClientOne c1 = new ClientOne();

ClientTwo c2 = new ClientTwo(c1.shared);

Thread T1 = new Thread(c1);

T1.start();

Thread T2 = new Thread(c2);

T2.start();

}

}

Figure 1: Shared objects between threads

by multiple threads. Therefore, heap synchronization repre-
sents a severe performance bottleneck that reduces system
productivity and throughput due to poor processor utiliza-
tion during garbage collection. A related problem associated
with the shared heap approach is that the heap has potential
to get very large. A large shared heap size means that each
garbage collection invocation may take longer to complete
[23].

A few approaches have attempted to parallelize the garbage
collection process and alleviate this bottleneck. Steensgaard
[23] suggests creating a thread specific heap to store objects
accessed by a single thread. The objects accessed by multi-
ple threads are moved to a shared heap. The identification
of multiple referenced objects is achieved through an escape
analysis [4] of the program. Another approach proposed by
Domani et al. [7] creates a single sub-heap for each thread,
dynamically determining when a thread becomes “global”
(i.e. when it accesses something outside of its thread). In
both of these solutions, it is not clear if the suggested ap-
proach will scale to systems with hundreds or thousands of
simultaneous threads since both approaches require creat-
ing a sub-heap for every thread. The excessive heap usage
may make these approaches infeasible. One possible solu-
tion suggested by Steensgaard [23], is to identify clusters of
threads that can be assigned to the same sub-heap. To date,
this idea has not been explored. Two potential benefits are
the reduction of the overall heap memory requirement and
the reduction of the number of objects in the shared heap.

In this paper, we extend the work of Steensgaard and
Domani et al. [7, 23] by experimenting with heap clustering
to determine if it is feasible to increase the number of threads
that can be assigned to a sub-heap and reduce the number
of sub-heaps for a given program. We leverage research on
software module clustering [10, 16, 19] to achieve this goal.
A heuristic search algorithm is used to cluster threads of

a program into separate sub-heaps based on prior run-time
traces (histories) of the program’s behavior. Specifically we
perform a trace dependency analysis and then use a hill
climb to find a good clustering with low coupling and high
cohesion of threads.

We conduct two case studies aimed at evaluating the ef-
fectiveness of clustering in reducing the number of objects
in the shared heap. In the first experiment, we apply a hill
climb to cluster all shared objects. In the second experi-
ment, we filter out objects that have a high degree of thread
dependency prior to applying the hill climb. The results
of these two experiments are compared against the thread
specific heap approach proposed by Steensgaard [23].

Our hypothesis is that clustering can reduce the number
of sub-heaps and the number of objects in the shared heap.
The reduction in the number of sub-heaps should improve
memory utilization and thus make large multi-threaded ap-
plications more scalable. The reduction in the number of
objects in the shared heap should improve garbage collec-
tion response time as fewer collection invocations are needed
in the shared heap. The main contribution of this work is
to assess the feasibility of our hypothesis. To do this we
have implemented a system that performs a static cluster-
ing based on program trace information. An actual system
implementation and dynamic performance analysis is left as
future work.

The rest of this paper is organized as follows. Section 2
describes the clustering problem and relates it to software
module clustering. In section 3 a case study is described
that explores the feasibility of the heap clustering approach.
Section 4 presents the results of the case study. Section 5
discusses related work and section 6 concludes and presents
future work.

2. HEAP CLUSTERING OF THREADS
The main approach to improving parallelization in garbage

collection has been to create individual sub-heaps for each
thread that store objects with no incoming references from
other threads. The rest of the objects are moved into a
single shared heap. This approach is often referred to as a
thread-local [7] or thread-specific [23] heap solution. One
short coming of this approach is that garbage collection in
the shared heap still requires all application threads to stop.
A potential solution suggested by Steensgaard is to provide a
set of shared heaps that can be used by “a family of threads
sharing some data structures” [23] to yield greater garbage
collection efficiency. This has not been explored. It is un-
known if threads can be partitioned or clustered in a way
that enhances performance. This section describes the heap
clustering problem in more detail and discusses how it can
leverage prior work in software module clustering.

