Mehmet Can Vuran

Assistant Professor

E-mail: mcvuran@cse.unl.edu

[Main]
University of Nebraska-Lincoln

A-MAC: Adaptive Medium Access Control for Next Generation Wireless Terminals

M. C. Vuran and I. F. Akyildiz, IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 574-587, June 2007.

 

Next Generation Wireless Networks

Abstract:

Next Generation (NG) wireless networks are envisioned to provide high bandwidth to mobile users via bandwidth aggregation over heterogeneous wireless architectures. NG wireless networks, however, impose challenges due to their architectural heterogeneity in terms of different access schemes, resource allocation techniques as well as diverse quality of service requirements. These heterogeneities must be captured and handled dynamically as mobile terminals roam between different wireless architectures. However, to address these challenges, the existing proposals require either a significant modification in the network structure and in base stations or a completely new architecture, which lead to integration problems in terms of implementation costs, scalability and backward compatibility. Thus, the integration of the existing medium access schemes, e.g., CSMA, TDMA and CDMA, dictates an adaptive and seamless medium access control (MAC) layer that can achieve high network utilization and meet diverse QoS requirements.

In this paper, an adaptive medium access control (A-MAC) layer is proposed to address the heterogeneities posed by the NG wireless networks. A-MAC introduces a two-layered MAC framework that accomplishes the adaptivity to both architectural heterogeneities and diverse QoS requirements. A novel virtual cube concept is introduced as a unified metric to model heterogeneous access schemes and capture their behavior. Based on the Virtual Cube concept, A-MAC provides architecture-independent decision and QoS based scheduling algorithms for efficient multi-network access. A-MAC performs seamless medium access to multiple networks without requiring any additional modifications in the existing network structures. It is shown via extensive simulations that A-MAC provides adaptivity to the heterogeneities in NG wireless networks and achieves high performance.

 
©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.
[Main]