2.1 Example Clustering
Figure 2 is one example of a potential clustering for a

set of six threads. There are eleven objects created by the
threads. Thread one, three and four share object references.
For instance object 1 is referenced by T1 and T4 while object
11 is referenced by T2 and T3. It is desirable to have sub-
heaps that are not too large and that contain closely related
objects. The objective is to have sub-heaps with maximal
intra-cluster dependencies and minimal (“ideally” no) inter-
cluster dependencies. In Figure 2 all threads that can be
clustered are placed in sub-heaps, while a large shared heap

contains the other objects (ones that share a large number
of references with all others making them ineligible for the
clustering approach). The example shown is only one possi-
ble clustering for this set of threads and objects.

T1

T4

T3

T1
Object 1

Object 5

Object 3
T3

T4

Object 5

Object 3

Object 11

Object 1

Object 9

Object 10

Object 11

T5

T2
T6

T2
Object 4

Object 6

T5
Object 4

Object 7 T6
Object 2

Object 8

Shared Heap

(objects with high reference counts)

Clustered

heaps

by thread:

Objects referenced in specific threads:

Figure 2: Ideal clustering for performance

Figures 3 and 4 show an example of how heap clustering
and garbage collection work together. Each cluster has sev-
eral objects where an object is represented by a circle. The
values inside of the object are the threads that reference it.
In Figure 3 if the garbage collector attempts to collect the
first sub-heap it must stop all of the threads in both sub-
heaps (i.e. threads one through four). This is due to the
reference from the highlighted object in the first sub-heap
to the second sub-heap. The garbage collector finds all po-
tential conflicts and stops these threads. If this object was
to be reclaimed and the threads in the second sub-heap were
not stopped, a dangling reference [12] may be left behind. A
typical implementation of a garbage collector will not allow
this to happen but will stop all threads that are referenced
by any object in the current heap.

1

1,2,4

1,2

2

4

3,4

3

Thread 1 & 2

(cluster one)

Thread Clusters

Thread 3 & 4

(cluster two)

Scenario I: All four threads must be stopped to

perform GC on the highlighted object

Figure 3: Imperfect clustering

In the second scenario (Figure 4) the object causing the
dependencies between heaps has been removed and placed
into a shared heap. When garbage collection occurs, on ei-
ther of the two sub-heaps, only the threads in that sub-heap

need to be stopped. For instance if garbage collection occurs
on sub-heap one then only threads one and two need to be
stopped. Threads three and four can continue to work on
other tasks. Anytime, the shared heap is collected, however,
all threads in the entire system must be stopped. This high-
lights our desire to keep the number of objects in the shared
heap as small as possible.

1

1,2,4

1,2

2

4

3,4

3

Thread 1 & 2

(cluster one)

Thread Clusters

Thread 3 & 4

(cluster two)

Scenario II: Any of the highlighted objects

can be collected by stopping threads in only its

own sub-heap.

shared heap

Figure 4: Using a shared heap

Finding a good clustering is not a simple task. We cannot
use a brute force approach since the clustering problem is
known to be NP Hard [18]. This makes heuristic search a
natural candidate for finding a solution.

2.2 Relationship to Software Clustering
Another software engineering domain with a similar clus-

tering problem is that of clustering software modules [10,
16, 17, 18, 19]. Software maintenance tasks often require
reverse engineering of software modules. Mancoridis et al.
[17], Mitchell [18, 19], Mahdavi [16] et al. and Harman et
al. [10] have explored heuristic search techniques for clus-
tering software modules. They attempt to find clusters that
reduce the number of inter-module dependencies (i.e obtain
low coupling) while at the same time increasing intra-module
dependencies (i.e. high cohesion). The Bunch tool was de-
veloped for this purpose [17]. Its uses a hill climbing algo-
rithm as the primary method to cluster modules.

2.2.1 Heuristic Search
Both heuristic and meta-heuristic search techniques have

been used to solve the software module clustering problem
[18]. The most successful method to date for the clustering
problem for software modules has been a hill climb [10, 16,
18, 17]. Although we do not know that this is also the best
approach for our problem, we use this as a starting point
to determine if clustering will prove at all successful. The
details of the hill climb algorithm used are described in the
feasibility study.

2.2.2 Thread Dependency Graph
Mitchell, et al. [16, 19] use a module dependency graph,

MDG, as a starting point for the hill climb. The graph de-
fines the relationship between the software modules. Each

module is a node in the graph, with edges representing de-
pendencies between modules. In our application, we mea-
sure the dependency at the thread level. This is the abstrac-
tion that seems to make the most sense for garbage collection
since the threads are the beneficiaries of a good clustering.
Even though individual objects may escape threads where
they are created, they are always related back to a thread,
not to another object. In addition even a small program
may have thousands or millions of objects, which may make
the clustering problem even harder.

We define a thread dependency graph (TDG) as a directed
graph where each node is a thread and each edge represents a
dependency with another thread. This can be created either
statically or by using a post-analysis process from a system
trace. For our analysis we have created this from historical
system traces. To create the TDG, the trace is processed
to identify all objects. For each of these objects a list of
all threads that references it is created. We only consider
objects that are referenced by multiple threads. The object-
thread list is converted into a list of thread pairs, one for each
dependency. In the example given in Figure 2, the TDG will
consist of the following four edges : T1−T3, T1−T4, T2−
T5, T3 − T4. T6 is not found in this graph since it has no
other thread dependencies.

2.2.3 Objective Function
In [18, 19] the authors presents a Module Quality metric

(MQ). It is specifically designed to be maximal with high co-
hesion and low coupling. In [10] the authors compared the
relative effectiveness of this metric against another cluster-
ing metric, EVM [25]. Both performed well, although EVM
was found to be more robust under degradation (i.e. when
there is a large amount of noise in the graph). We have cho-
sen to use the MQ metric as an initial fitness function since
it was developed specifically for an application that is close
to ours in the desired outcome. The MQ metric is defined as
follows [16, 18]. Each cluster has a Modularization Factor
(MF) that is calculated by:

MF =

(
0 if i = 0

i

i+ i
2 j

if i> 0

where i is the number of internal edges in a cluster and
j is the number of edges between this cluster and the other
clusters. It is possible to use a weighted value for j but
we leave this for future work. The Modularization Qual-
ity (MQ) is then defined as the sum of the MF’s across all
clusters: MQ =

Pn
m=1 MFm.

It should be noted that this is a relative metric, rather
an absolute metric since the possible maximum MQ value is
dependent on the number of clusters.

3. CLUSTERING FEASIBILITY STUDY
A feasibility study was performed on a distributed appli-

cation using the .NET framework. We have several bench-
mark programs that can be used in a distributed environ-
ment. We selected a peer-to-peer application described be-
low for this study.

3.1 Platform and Subjects
The feasibility experiments use the Shared Source Com-

mon Language Infrastructure (SSCLI) or Rotor [24] from
Microsoft. SSCLI is a research virtual machine that con-

tains the core functionality of the Common Language In-
frastructure which forms the basis of the .NET framework.
The benchmark application used is a decentralized Peer-to-
Peer (P2P) file sharing network program. A peer can serve
as both a client and server at any time. It is modeled on
programs from [6, 15]. The P2P network was configured to
contain 80 nodes. Each node requests 240 files from other
nodes and delivers 240 files to other nodes. A singleton ob-
ject is used in each node as a gateway to take the incoming
requests. The file size is set to be 75KB. We monitored one
of the P2P nodes, which spawns 46 threads. These threads
make and handle the requests for uploading and download-
ing files.

3.2 Clustering Process
Steensgaard [23] uses an escape analysis to determine which

objects are referenced from more than one thread. In this
paper we use a slightly different approach, although similar
results may be obtainable via an escape analysis. We do a
post analysis and use a program trace collected during an
execution of the benchmark application. The trace file pro-
vides information such as object creation, thread identifica-
tion, and reference assignments. The recorded information
is then analyzed to derive the thread dependency graph.

Benchmark

Application

Instrumented

SSCLI

Virtual Machine

Program

Trace
TDG

Hill Climbs

. . .

Move

objects

to shared

heap

Shared

Heap
Initial Clustering

by threads Final Clustering

Figure 5: Clustering process

A diagram of process used is shown in Figure 5. Initially
the program is run and a trace is created. As a first step,
all objects that never escape their threads are removed from
our analysis. The assumption is that these can be placed
into the sub-heap containing their thread without affecting
the quality of the clustering itself. It is possible that this
will affect the garbage collection process however, since the
final heap sizes matter. This is left for a later analysis with
simulation. The next step in the process is to create a thread
dependency graph from the trace. The TDG is then fed
into parallel hill climbs. After each of the hill climbs has
completed the best clustering is kept. It is probable that
the clustering will still have some inter-heap dependencies.
Although this may be feasible for software module clustering
it may cause undue performance hits in our domain so these
are removed in a post-processing step. Any objects that have
incoming references from threads assigned to other clusters
are moved down to the shared heap. This represents the
final clustering.

3.2.1 Pre-processing Step (Filtering)
In the Bunch tool [17], a pre-processing step is used to

remove omnipresent modules. These are modules that have
many external references and are likely to make the cluster-
ing difficult. We observed that there were a small number of
objects with a large reference count. As part of this study we
wanted to determine if a pre-processing stage that removes
these would provide a better clustering. In experiments that
use pre-processing we sorted the object reference patterns
by length in ascending order and observed that the num-
ber of objects for a particular thread reference pattern was
only one or two for the top part of the list. This abruptly
changed at a point in the file to patterns with several hun-
dred objects. We selected this change as the cut-off point
for choosing omnipresent objects. When filtering is used
all omnipresent objects are placed into the shared heap and
therefore not part of the clustering.

3.2.2 Hill Climb Implementation
The hill climb used in these experiments encodes the clus-

ters as a string of values. This is similar to the Bunch rep-
resentation [17]. The length of the string is the number of
threads in the TDG. An initial random clustering is created
and then a series of transformations is applied. The neigh-
borhood of a clustering consists of all possible clusterings
that can be obtained by moving one thread from one clus-
ter to another. Given the string representation this is one
mutation of a single location in the string. The number of
clusters will change dynamically as the program runs. For
instance, if a thread resides in a cluster of its own and is
moved to a different cluster, the number of clusters will be
reduced by one after this move. We do not use a steepest
ascent method, but rather select a single new neighbor at
random and evaluate the resulting MQ. If the MQ is greater
then we accept the new clustering. If the MQ is less we ac-
cept it with a probability of 1/1000. A small probability for
making a bad move was left in to help prevent converging
too quickly in a local optimum. The stopping criterion used
is 12,000 iterations or 800 consecutive bad moves.

3.3 Experiments
We ran forty five trials of the clustering process first with

and then without the pre-processing filter that removes om-
nipresent objects. These were run on Linux 2.6, on a 45 node
cluster where each node is a dual Opteron 250 SMP running
at 2.4GHz with 16GB of RAM spread equally between the
two processors.

We recorded the initial MQ’s , the final MQ and the num-
ber of clusters and number of objects in the shared heap for
each of the hill climbs. Finally, the post-processing step
moved all remaining objects with external inter-heap ref-
erences into the shared heap and the number of remaining
objects in each cluster and in the shared heap were recorded.

4. RESULTS
The experimental goal is to evaluate the effectiveness of

clustering by observing two performance criteria: the num-
ber of sub-heaps and the number of objects in the shared
heap. The following subsections report our findings.

4.1 Reduction of Sub-Heaps
By clustering, we expect to reduce the number of sub-

heaps while maintaining good garbage collection parallelism.

Because the hill climb does not yield perfect clustering, we
filter the input data in one experiment to eliminate obvious
candidate objects that should be placed in the shared heap.
The other experiment is conducted with all possible shared
objects. Table 1 reports the result of the two experiments.
In this table we show data taken from clusters with the
best five and worst five MQ values for each method. If we
had used a thread-local approach for garbage collection we
would have had 46 sub-heaps for this program. Instead, with
clustering we can reduce the number to 4, or by as much as
91.3%.

Number of Clusters (% of reduction)
Best Five MQ Values

Run Thread-Local With Filter Without Filter
1 46 4 (91.30%) 4 (91.30%)
2 46 4 (91.30%) 4 (91.30%)
3 46 4 (91.30%) 4 (91.30%)
4 46 4 (91.30%) 4 (91.30%)
5 46 4 (91.30%) 4 (91.30%)

Worst Five MQ Values
Run Thread-Local With Filter Without Filter

1 46 6 (86.96%) 6 (86.96%)
2 46 6 (86.96%) 6 (86.96%)
3 46 6 (86.96%) 6 (86.96%)
4 46 6 (86.96%) 7 (84.78%)
5 46 6 (86.96%) 6 (86.96%)

Table 1: Comparing the number of sub-heaps be-
tween thread-specific and clustering approaches

Larson and Krishan have shown that as the number of
heap partitions increases, the efficient use of memory de-
creases since memory for each sub-heap is often over-allocated
[13], therefore this clustering should significantly reduce the
amount of heap memory required and improve memory uti-
lization.

We also investigate the number of shared objects (exclud-
ing singly referenced objects) in each sub-heap. We find that
objects are not evenly distributed in each sub-heap. Table
2 is an example of one distribution. It represents the clus-
tering that moved the largest number of objects (134,406)
out of the shared heap. In a real implementation, the heap
must be partitioned based on the memory requirement. The
effect of an uneven clustering on system performance is left
to future work.

4.2 Reduction of Shared Objects
To study the effectiveness of clustering on the number of

shared objects, we again conduct two experiments: using all
shared objects and filtering out omnipresent objects. Table
3 shows the best, worst and average MQ values for 45 runs of
our process using each of the two methods. We present the
MQ’s both before and after the hill climb. The data points
labeled RMQNF and RMQF represent the randomly created
clusters before the hill climb begins. RMQNF is the version
that does not pre-filter while RMQF represents data that
has been filtered. HCQNF and HCQF represents the MQ
after the hill climb for the non-filtered and filtered versions
respectively. Figure 6 shows a box plot of the MQ values.
The two plots on the left are the random MQs before the
hill climbs. The plots on the right illustrate the values after
the hill climbs. Although we see no significant differences

Number of
Clusters Threads Threads Total Objects

1 7 7,9,10,12,13,18,29 34,733
2 11 1,3,4,5,6,8,11,14,15,16,21 39,817
3 13 2,17,20,24,26,27,28,30,32,33,34,35,44 33,251
4 15 19,22,23,25,31,36,37,38,39,40,41,42,43,45,46 26,605

Total Objects Assigned to Clusters 134,406

Table 2: Distribution of objects into clusters (from the run that minimizes number of objects in the shared
heap)

in the values between the filtered and non-filtered versions
after the hill climbs, the best individual MQ’s were obtained
with the filtering process.

●

RMQNF RMQF HCMQNF HCMQF

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N=45

M
Q

Random and Clustered MQ Values

Figure 6: Comparison of MQ values before and after
clustering

Best Worst Avg. Std.
MQ MQ MQ Dev.

Random at Start
Thread-Clustering
no filtering 0.468 0.296 0.371 0.040
(RMQNF)
Thread-Clustering
with filtering 0.473 0.265 0.357 0.049
(RMQF)

After Hill Climb
Thread-Clustering
no filtering 0.974 0.906 0.960 0.017
(HCMQNF)
Thread-Clustering
with filtering 0.978 0.932 0.960 0.018
(HCMQF)

Table 3: MQ pre and post hill climb

In our study there were over 6 million objects created in
the subject program. An analysis such as one proposed by
Steensgaard [23] would have placed about 8 % of the to-
tal objects into the shared heap (452,679). Table 4 shows

Objects in Shared Heap
Number Percent
Objects Reduction

Thread-Specific
Approach 452,679 0.00 %
Thread-Clustering
with no filtering

328,289 27.48 %
318,273 29.69 %
331,585 26.75 %
335,005 26.00 %
338,479 25.23 %

Thread-Clustering
with filtering

337,221 25.51 %
345,657 23.64 %
347,361 23.27 %
339,833 24.93 %
332,503 26.55 %

Table 4: Comparison of objects in the shared heap

the numbers of objects remaining in the shared heap for
each of the best five MQ values for both the filtered and
unfiltered hill climbs after clustering. The data in the ta-
ble is ordered in descending order of MQ value (i.e the best
MQ for each method is shown first). In the best case, as
many as 134,406 objects would have been moved into clus-
tered sub-heaps using our approach, leaving 318,273 objects
in the shared heap. This is a 29.69 % reduction over the
Steensgaard method. Figures 7 and 8 provide a graphical
representation of this data. In general it seems that the data
which was not filtered does slightly better in reducing ob-
jects. One interesting observation is that the best MQ did
not always directly translate to the largest reduction in ob-
jects. This may suggest more work is needed on the fitness
function.

5. RELATED WORK
In work by Steensgaard an escape analysis is used to

statically determine which objects can “escape” their given
threads. All objects that do not live within a single thread
are moved to a shared heap. All other threads are given their
own heap [23]. Domani et al. [7] use a dynamic approach
to partition their heap into one sub-heap per thread. At
run-time, monitoring of the write barrier (trap of reference
stores) is done to detect “global” objects. When garbage
collection occurs, if a thread is not local then all threads are
stopped. Another solution is to allocate objects on the stack
whose lifetime is limited to a threads run-time call stack [4].
KaffeeOS, a Java virtual machine based operating system,
divides the heap into process-specific heaps and a shared

300000

325000

350000

375000

400000

425000

27.48%

328289

29.69% 26.75% 26.00% 25.23%

318273

331585
335005 338749

o

f o
b

je
ct

s
in

 t
h

e
sh

ar
ed

 h
ea

p

 run 1 run 2 run 3 run 4 run 5

450000

Figure 7: Reduction of shared objects (without fil-
tering)

300000

325000

350000

375000

400000

425000

25.51%

337221

23.64% 23.27% 26.00% 26.55%

345657
347361

339833
332503

o

f o
b

je
ct

s
in

 t
h

e
sh

ar
ed

 h
ea

p

 run 1 run 2 run 3 run 4 run 5

450000

Figure 8: Reduction of shared objects (with filter-
ing)

heap for data [2]. It does not allow objects in the shared
heaps to reference objects in the process specific heaps.

Mitchell et al. [18, 19] approached the problem of software
module clustering using genetic algorithms and hill climbing.
They developed the MQ metric which was used in this pa-
per as a fitness function. Mahdavi et al. extended this work
by using a multiple hill climb that fuses common clusters
between successes hill climbs forming basic building blocks
[16]. Harman et al. [10] compared 2 different fitness func-
tions for robustness in this application.

In this work, we differ from the other garbage collection
sub-heap schemes in that we cluster our heaps. In the other
garbage collection approaches each thread is given its own
sub-heap to store objects that are referenced by that thread.
Any objects that are referenced by multiple threads are
moved into a shared location. In our approach, we find
threads that have shared references and move these into
common areas. We also differ in that the approach is a post-
analysis of real trace data from a run of the program which
should be a representative profile of the program. Our work
is similar to the work on software module clustering, how-

ever, the application and domain differ. In software module
clustering it is desirable to remove as much coupling as is
possible, but in garbage collection even a small amount of
coupling in resulting clusters may have a negative impact
on performance.

6. CONCLUSIONS AND FUTUREWORK
In this paper we have explored the feasibility of paralleliz-

ing garbage collection by clustering threads into sub-heaps
using a hill climbing algorithm. We examined a peer-to-peer
distributed application and explored two versions of cluster-
ing. In the first experiment we clustered using all objects.
In the second we filtered omnipresent objects and then per-
formed the clustering. After each clustering all remaining
objects with inter-heap references were moved to the shared
heap.

We have found that it is possible to find a clustering that
will reduce the number of sub-heaps by as much as 91.3%
and the number of objects in the shared heap by as much
as 29.69% in our case study application and expect that
this will provide improvements in garbage collection perfor-
mance. We found that the highest MQ did not always pro-
vide the best reduction in the shared heap indicating that
we may need to examine the fitness function further.

In future work we plan to refine the clustering algorithm
and to evaluate system performance. On the algorithm side,
we plan to apply alternative fitness functions including one
that incorporates weighted clustering. We also plan to try
using the technique of multiple hill climbing with building
blocks as presented in [16]. In addition, we will experiment
with other benchmark programs to determine the scalability
and generality of this approach.

Although we have reduced the number of sub-heaps as
well as the number of objects in the share heap, it is not
clear if this reduction will translate directly to a performance
gain. We plan to examine two performance metrics on this
front: garbage collection parallelism and garbage collection
execution time. Garbage collection parallelism will measure
the number of threads that must be stopped during each
garbage collection invocation. We are building a simulator
based on the methodology introduced by Hertz et al. [11]
to perform this task. It will allocate objects to the assigned
sub-heaps defined by the clustering algorithm or one of the
other approaches such as the thread-local approach. It will
obtain exact object lifespans from the program traces and
then simulate all of the object allocations of threads and
track all of the garbage collection invocations. We will also
investigate changing parameters such as the size of each sub-
heap and finer grain optimization that considers the amount
of time that an object is shared by multiple threads.

In order to study garbage collection execution time we
will implement thread clustering into a virtual machine. A
major challenge is to implement the thread assignments dy-
namically. A recent study by [1] found that “cross-run in-
formation” (run-time information from previous executions)
can be used for performance tuning. Their work creates an
architecture to store and exploit cross-run information; this
information is then applied to help with the selective op-
timization process in a Java virtual machine. In a similar
fashion, cross-run information can be used to assist in as-
signing threads and forming and sizing clusters. We will use
this approach, performing the analysis off-line and applying
it to subsequent runs.

7. ACKNOWLEDGMENTS
This work was sponsored in part by an EPSCoR FIRST

Award, NSF Award CNS-0411043 and by the Army Re-
search Office through DURIP award W911NF-04-1-0104.
We thank Mulyadi Oey for work on the benchmark pro-
grams.

8. REFERENCES
[1] M. Arnold, A. Welc, and V. T. Rajan. Improving

virtual machine performance using a cross-run profile
repository. In Proceedings of the International
Conference on Object Oriented Programming, Systems,
Languages, and Applications, pages 297–311, 2005.

[2] G. Back and W. C. Hsieh. The KaffeOS Java runtime
system. ACM Transactions on Programming
Languages and Systems, 27(4):583–630, 2005.

[3] S. M. Blackburn, S. Singhai, M. Hertz, K. S.
McKinely, and J. E. B. Moss. Pretenuring for Java.
SIGPLAN Notices, 36(11):342–352, 2001.

[4] B. Blanchet. Escape analysis for JavaTM: Theory and
practice. ACM Transactions on Programming
Languages and Systems, 25(6):713–775, 2003.

[5] D. Browning. Integrate .NET remoting into the
enterprise. In .NET Magazine, November 2002.

[6] D. Conger. Remoting with C# and .NET: remote
objects for distributed applications. Wiley Publishing,
Inc., 2003.

[7] T. Domani, G. Goldshtein, E. K. Kolodner, E. Lewis,
E. Petrank, and D. Sheinwald. Thread-local heaps for
Java. In Proceedings of the 3rd International
Symposium on Memory management, pages 76–87,
2002.

[8] L. Dykstra, W. Srisa-an, and J. M. Chang. An
analysis of the garbage collection performance in Sun’s
HotSpot JVM. In Proceedings of the IEEE
International Performance Computing and
Communications Conference, pages 335–339, 2002.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, 1994.

[10] M. Harman, S. Swift, and K. Mahdavi. An empirical
study of the robustness of two module clustering
fitness functions. In Proceedings of the Conference on
Genetic and Evolutionary Computation, pages
1029–1036, 2005.

[11] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S.
McKinley, and D. Stefanović. Error-free garbage
collection traces: how to cheat and not get caught. In
Proceedings of the International Conference on
Measurement and Modeling of Computer Systems,
pages 140–151, 2002.

[12] R. Jones and R. Lins. Garbage Collection: Algorithms
for automatic Dynamic Memory Management. John
Wiley and Sons, 1998.

[13] P. Larson and M. Krishan. Memory allocation for long
running server applications. In Proceedings of the
International Symposium on Memory Management,
1998.

[14] C. D. Lo, W. Srisa-an, and J. M. Chang. A
multithreaded concurrent garbage collector
parallelizing the new instruction in Java. In
Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, 2002. (CD-ROM).

[15] M. MacDonald. Peer-to-Peer with VB.NET. Apress,
2003.

[16] K. Mahdavi, M. Harman, and R. Hierons. A multiple
hill climbing approach to software module clustering.
In Proceedings of the International Conference on
Software Maintenance, pages 315–324, 2003.

[17] S. Mancoridis, B.S.Mitchell, Y.Chen, and
E.R.Gansner. Bunch: A clustering tool for the
recovery and maintenance of software system
structures. In Proceedings of the International
Conference on Software Maintenance, pages 50–59,
1999.

[18] B. Mitchell. A Heuristic Search Approach to Solving
the Software Clustering Problem. PhD dissertation,
Drexel University, Department of Computer Science,
2002.

[19] B. S. Mitchell, S. Mancoridis, and M. Traverso. Search
based reverse engineering. In Proceedings of the
International Conference on Software Engineering and
Knowledge Engineering, pages 431–438, 2002.

[20] K. Nilsen and W. Schmidt. A high-performance
hardware-assisted real-time garbage collection system.
Journal of Programming Languages, pages 1–40, 1994.

[21] D. J. Roth and D. S. Wise. One-bit counts between
unique and sticky. In Proceedings of the International
Symposium on Memory Management, pages 49–56,
1998.

[22] W. Srisa-an, C. D. Lo, and J. M. Chang. Active
memory processor: A hardware garbage collector for
real-time Java embedded devices. IEEE Transactions
on Mobile Computing, 2(2):89–101, 2003.

[23] B. Steensgaard. Thread-specific heaps for
multi-threaded programs. In Proceedings of the
International Symposium on Memory management,
pages 18–24, 2000.

[24] D. Stutz, T. Neward, and G. Shilling. Shared Source
CLI Essentials. O’Reilly and Associates, 2003.

[25] A. Tucker, S. Swift, and X. Liu. Variable grouping in
multivariate time series via correlation. IEEE
Transactions on Systems, Man and Cybernetics, Part
B, 31(2):235–245, 2001.

[26] D. Ungar. Generational scavenging: A non-disruptive
high performance storage reclamation algorithm. In
ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, pages 157–167, April 1984.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

